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Abstract 11 

 12 

Humans can reflect on previous decisions and report variable levels of confidence. But why 13 

maintain an explicit representation of confidence for choices that have already been made and 14 

therefore cannot be undone? Here we show that an explicit representation of confidence is 15 

harnessed for subsequent changes of mind. Specifically, when confidence is low, participants are 16 

more likely to change their minds when the same choice is presented again, an effect that is most 17 

pronounced in participants with greater fidelity in their confidence reports. Furthermore, we show 18 

that choices reported with high confidence follow a more consistent pattern (fewer transitivity 19 

violations). Finally, by tracking participants’ eye movements we demonstrate that lower-level gaze 20 

dynamics can track uncertainty but do not directly impact changes of mind. Taken together, these 21 

results suggest that an explicit and accurate representation of confidence has a positive impact on 22 

the quality of future value-based decisions. 23 

 24 

Introduction  25 

 26 

As we navigate through life we are constantly faced with choices that require us to assign and 27 

compare the values of different options or actions. Some of these value-based choices seem 28 

relatively straightforward (‘What should I eat for lunch?’) and others less so (‘Which job offer should 29 

I take?’). No matter how simple or complex these choices are, they are often accompanied by a 30 

sense of confidence in having made the right choice. Recent work has shown that it is possible to  31 

behaviourally and computationally dissociate a value estimate (‘How much do I like something?’) 32 

from internal fluctuations in confidence (‘How sure am I?’). For example, at a behavioural level it 33 

has been shown that confidence shares only a limited amount of variance with value, and instead 34 

reflects an assessment of choice accuracy1.  This relation between value and confidence is neatly 35 

accounted for computationally by assuming that confidence emerges from the dynamics of noisy 36 

accumulators in an evidence-accumulation framework 1, 2, 3, 4. More recently, Lebreton and 37 
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colleagues have shown that confidence may be an inherent property of value estimation, sharing a 38 

quadratic relationship with a linear rating of value5 (see also the work of Barron and colleagues6). 39 

But what is the function of confidence? Why maintain an explicit representation of confidence when 40 

a choice has already been made and therefore cannot be undone? 41 

 42 

According to one view, confidence can be thought of as a by-product of a stochastic accumulation 43 

process implemented in the ventromedial prefrontal cortex (vmPFC) during value comparison. 44 

Previous work indicates the brain constructs an explicit representation of confidence that underpins 45 

verbal reports 7, 8. A range of studies suggests that the rostrolateral prefrontal cortex represents 46 

confidence in both value-based and perceptual decisions 1, 9, 10, 11. Explicit representations of 47 

confidence allow individuals to communicate the strength of their beliefs to others, facilitating group 48 

decisions 12, 13, but may play little role in one’s own decision process. 49 

 50 

An alternative view is that explicit representations of confidence are critical for guiding one’s own 51 

future behaviour 14. Work in perceptual decision-making has revealed commonalities between 52 

mechanisms supporting confidence construction and error-monitoring 15, 16, suggesting changes of 53 

mind may be informed by confidence 4. However, it is unknown whether confidence is harnessed 54 

over a longer timescale to guide future choices. Here we aim to test the hypothesis that an explicit 55 

(and well-tuned) representation of confidence in a recent choice can guide a decisions maker’s 56 

choice when faced by the same (or a similar) decision again. To test this hypothesis, we presented 57 

participants with the same set of choices more than once during the course of two experiments and 58 

tested which factors were associated with a change of mind. We then investigated how confidence 59 

related to the degree of internal consistency in their patterns of choice. Choice consistency can be 60 

quantified by measuring the degree of transitivity across choices. Here we introduced a novel 61 

method for tagging choices as conforming to or violating transitivity. Using this method we were 62 

able to show that explicit representations of confidence are associated with more consistent 63 
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patterns of choice as a consequence of changes of mind. Finally, we directly contrasted the effect 64 

of explicit confidence reports with lower-level markers of uncertainty that we gathered using eye 65 

tracking, revealing that changes of mind were specifically associated with explicit reports of 66 

confidence. 67 

 68 

Results 69 

We collected data in two experiments in which hungry participants made choices between food 70 

items (which they could consume later) while their eye movements were monitored. In the first 71 

experiment the twenty-eight participants included in the study were shown high-definition pictures 72 

of two snacks and were asked to choose the preferred one (Figure 1 A). In a second experiment 73 

twenty-four participants chose their preferred snack among three snacks available in each trial 74 

(Figure 1 D).  After making each choice, participants reported their degree of confidence in having 75 

made the ‘correct’ choice, which in this design equates to choosing the higher valued item. The 76 

value for individual items was elicited using a standard incentive compatible BDM-method17. The 77 

experimental procedure we used was adapted (with modifications) from a task we developed 78 

previously1 (see methods for more details). 79 

 80 

Relation between confidence and choice 81 

In line with a wealth of previous research 18, 19, 20, 21, 22 we found that the difference in value between 82 

the two items (constructed from values elicited through an incentive-compatible bidding procedure, 83 

