Johan de Witt prijs 2012

Explicit Representation of Cost-Efficient Strategies

Carole Bernard Phelim P. Boyle Steven Vanduffel

Actuarieel Genootschap

1 Outline

• Part 1: Optimal strategies for law-invariant preferences

· You only care about the **distribution** of final wealth

- · e.g. "Tail=1 and Head=0" \longleftrightarrow "Tail=0 and Head=1"
- Part 2: Optimal strategies with additional state-dependent constraints

 \cdot You also care about the states of the world where wealth is received

 \cdot e.g. Money has "more value" in a crisis

2 Main Results (1)

- Part 1: Optimal strategies for law-invariant preferences
 - · Are always simple ("two fund theorem")
 - \cdot Are increasing in the "market asset"
 - · Perform badly in crisis situations and add to systemic risk

3 Main Results (2)

- Part 2: Optimal strategies with additional state-dependent constraints
 - · Conditionally increasing in "market asset" ("three fund theorem")
 - \cdot Able to cope with crisis regimes

4 Notations and Assumptions

4.1 Black-Scholes Market

• There is a bank account earning a constant risk free rate r > 0. Its current value B_0 is known and for its future (fixed) value B_T we have that $B_T = B_0 \cdot e^{rT}$.

• There is a risky asset. Its current price S_0 is known and for its future (random) value S_T we have that $S_T = S_0 \cdot e^{R(t)}$ with stochastic return distributed (under \mathbb{P}) as

$$R(t) \sim N(\mu t, \sigma^2 t).$$

• Consider a contract with payoff Y_T at maturity time T: if Y_T depends on the final asset value S_T only, then Y_T is **path-independent**. Otherwise it is path-dependent.

- Examples of path-independent payoffs
- $Y_T = Max[S_T D, 0]$ (Plain vanilla call)
- $Y_T = \alpha_1 \frac{S_T}{S_0} + \alpha_2 e^{rT}$ (Buy and hold)
- Examples of path-dependent payoffs
- $Y_T = Max[\frac{1}{n}\sum_{i=1}^n S_{t_i} D, 0]$ with $0 \le t_i \le T.$ (Asian call option)

-
$$Y_T = \sum_{i=0}^{n-1} \alpha_i \frac{S_T}{S_{t_i}}$$
 (Dollar cost averaging)

- Very complicated $Y_T \longleftrightarrow$ 'Clickfunds', 'CPPI strategies',...

4.2 Pricing

- Let $C(\cdot)$ be the cost functional. The market is arbitrage-free.
- Cost at t = 0 of a random payoff Y_T must be equal to

$$C(Y_T) = e^{-rT} E_{\mathbb{Q}}[Y_T],$$

where the expectation is taken with respect to a, so-called risk-neutral, probability measure \mathbb{Q} .

• Important observation:

$$C(Y_T) = E_{\mathbb{Q}}\left[e^{-rT}Y_T\right],$$

is equivalent to

$$\overline{C(Y_T) = E_{\mathbb{P}}\left[\xi_T Y_T\right]},$$

where ξ_T is the stochastic discount factor (deflator, state-price density, pricing kernel, Radon-Nikodym derivative).

• In our setting it shows that

$$\xi_T = a.S_T^{-b},$$

for some (known) coefficients a, b > 0.

5 Law-Invariant preferences

- In this case investors only care about the distribution of final wealth.
- e.g. expected utility: $E[u(Y_T)] = E[u(Z_T)]$ if $Y_T \sim Z_T$ (under \mathbb{P})

• Most decision theories exhibit law invariance: Expected Utility theory, Mean-Variance optimization, Distortion Risk Measures (Yaari), Target Probability Maximization, Cumulative Prospect Theory (Kahneman & Tversky),...

• How making payoffs better?

6 A First Way to Improve Payoffs

• A given payoff Y_T can be dominated by a new payoff H_T^* defined as

$$H_T^* = E_{\mathbb{P}}\left[Y_T | S_T\right],$$

• Indeed:

- Clearly, H_T^* is less risky than Y_T (it has less spread)
- Surprisingly, H_T^* has the same cost as Y_T .

• Note that by construction H_T^* is a plain function of the market asset S_T and is path-independent.

7 Example - Asian Option

• Consider the initial path-dependent payoff Y_2 :

$$Y_2 = (S_1 S_2)^{\frac{1}{2}}$$

 \circ Y_2 is path-dependent.

 \circ Y_2 is lognormally distributed (\mathbb{P} and \mathbb{Q}).

• Consider now the payoff $H_2^* = E_{\mathbb{P}}[Y_2|S_2]$:

$$H_2^* = (S_2)^{\frac{3}{4}} e^{\frac{1}{16}\sigma^2}$$

$$\circ$$
 H_2^* is path-independent.
 \circ H_2^* is lognormally distributed (ℙ and ℚ).

 H_2^* less risky than Y_2 ?

 \bullet Under the physical measure $\mathbb P$ we find that

$$\circ Y_2 \stackrel{d}{=} \mathsf{LN}(\frac{3}{2}\mu, \frac{5}{4}\sigma^2)$$

$$\circ H_2^* \stackrel{d}{=} \mathsf{LN}(\frac{3}{2}\mu + \frac{1}{16}\sigma^2, \frac{5}{4}\sigma^2 - \frac{1}{8}\sigma^2)$$

$$\circ \text{ It is clear that } H_2^* \text{ is 'less risky' than } Y_2.$$

 H_2^* same cost than Y_2 ?

