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EXPLICIT RELAXATION OF A VARIATIONAL PROBLEM 
IN OPTIMAL DESIGN1 

BY ROBERT V. KOHN AND GILBERT STRANG 

Our goal is to construct a quasiconvex function $ such that 

(1) inf / (l8Upp vu + | Vu|2) dx = inf ƒ *(Vu) dx 

for vector-valued functions u on Lipschitz domains Q c R2. The right side of 
(1) is the relaxation of the left, cf. [1]. Each infimum is over u G if1(Q;RJV), 
lsupp Vu denotes the characteristic function of the support of Vu, and \Vu\2 = 
E(<hi7cte*)3-

The left side of (1) is a problem of optimal design: it minimizes 
Area(H \ S) + fQ \Vus\2 dx, among all sets S c O , where us solves the 
variational problem 

(2) inf I ƒ \Vu\2dx:u\dQ=F1Vu = Oons\. 

An application will be described below. 
For some choices of Q and F, this optimal design problem has no solution; 

in other words, the infimum on the left side of (1) may not be attained. 
The nonexistence of solutions to related problems has been noted by several 
authors; see [4] and the references given there. Here, it arises because the 
function 

is not quasiconvex, so the left side of (1) is not lower semicontinuous under 
weak H1 convergence. A minimizing sequence {un} may be highly oscillatory, 
and Sn = {Vun = 0} may develop increasingly complicated microstructure. 

The relaxed problem, on the right, is lower semicontinuous, hence the 
infimum is attained. In fact, its solutions are precisely the weak limits of 
minimizing sequences for the left side. The introduction of such a relaxed 
problem is a standard way of dealing with nonexistence. The method has its 
roots in the work of L. C. Young and E. J. McShane, and contributions have 
been made by Morrey, Ball, Ekeland, Temam, and Dacorogna, among others; 
see [2] for further discussion and references. 
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For the scalar case N = 1, the methods of Ekeland and Temam [3] may be 
used to show that $ is the largest convex function below G, 

*(v,) = (1 + |Vw|2' | V w |^ ' 
v ; \2|Vti|, | V u | < l . 

In the vector case N > 1, however, this convexification of G would make the 
right side of (1) too small. Instead, one must use $ = QG, the quasiconvexi-
fication of G, defined by 

(4) QG(E) = inf [ G(E + Vf) dx 

for any 2 x N matrix E, where U is the unit square in R2. Dacorogna has 
proved that QG is quasiconvex, and that the analogue of (1) holds, for any 
continuous integrand G satisfying a mild growth condition [lj. 

Unfortunately, quasiconvexifications are hard to compute. So far, all ex
amples have involved ordinary convexification in an essential way. An un
derlying difficulty is the lack of an algebraic condition for quasiconvexity. 
Morrey and Ball gave a sufficient condition, called polyconvexity (for 
u : R2 —• RN, G(Vu) is polyconvex if it is a convex function of Vu and its 2 X 2 
minors). Hadamard gave a necessary condition, namely rank-one convexity 
(also called ellipticity, or the Legendre-Hadamard condition). But polycon
vexity is not necessary; the sufficiency of rank-one convexity is open; and the 
condition QG = G is neither algebraic nor easy to work with. 

We have computed the quasiconvexification of (3), for u: R2 —• R^, using 
the methods of homogenization. 

THEOREM. For N > 1, the quasiconvexification of (3) is 

(5) $(VU) = ( 1 + | V U | 2 for\Vu\> + 2D>l, 
V ; V ' \2(|Vw|2 + 2 JD)1 /2-2D for\Vu\2 + 2D<l, 

where 

2 _ v^ f du1 duJ du3 du1 \ 

i<i<j<N\dXldx2 àxxdx2) 

This $ is polyconvex, and (1) holds whenever Q is a Lipschitz domain and F is 
the boundary value of an H1 function. 

We explain how one arrives at (5). Given a subset S CO and a real number 
0 < 6 < 1, let ws,6 e if ^OjR^) solve 

(6) div(asVWS,Ô) = 0 in H, asV„ws,6 = ƒ on 3H, 

where ƒ is the derivative of F along 6f2, and 

, v (6, x€S, 
a*(x) = \i, xen\s. 

The dual variational principle for (6) gives JQ 051 Vws^l2 dx as the infimum of 
a problem involving N divergence-free vector fields. If Q is simply connected, 
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we represent these vector fields using stream functions u, to arrive at 

(7) / as\Vws,ö\2 dx= inf / agX\Vu\2 dx. 

When (5 = 0, (6) becomes Laplace's equation on Q \ S with a homogeneous 
Neumann condition on dS, and the right side of (7) coincides with (2). In 
particular, the variational problem 

(8) inf AreafH \ S) + f as\Vws e? dx 
sen Jn 

is equivalent when 8 = 0 to the left side of (1). 
As S varies with 6 > 0 fixed, the limits of the solutions of (6) may satisfy 

new equations 

(9) div(a*Vw) = 0 inH, a*V„w = ƒ on an. 

These constitute the G-closure of (6), and they correspond to composite 
materials obtained by mixing the original two. Lurie and Cherkaev [5] and 
Tartar and Murat [6] have independently determined the set As(p) of matrices 
a* attainable in (9) "with volume fraction p", i.e. by a sequence {Sn} with 
weak limitn_+oo ln \5 n

 = P- By virtue of (7), (8) leads to 

(10) inf inf f 
u\an=F 0<p(x)<l JQ u\an=F 0<p(x)<l 

a(x)eA6(p(x)) 

N 

i = 1 
dx. 

We computed $ by passing to the limit 6 —• 0 in (10), and evaluating the second 
infimum: 

N 

$(Vu) = inf p+ ^ ( a ^ V w ^ V ^ ) , 
aëAÖ(p) j=1 

where AQ(P) = l i m ^ o As(p)- The proof that (1) holds for this choice of <ï> 
combines the tools of [3] with the constructions of optimal composites given 
by [5 or 6]. 

We give an application, only slightly far-fetched, of the optimal design 
problem implicit in (1). Consider a simply connected domain O c R 2 coated 
with silver, and a family of current loads f3, 1 < j < N, to be imposed at 
3Q. The voltage produced by f3 solves Aw3 = 0 in Q with Vuw

3 = f3 at 
30, and CJ = Jn \Vw3\2 dx is the rate at which energy is dissipated to heat, 
neglecting factors involving units. The design problem is to remove as much 
silver as possible, leaving behind a perfect insulator, with the constraint that 
the rate of energy dissipation under load ƒ3 must not exceed a given constant 
Cj > Cj, l<j<N. 

If the silver is removed from a set S, the new vector of voltages (w1,..., wN) 
is just ws,o, the solution of (6) with 6 — 0, and the rate of energy dissipation 
is given by (7). Hence our design problem is 

(11) inf sup J(S,X), 
sen x ->o 
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where 

J(S, X) = Area(n \ S) + g X , ( f ^ |V«4>0 |2 dx - C,-). 

On the other hand, the theorem shows that 

(12) inf J(S,X)= inf /' *{Vu)dx- £ X,C, 
SCO u\dn=FxJn j = 1 

for each X, where F{ is the integral of \J\jfi along dû. We conjecture that 
(11) is obtained by maximizing (12) with respect to X̂  > 0. Even without 
such a minimax result, each solution of (12) determines a solution of (11) for 

some c; = c;.(\). 
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