BDM) was a reliable predictor of participants’ choices in both experiments (hierarchical logistic 84 

regression; Experiment 1: z =11.48, p< .0001, Figure 1C and F; Experiment 2: z=6.66, p<.0001, 85 

Figure 1B and E). Note that in the three-choice design (Experiment 2) DV was calculated as the 86 

difference between the value of the reference item and the average of the two other available 87 

options (following Krajbich and Rangel23). In the supplemental materials (S1) we additionally report 88 

the result of a multinomial logistic regression model in which the value of each option was inputted 89 
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independently and therefore does not require a priori specification of DV. This analysis yielded the 90 

same pattern of results. In both studies we also identified a significant negative interaction between 91 

the summed value of all options (SV) and value difference (DV) (Experiment 1: z=-3.08, p<.005; 92 

Experiment 2: z=-2.84, p<.005), indicating that DV had a stronger influence on choice when item 93 

values were low, compared to when items were high in value (Figure 1 C and F). To our 94 

knowledge this effect has not been reported before but is consistent with the Weber–Fechner law 95 

in sensory perception in which the resolution of precepts diminishes for stimuli of greater 96 

magnitude. The effect is also compatible with the notion of normalization 24, 25, 26. Confidence, 97 

unlike DV, was not in itself a predictor of choice (right or left item) but instead correlated with 98 

choice accuracy, with a steeper slope relating DV to choice when confidence was high, as found 99 

previously1 (Fig. 1B, E; Experiment 1:  z=7.43, p<.0001; Experiment 2: z=5.82, p<.0001).  100 

 101 

Using eye tracking we measured the dynamics of eye movements between items during the 102 

choice, both the total amount of time participants spent looking at each item and how frequently 103 

gaze shifted back and forth between items (see supplementary materials, section S2).  Replicating 104 

previous studies23, 27 we found that the difference in dwell time (DDT) was a robust predictor of 105 

choice in both two-option and three-option experiments (Experiment 1: z=4.95, 106 

p<.0001;Experiment 2: z=9.81, p<.0001; Figure 1 C and F). 107 

 108 

For a full list of fitted models and their respective BIC scores see the supplementary materials 109 

(section S3). 110 

Figure 1 111 

Factors that contribute to confidence 112 

 113 

We next investigated which variables contributed to subjective confidence during value-based 114 

choice. Our previous work shows an interrelationship between absolute difference in value (|DV|), 115 
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response time (RT) and confidence (i.e. participants are more confident when |DV| is high and their 116 

choice are faster)1. These findings are in line with the conceptual relation between confidence, 117 

strength of evidence (indexed by |DV| in the value-based framework) and decision time3, 28. We 118 

observed this same relation in the current study. In both experiments we found that |DV| was a 119 

significant predictor of confidence (Experiment 1: t=13.43 p<.0001; Experiment 2: t=7.46, p<.0001). 120 

We also found that RT was a negative predictor of confidence (Experiment 1: t=-10.01, p<.0001; 121 

Experiment 2: t=-7.53, p<.0001). Additionally, we found that summed value positively predicted 122 

confidence, meaning that participants tended to be more confident when the options were all high 123 

in value (Experiment 1: t=3.50, p<.005; Experiment 2: t=4.80, p<.0001). This finding indicates that 124 

overall value might boost confidence, despite paradoxically making choices less accurate. More 125 

broadly these findings highlight how evidence and confidence, though related, play partially 126 

independent roles in the decision making process. Note that all of the predictors analysed in this 127 

section were entered into the same hierarchical linear regression; therefore all the effects hold 128 

when controlling for the other variables reported. 129 

 130 

We also hypothesized that lower-level features of information sampling may reflect an individual’s 131 

explicit confidence reports. To test this idea, we constructed a novel measure that captured 132 

uncertainty in information-sampling behaviour. This new measure, which we label “gaze shift 133 

frequency” (GSF), indexes how frequently gaze shifted back and forth among the options 134 

presented on the screen. This measure is independent of difference in dwell-time (Experiment 1 135 

r=-.02, Experiment 2 r=.04): for a constant allocation of time between the options (e.g. 3 seconds 136 

for the left-hand option and 5 seconds for the right-hand option) one may shift fixation only once 137 

(switching from left to right after 3 seconds have elapsed, for example; low gaze shift frequency) or 138 

shift many times between the two options (high gaze shift frequency). We found that GSF was a 139 

robust negative predictor of confidence in both experiments (Experiment 1: t=-3.67, p<.005; 140 

Experiment 2: t=-8.94, p<.0001) see Figures 2 A and B. In other words, in trials in which 141 
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participants shifted their gaze more often between the available options their confidence was 142 

lower, even after accounting for changes in |DV| and RT. The four-way relationship between |DV|, 143 

RT, GSF and confidence is plotted in Figures 2 C and D. Correlation tables can be found in the 144 

supplementary materials (S4).  145 

 146 

Figure 2 147 

 148 

Confidence predicts change of mind 149 

In both experiments participants saw the same exact choice sets on more than one occasion. In 150 

Experiment 1 each pair was presented twice; in Experiment 2 each triad was presented three times 151 

(counterbalancing for different spatial locations). This design allowed us to determine factors 152 

affecting changes of mind when the same choice is encountered again. Note that the way we 153 

define change of mind in this study is different from how it is often defined in perceptual decision-154 

making, as a reversal in an ongoing motor plan due to additional processing of sensory 155 

information4, 15, 29, 30. The hypothesis we sought to test was that an explicit report of confidence in 156 

an initial choice at time t would influence behaviour when the same decision was presented again 157 

at a future time tfuture. In a hierarchical logistic regression, lower confidence at time t was indeed 158 

associated with increased changes of mind at time tfuture in both experiments (Experiment 1:  z=-159 

6.70, p<.0001; Experiment 2: z=-5.71, p<.0001). The effect of confidence in predicting change of 160 

mind remained robust after controlling for several other factors that might correlate with the stability 161 

of a choice such as |DV| and RT. Because |DV| correlated positively with confidence (see the 162 

previous section and S4) we checked the covariance matrices and Variance Inflation Factors 163 

(VIFs) to ensure that these correlations did not influence the interpretation of our findings. Both the 164 

covariances and the VIFs were below standard thresholds, allowing straightforward interpretation 165 

of coefficients (see S5). Furthermore, to rule out the possibility that the effect we observed was 166 

driven by the presence of fast errors that were later corrected by the participant, we reanalysed the 167 
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data excluding all trials that were faster than each participant’s mean response time. This analysis 168 

produced comparable results (See S6). Notably GSF, itself a correlate of confidence, did not 169 

predict change of mind when included in the regression analysis (Fig. 3 A and B, coefficients in 170 

blue), even when excluding reported confidence from the regression analysis (see supplementary 171 

materials, section S7a). Together, these results suggest that a low-level (and possibly implicit) 172 

representation of uncertainty indexed by GSF is insufficient to trigger a future change of mind. On 173 

the contrary, individuals may use an explicit representation of uncertainty (expressed through 174 

confidence) to reverse their initial decision when the same (or a similar) choice is presented again.   175 

 176 

We next harnessed individual differences in metacognition to provide a more stringent test of this 177 

hypothesis. We reasoned that the impact of confidence on changes of mind would be more 178 

prominent in participants who have enhanced metacognitive skills, i.e. those whose explicit 179 

confidence ratings more accurately track the level of uncertainty underlying their decision process. 180 

In order to test this hypothesis we calculated an individual index of metacognitive sensitivity by 181 

computing the difference in slope between psychometric functions fitted to high and low confidence 182 

trials1, 31, 32. We then ran a logistic regression to predict changes of mind at time tfuture using 183 

confidence measured at time t. In line with our initial hypothesis, we were able to show that the 184 

impact of confidence on changes of mind (here the negative coefficient of confidence predicting 185 

change of mind) is stronger in those subjects with greater metacognitive accuracy (r= -0.35, 186 

p=0.01) (Figure 3 C). 187 

Figure 3 188 

Link between confidence and choice transitivity  189 

In the analyses presented above we established a link between an explicit representation of 190 

confidence and future changes of mind. However, these analyses are agnostic to the quality of the 191 

decisions that emerge as a consequence of changes of mind. Not all choices are born equal; some 192 

are more consistent than others, which is formally captured by the notion of transitivity. A transitive 193 
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ranking is characterized by the following structure: if an option A is preferred over option B and 194 

option B is preferred over option C, then it follows that A should be preferred over C (i.e. A≻B and 195 

B≻C then A≻C).  Transitivity is a normative prescription in utility theory33; however, failures of 196 

transitivity are commonly observed in human choices and represent a prominent violation of 197 

economic rationality and, more generally, of logical consistency34, 35. In order to test the relation 198 

between confidence and transitivity we found the (idiosyncratic) preference ranking of items that 199 

led to the lowest number of transitivity violations for each subject. Finding an optimal ranking of 200 

choice sets with more than a handful of items is extremely complex; however, a number of efficient 201 

algorithms that approximate a numerical solution have been developed for pairwise comparisons. 202 

In our study we used the Minimum Violations Ranking (MVR) algorithm36 that minimizes the 203 

number of inconsistencies in the ranking of items conditional on each participant’s choices. This 204 

method is conceptually similar to other methods based on revealed preferences such as Afriat’s 205 

efficiency index37, 38. The MVR algorithm provides an optimal ranking of items for each participant 206 

so that we could tag choices violating this ranking, hereafter labelled transitivity violations (TV). 207 

Because most of these methods are not suited for ternary choice the analyses presented in this 208 

section were performed only on data collected for the experiment using binary choice (Experiment 209 

1). An alternative way to assess choice quality is to compute the choice ranking using BDM and 210 

test whether participants chose the item with the highest ranking. This method gives qualitatively 211 

similar results to those reported below (see S8). 212 

 213 

After ordering the participants’ choices according to the MVR algorithm, 4.5% of all decisions were 214 

classified as transitivity violations. We then split the dataset into trials in which participants reported 215 

high confidence and trials in which they reported low confidence (median split). A dramatic 216 

reduction in transitivity violations was observed in high confidence trials (16% of transitivity 217 

violations) in comparison to low confidence trials (84% of transitivity violations).  (Figure 4 A) While 218 

these results are consistent with previous evidence provided in this paper and elsewhere1, note 219 
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that we did not rely on BDM value estimates (collected post-choice), instead relying only on 220 

subjects’ choices to generate the optimal ranking. In other words, the link between confidence and 221 

the quality of a value-based decision is robust to the method used to elicit preference.  In order to 222 

statistically quantify the relation between confidence and transitivity violations on a trial-by-trial 223 

basis (while accounting for other factors that may result in violations of transitivity) we constructed 224 

a set of hierarchical logistic regression models. We found that absolute difference in value (|DV|) 225 

was a robust negative predictor of TV (z=-6.59, p<0.0001; Figure 4 B) such that participants were 226 

more likely to violate transitivity when items were closer in value. Critically, this same model 227 

showed that even when |DV| was accounted for, confidence was a negative predictor of transitivity 228 

violations (z=-6.75, p<.0001). In other words, participants were less confident during those trials in 229 

which they went against their best-fitting preference order. Finally, both response time (z=2.55, 230 

p=.01) and summed value (z=2.55, p=.01) positively predicted transitivity violations, such that trials 231 

in which the value of both options was higher and/or in trials in which their responses were slower, 232 

participants’ choices were more likely to result in transitivity violations.  Similar to the change of 233 

mind analysis, eye tracking variables did not reliably predict transitivity violations (GSF=-1.74, 234 

p=.08; |DDT| z=-0.47, p=.64) (Figure 5B). Note that this was still true when reported confidence 235 

was excluded from the regression analysis (see supplementary materials, section S7b).  236 

 237 

Finally, we examined whether intersubject variability in metacognitive ability affected transitivity 238 

violations. We reasoned that if a well-calibrated, explicit representation of uncertainty plays a role 239 

in guiding future decisions, participants with greater metacognitive ability would show a decrease in 240 

the number of transitivity violations when the same option was presented a second time. In line 241 

with this hypothesis we observed that greater metacognitive ability was associated with a marked 242 

reduction in transitivity violations between the first and second presentation of the same choice 243 

(beta=0.85, SE=0.42, z(26)=2.03, p<.05; Figure 4 C). We also confirmed that this effect was not 244 

due to a relationship between metacognition and choice instability: the total number of transitivity 245 
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violations was unrelated to metacognitive accuracy (beta=-1.83, SE=1.61, z(26)=-1.14, p=0.25). 246 

Together these analyses show that a more accurate explicit representation of confidence is 247 

associated with more optimal choices when participants are given the opportunity to change their 248 

minds. 249 

 250 

Figure 4 251 

 252 

Discussion 253 

What is the advantage of explicitly representing one’s confidence in value-based decision-making? 254 

Most experimental setups elicit confidence after a decision has been made and cannot be 255 

changed. Our hypothesis was that an explicit representation of confidence might serve an 256 

important role in decision-making by signalling the need to explore different alternatives when the 257 

same (or a similar) choice is presented again.  258 

 259 

Value-based decisions are often perceptually unambiguous (i.e. a banana is noticeably different 260 

from an apple) and most of the uncertainty is contingent on a number of internal processes such as 261 

memories or homeostatic states that are often difficult to manipulate experimentally. For example, 262 

a choice between two food items might be affected both by uncertainty about the tastes of the 263 

items and by uncertainty about one’s own level of hunger. In order to take advantage of this 264 

information, a decision-maker should be able to correctly monitor uncertainty that arises from the 265 

different constitutive computations. A wealth of work has shown that humans can introspect on 266 

their choice process and report their level of confidence, an ability that has been associated with 267 

the psychological concept of metacognition. However, the functions of these explicit 268 

representations of confidence (as opposed to implicit markers of uncertainty such as decision time) 269 

have remained unclear. Furthermore, individuals show wide variations in how accurately they can 270 

track and report fluctuations in uncertainty (i.e. metacognitive accuracy). 271 
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 272 

In two independent experiments we showed that confidence reports (elicited after a value-based 273 

decision) reliably predicted a change of mind when the same choice was presented again. This 274 

effect is robust after controlling for other factors associated with the difficulty of a decision, such as 275 

difference in value and reaction time.  Furthermore, intersubject variability in metacognitive 276 

accuracy modulated the degree to which confidence predicted change of mind: confidence was a 277 

stronger predictor of change of mind in participants with better metacognitive abilities. Critically, 278 

and in contrast to our findings on explicit confidence reports, a lower-level marker of uncertainty 279 

(GSF) did not predict subsequent changes of mind, suggesting that an explicit representation of 280 

uncertainty expressed through confidence is important for guiding future choices. Instead, we 281 

suggest that gaze shift frequency can be considered an ingredient that agents use to construct a 282 

subjective sense of certainty, together with decision time and strength of evidence (cf. 3). An 283 

alternative interpretation of our results is that gaze shift frequency does not contribute directly to 284 

subjective confidence but reflects an agent’s attempt to gather more information to adaptively 285 

reduce uncertainty (a situation in which confidence would be low and reaction time slow). Future 286 

work is required to distinguish between these two hypotheses. A further methodological appeal of 287 

GSF as a trial-by-trial measure of uncertainty is that it can be easily gathered in animals. Recent 288 

years have seen a resurgence of interest in studying uncertainty and confidence using animal 289 

models39. This promising line of work relies heavily on the development of experimental paradigms 290 

(such as opt-out or post decision wagering) to measure the fluctuation in uncertainty during a 291 

decision process. GSF (which can be measured in rodents by tracking head movements) may 292 

prove a useful tool to monitor, on a trial-by-trial basis, internal fluctuations in uncertainty and its 293 

relation to the neural encoding of decision time and strength of evidence. 294 

 295 

Tracking the level of decision uncertainty is helpful in guiding behaviour in a number of contexts; 296 

for example, in guiding learning 40, in deciding whether to explore a new alternative or stick with the 297 
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current one41, 42, or in evaluating an alternative course of action18. At the neural level, the 298 

rostrolateral prefrontal (RLPFC) cortex and frontopolar cortex have been shown to play key roles in 299 

tracking trial-by-trial evolution of uncertainty43, 44, 45 and modulating uncertainty-driven behaviours18, 
300 

41, 42, 46, 47, 48. At the same time, the RLPFC and frontal pole have also been shown (using a number 301 

of different methods) to play a key role in enabling metacognitive abilities1, 10, 11, 14, 32. It is therefore 302 

possible that these two processes are linked anatomically and computationally: individuals whose 303 

prefrontal cortex more closely tracks the trial-by-trial evolution of uncertainty might also have more 304 

accurate explicit representations of confidence.  In turn, superior metacognitive abilities might 305 

confer the advantage of knowing how uncertain one’s choice was and therefore guide future 306 

behavioural strategies, such as uncertainty-driven exploration42 or changes of mind. Since we did 307 

not collect neural measures in this study we cannot test this hypothesis directly, but our findings 308 

provide a foundation for future studies of the neurobiology of changes of mind.   309 

 310 

Another question we sought to address was: are changes of mind associated with more optimal 311 

decisions?  In value-based decisions, the difference between correct decisions is often murky 312 

since value is a subjective construct. However, when people make a series of value-based choices 313 

across a set of options, their pattern of decisions is characterized by a variable degree of internal 314 

consistency. In experiment 1 we used a recently developed algorithm to find an optimal ranking of 315 

items that produced the lowest number of transitivity violations for each individual. In this way we 316 

identified when participants’ decisions were inconsistent with their overall (idiosyncratic) pattern of 317 

decisions. Violations of transitivity are a paradigmatic example of irrationality in economic choice 318 

since they are easy to exploit. For example, when individual preferences are not transitive, it is 319 

possible to construct a choice set in which each decision appears fair on its own, but, when 320 

combined together, guarantees a loss (a phenomenon known as a Dutch book or arbitrage in 321 

finance)49. Here we showed that choices made with high confidence are overall more transitive and 322 

therefore more optimal according to the normative prescriptions of utility theory. Noticeably, this 323 
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effect is robust after controlling for the absolute difference in value and reaction time. This finding 324 

suggests that individuals can monitor and report that a given decision was noisier and therefore 325 

more likely to result in a decision inconsistent with their overall preference patterns, establishing 326 

confidence as a correlate of choice accuracy without relying on the BDM procedure to derive 327 

independent estimates of subjective utility. This result also resonates with the well-established 328 

finding in perceptual decision making that people are able to detect and signal errors as soon as 329 

they respond16, 50 and with the proposal that confidence can facilitate cognitive control51. Here, we 330 

suggest that a similar process might operate in value-based decisions, in which errors can be 331 

thought of as choices that are at odds with one’s overall preferences. Consistent with this proposal, 332 

we found that individuals who have a more accurate representation of confidence (greater 333 

metacognitive ability) were more likely to move towards a more internally consistent decision-334 

making pattern over time. Our work sheds light on the reasons for an explicit representation of 335 

confidence in human decision-making. It explores value-based choices (aka economic choices) by 336 

borrowing methods and concepts from perceptual decision-making52. Similar to perceptual 337 

decision-making, we found that the same ‘strength of evidence’ in value (i.e. |DV|) is accompanied 338 

by a variable level of uncertainty that is represented explicitly as confidence. We suggest these 339 

representations play a functional role not only in allowing confidence to be shared with others, but 340 

also in guiding our own future choices. Taken together our results show that an explicit and 341 

accurate representation of confidence can have a positive impact on the quality of future value-342 

based decisions. 343 

 344 

Methods  345 

 346 

Experimental Procedures 347 

Experiment 1: Participants were required to make binary choices between 16 common 348 

snack items. Participants were asked to choose between each combination of the items (N 349 

= 120) twice, counterbalanced across the left-right spatial configurations (total number of 350 
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choices = 240). After each choice, participants indicated their confidence in their decision 351 

on a continuous rating scale. Neither choices nor confidence ratings were time constrained. 352 

Trial order was randomized with the only constraint being that the same pair was never 353 

repeated in subsequent trials. Participants’ eye movements were recorded throughout this 354 

task. 355 

 356 

At the end of the experiment, one choice from this phase was played out and the subject 357 

had the opportunity to buy the chosen item by means of an auction administered according 358 

to the Becker-DeGroot-Marschak (BDM) procedure: The experimenter randomly extracted 359 

a price from a uniform distribution (£0 to £3)—the ‘market price’ of that item. If the 360 

participant’s bidding price (willingness-to-pay) was below the market price, no transaction 361 

occurred. The computer-generated value was drawn to a precision greater than 2 decimals 362 

to avoid the possibility of a tie but was rounded to pennies in the event of a transaction. If 363 

the subject’s bidding price was above the market price, the participant bought the snack 364 

item at the market price17. At the end of the experiment, participants had to remain in the 365 

lab for an additional hour. During this hour, the only food they were allowed to eat was the 366 

item purchased in the auction, if any. At the end of the waiting period participants were 367 

debriefed and thanked for their participation. Participants were paid £25 for their time, 368 

deducting the cost of the food item, if they bought any. Both tasks were programmed using 369 

MATLAB 8.0 (MathWorks) running the Psychophysics toolbox (http://psychtoolbox.org) as 370 

well as the Eyelink toolbox extensions53, 54. The procedure of this experiment was approved 371 

by the UCL Research Ethics Committee (Project ID: 3736/004). 372 

 373 

Experiment 2: Participants gave their willingness to pay for 72 common snack food items 374 

on a scale ranging from £0-£3, in a BDM procedure17 similar to the one in experiment 1. 375 

Next they completed a choice task where, in each trial, they had to pick their favourite item 376 
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out of three options. The triplets presented in the choice task were tailored for each 377 

participant from their willingness-to-pay ratings. The items were divided into high-value and 378 

low-value sets by a median split. The 36 high-value items were randomly combined into 12 379 

high-value triplets; this procedure was mirrored to generate 12 low-value triplets. The high-380 

value and low-value items were then mixed to generate medium value triplets, with 12 381 

triplets consisting of two high-value items and one low-value item, and 12 triplets with the 382 

reverse ratio. This resulted in 48 unique triplets, with counterbalanced spatial configurations 383 

(total trials =144), split into three blocks. Each triplet was shown once in each block, the 384 

presentation order inside blocks was randomized with the constraint that the triplet that 385 

ended one block was never shown first in the next block. 386 

 387 

In the subsequent choice task, the triplets were presented inside 3 squares in an 388 

equidistant 2x2 grid (one randomly-determined position on the grid was left empty). We 389 

used a gaze-contingent paradigm in which the items were only visible when the participant 390 

fixated inside one of the squares, so that the participant could only see one item at a time. 391 

They had unlimited time to make up their mind and could make as many fixations as they 392 

wished. After each choice, participants indicated their confidence in their decision on a 393 

visual analogue rating scale without any time constraints. Participants’ eye movements 394 

were recorded throughout the choice task. Both the choice task and the willingness to pay 395 

procedure were programmed in Experiment Builder version 1.10.1640, SR-Research, 396 

Ontario. 397 

 398 

Following the choice task, an auction based on the BDM-ratings took place (see experiment 399 

1). After the auction, participants had to remain in the lab for an additional hour as in 400 

experiment 1. At the end of the waiting period participants were debriefed and thanked for 401 

their participation. Participants were paid £15 for their time, deducting the cost of the food 402 
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item, if they bought any. The procedure of this experiment was approved by the University 403 

of Cambridge Psychology Research Ethics Committee (Application number: Pre2014.113). 404 

 405 

Exclusion Criteria 406 

Because the aim of the experiment was to explore the relationship between confidence 407 

and value, it was essential that we had enough measurement sensitivity in both the 408 

confidence scale and in the value scale (the BDM ratings), and that participants’ choices 409 

reflected their stated preferences. We therefore excluded participants if any of the 410 

following criteria were met: 411 

1. Participants used less than 25% of the BDM Scale. 412 

2. Participants gave exactly the same BDM rating for more than 25% of the items. 413 

3. Participants used less than 25% of the confidence scale. 414 

4. Participants gave exactly the same confidence rating for more than 25% of their choices. 415 

5. Participant choices did not correspond to their BDM ratings (When predicting choices from 416 

differences in value, the DV coefficient deviated more than 2 SD from the experimentwise 417 

mean). 418 

 419 

Participants  420 

Experiment 1: 30 participants took part in the study. One participant did not complete the 421 

task and one participant was excluded because the BDM estimates were poor predictors of 422 

his choice (failed criterion 5). Thus 28 participants were included in the analysis (13 423 

females, age: 19-73). All participants were required to fast for four hours prior to taking part 424 

in the experiment. Blood glucose levels were taken to test their adherence to this criterion 425 

(mean glucose level = 83.57mg/dl, sd = 10.90mg/dl; by comparison, the mean fasting blood 426 

glucose levels for adults is 86.4mg/dl55). All participants gave informed consent prior to 427 

participating in this experiment. 428 

 429 
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Experiment 2: 30 participants completed the study. Of these 30, three were excluded due 430 

to a limited range in their BDM ratings (failed criterion 2). An additional three participants 431 

were excluded for a limited range in their use of the confidence scale (failed criterion 4). 24 432 

participants were included in the main analyses (17 females, age: 21-38). All participants 433 

were required to fast for four hours prior to doing the experiment.  All participants gave 434 

informed consent prior to participating in this experiment. 435 

 436 

Sample size was determined a-priori. A power estimation was based on previously 437 

published work that used a similar experimental setup26. We implemented a fixed sample 438 

stopping rule set a-priori (N=30). Statistical inferences were conducted only after all data 439 

were collected. If a participant did not fulfil one of the exclusion criteria (decided before data 440 

collection) would have been excluded from the analysis without replacement. 441 

  442 

Eye Trackers 443 

For experiment 1, eye gaze was sampled at 250 Hz with a head-mounted SR Research 444 

Eyelink II eye-tracker (SR-Research, Ontario). For experiment 2, eye movements were 445 

recorded at 1000Hz with an EyeLink 1000 Plus eye-tracker (SR-Research, Ontario). 446 

 447 

Preparation of the Eye-tracking Data 448 

Experiment 1: Areas of Interest (AI) were defined by splitting the screen in half, creating 449 

two equal sized areas. Fixations in the left AI were assumed to be directed towards the left 450 

snack item, and vice versa. We constructed two variables from the eye tracking data: the 451 

difference in dwell time between the two AIs (DDT), and gaze shift frequency (GSF). DDT 452 

was calculated by subtracting the total dwell time on the left side from the total dwell time 453 

on the right side.  GSF was calculated as the number of times participants shifted their 454 

gaze from one AI to the other during each trial. 455 
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Experiment 2: AIs were pre-defined by the 3 squares that participants had to fixate to view 456 

the items (given the gaze-contingent design). We derived two variables from the eye 457 

tracking data: the total dwell time in each AI for a given trial, and GSF.  Following 458 

experiment 1, GSF measured the number of fixations in one AI immediately followed by a 459 

fixation in another AI. To ensure that participants paid attention, we excluded trials where 460 

participants had not fixated on every option available at least once. 13 trials out of 3457 461 

were excluded from the analysis for this reason. 462 

 463 

Hierarchical Models 464 

All hierarchical analyses reported in the results section were conducted using the lme4 465 

package (version 1.1-756) in R.  For the linear models degrees of freedom and p-values 466 

were obtained using the Kenward-Roger approximation, as implemented in the pbkrtest 467 

package57. For the choice models (Figures 1 C and F) we ran two hierarchical logistic 468 

regressions: In Experiment 1 we predicted the log odds ratio of picking the right-hand 469 

option on a given trial; for Experiment 2 we predicted the log odds ratio of picking the 470 

reference item. The reference item was determined as the first item encountered according 471 

to reading order in Latin languages (i.e. the upper left item for the trials when an item was 472 

presented in that position and the upper right item for the remaining trials). Fixed effect 473 

confidence intervals were estimated by multiplying the standard errors by 1.9658. Because 474 

these confidence intervals are estimates that do not take the covariance between 475 

parameters into account59 they should not be interpreted too strictly, but rather serve to give 476 

the reader a sense of the precision of the fixed effect coefficients. Note that all predictors 477 

reported are z-scored on the participant level, and that all models allow for random slopes 478 

at the participant level. For completeness we report coefficients from the full model, while 479 

noting that this model is not in every case the most parsimonious. For a comprehensive list 480 
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of models tested and a formal model comparison using BIC scores see supplementary 481 

materials, section S3. 482 

 483 

Note that the regression models for confidence in experiment 1 had issues converging. We 484 

addressed these issues by square root transforming the |DV| predictor. Notably, for the 485 

individual difference analyses investigating change of mind and transitivity we did not 486 

implement hierarchical models, but unpooled (individual-level) models. The rationale behind 487 

this choice was that for both analyses we were interested in studying between-subjects 488 

variation (Figure 3 C and Figure 4 C) that could be potentially affected by the shrinkage of 489 

parameters towards the group mean that is characteristic of hierarchical models60. 490 

Data availability & Code availability 491 

The data and the code for the analyses presented in this article can be found at the BDM 492 

Lab GitHub page: https://github.com/BDMLab 493 

The data can also be found on figshare: https://dx.doi.org/10.6084/m9.figshare.3756144.v2 494 
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 687 

Figure 1:  Relation between confidence and choice 688 

Eye-tracking tasks: (a) In Experiment 1, participants were presented with two snack items and 689 

were then required to choose one item to consume at the end of the experiment. (d) In Experiment 690 

2, participants chose between three options, and the presentation of the stimuli was contingent on 691 

which box participants looked at. In both experiments, participants indicated their confidence that 692 

they had made a correct decision on a visual analogue scale after each choice they made. (b) 693 

Probability of choosing the item on the right as a function of the difference in value between the 694 

options, data from. (e) Probability of choosing the reference item (see methods), as a function of 695 

the value difference between the reference item and the mean value of the alternatives. Black line, 696 

high confidence trials, grey line, low confidence trials (as determined by a median split).  Each 697 

graph shows the z-scored data pooled across participants. Points represent quartiles of DV. Error 698 

bars show standard errors. (c and f) Fixed effects coefficients from hierarchical logistic regression 699 
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models predicting choice (DV= difference in value; SV= summed value; DDT = difference in dwell 700 

time, DV x Confidence= Interaction of difference in value and confidence; DV x SV= Interaction of 701 

difference in value and summed value). The graph for experiment 1 (C) shows the coefficients 702 

predicting the probability of choosing the right-hand option; the graph for experiment 2 (F) shows 703 

the coefficients predicting the probability of choosing the reference option (see Methods). Error 704 

bars show 95% CIs. The sample size for experiment 1 was 28 participant (each completing 240 705 

trials), the sample size for experiment 2 was 24 participants (each completing 144 trials) *** = p < 706 

.001; ** = p < .01; * = p < .05 (two-sided).   707 

 708 

 709 

 710 

Figure 2. Factors that contribute to confidence 711 
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(a-b) Fixed-effect coefficients in hierarchical regression models predicting confidence for 712 

experiment 1 and 2, respectively. Error bars show 95% CIs. *** = p < .001; ** = p < .01; * = p < .05 713 

(two-sided). (|DV|= absolute difference in value; RT = reaction time; SV= summed value; GSF = 714 

Gaze Shift Frequency). (c–d) 4-D heat maps showing mean z-scored confidence as a function of 715 

subject specific quantiles of response time, absolute difference in value and gaze shift frequency. 716 

The sample size for experiment 1 was 28 participants (each completing 240 trials); the sample size 717 

for experiment 2 was 24 participants (each completing 144 trials) 718 

 719 

 720 

 721 

 722 

 723 

Figure 3. Confidence predicts change of mind. 724 



 31 

(a-b) Fixed effects coefficients from hierarchical logistic regression models predicting future 725 

changes of mind. Error bars show 95% CIs. *** = p < .001; ** = p < .01; * = p < .05 (two-sided). 726 

(|DV|= absolute difference in value; RT = reaction time; SV= summed value; GSF = gaze shift 727 

frequency; |DDT|= absolute difference in dwell time) (c) Correlation between metacognitive 728 

accuracy and the coefficients for confidence ratings predicting future changes of mind (highlighted 729 

in pale green). Participants with greater metacognitive accuracy are more likely to change their 730 

mind following a low-confidence judgment; note that the correlation is negative because the 731 

relationship between confidence and changes of mind is itself negative (lower confidence 732 

increases the probability of subsequent changes of mind). Participants from experiment 1 are 733 

represented by black dots; participants from experiment 2 are represented by grey diamonds. Both 734 

axes (x and y) are z-scored for each experiment separately. The sample size for experiment 1 was 735 

28 participants (each completing 240 trials); the sample size for experiment 2 was 24 participants 736 

(each completing 144 trials) 737 
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 738 

Figure 4. Link between confidence and transitivity  739 

(a) Heat maps showing the number transitivity violations for the full sample and for high and low 740 

confidence trials (median split). The middle diagonal line is empty because no item was ever 741 

paired with itself. Note most transitivity violations took place on low-confidence trials. (b) Fixed 742 

effects coefficients from a hierarchical logistic regression model predicting transitivity violations 743 

Error bars show 95% CIs. *** = p < .001; ** = p < .01; * = p < .05 (two-sided).  (|DV|= absolute 744 

difference in value; RT = reaction time; SV= summed value; GSF = gaze shift frequency; |DDT|= 745 

absolute difference in dwell time). (c) Decreases in transitivity violations between the first and 746 

second presentation for each participant, as a function of metacognitive accuracy. The graph 747 

shows that participants who are more metacognitively accurate tend to become more transitive 748 

over time. The sample size for experiment 1 was 28 participants (each completing 240 trials). 749 
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