• For the costs we find that

$$C(Y_2) = C(H_2^*) = e^{-\frac{1}{2}r - \frac{1}{8}\sigma^2}$$

8 A Second Way to Improve Payoffs

• Let Y_T be distributed with F and denote by F_{S_T} the distribution for S_T . Then, Y_T can be dominated by a new payoff Z_T^* defined as

$$Z_T^* = F^{-1}(F_{S_T}(S_T)),$$

• Indeed:

- Z_T^* is distributed with F as well.
- $Z_T^{\overline{*}}$ has lower cost than Y_T . (sketch proof on next slide)

 \bullet Hence, all decision makers (with increasing preferences) prefer Z_T^{\ast} above $Y_T.$

• Note that Z_T^* is an increasing function of the market asset S_T and thus also path-independent.

9 Sketch Proof (1)

• Remark that we want the optimal strategy Y_T to have a distribution F. Hence it writes as

$$Y_T = F^{-1}(U),$$

for some standard uniform random variable U that we need choose in a clever way...

10 Sketch Proof (2)

• We also know the distribution for ξ_T . Hence

$$\begin{split} \underset{Y_T \sim F}{\mathsf{Min}} \left(E_{\mathbb{P}} \left[\xi_T Y_T \right] \right) &= \underset{Y_T \sim F}{\mathsf{Min}} \left(\frac{E_{\mathbb{P}} \left[\xi_T Y_T \right] - E_{\mathbb{P}} \left[\xi_T \right] E_{\mathbb{P}} \left[Y_T \right]}{\mathsf{Stdev}_{\mathbb{P}} [\xi_T] \mathsf{Stdev}_{\mathbb{P}} [Y_T]} \right) \\ &= \underset{Y_T \sim F}{\mathsf{Min}} \left(\mathsf{Corr}_{\mathbb{P}} [\xi_T, Y_T] \right) \end{split}$$

Clearly, minimal correlation occur when $Y_T = F^{-1}(U)$ and thus also U is decreasing in ξ_T . Hence, U must write as $1 - F_{\xi_T}(\xi_T)$ and the optimal choice for Y_T becomes

$$Z_T^* = F^{-1}(1 - F_{\xi_T}(\xi_T)) = F^{-1}(F_{S_T}(S_T)).$$

11 Example - Geometric Asian Option

•Now we have

$$Z_2^* = (S_2)^{\frac{5}{8}} e^{(\frac{3}{2} - 2\frac{5}{8})\mu},$$

• we find that

$$\circ Z_2^* \stackrel{d}{=} Y_2 \stackrel{d}{=} \mathsf{LN}(\frac{3}{2}\mu, \frac{5}{4}\sigma^2)$$

$$\circ \frac{C(Z_2^*)}{C(Y_2)} < 1.$$

12 Drawback cost-efficient payoffs

• They are increasing in "the market" (S_T) . When market are bullish they perform nicely but in **bear markets they provide poor performance**.

• In practice, investments strategies set-up by investors are inspired by law-invariant frameworks. they are thus to a great extent correlated with the market as well ("we are all long with the market"):

 \circ During a crisis, values of most investment funds decline

• Systemic risk

13 State-dependent Preferences (1)

• Problem considered so far:

 $\cdot \operatorname{Min}_{Y_T \sim F} \left(E_{\mathbb{P}} \left[\xi_T Y_T \right] \right)$

- \cdot Payoff that solves this problem is cost-efficient
- New problem

 $\cdot \underset{Y_T \sim F, \mathbb{S}}{\mathsf{Min}} (E_{\mathbb{P}}[\xi_T Y_T])$

 \cdot Here $\mathbb S$ is a set of constraints on interaction between ${\sf S}_T$ and ${\sf Y}_T$

· Payoff that solves this problem is **constrained cost-efficient**

14 State-dependent Preferences (2)

- Examples:
 - \cdot We want Pr(Y $_T > 100|$ S $_T < 80) \ge 0.8$
 - · We want Y_T to be independent of S_T when $S_T < 80$.
- Approach amounts to imposing constraints on the dependence (copula) between S_T and Y_T .
- Technically, we need to find bounds on copulas...(we have paper in JAP, extending earlier works of respectively Nelsen, Tankov and Rüschendorf).

- Cost-efficient strategies are the ones that yield maximal dependence with S_T while satisfying the constraints S.
 - · No constraints: $Z_T^* = f(S_T)$ with f increasing (two-fund theorem).
 - · Constraints S: $Z_T^* = f(S_t, S_T)$ with f increasing in S_T given S_t .

 $\circ Z_T^*$ is still rather simple (three-fund theorem)

References

- [1] Dybvig, P, H., 1988. Inefficient Dynamic Portfolio Strategies or How To Throw Away a Million Dollars in the Stock Market., The Review of Financial Studies.
- [2] Vanduffel, S., Chernih, A., Maj, M., Schoutens, W., 2008, "A note on the suboptimality of path-dependent payoffs in Lévy markets", Applied Mathematical Finance.
- [3] Bernard, C., Jiang, X., Vanduffel, S., 2012. "Note on Improved Frechet bounds and model-free pricing of multi-asset options", Journal of Applied Probability.
- [4] Bernard, C., Vanduffel, S., 2012, "Financial Bounds for Insurance Claims", Journal of Risk and Insurance.
- [5] Bernard, C., Boyle, P., Vanduffel, S., 2011, "Explicit Characterisation of cost-efficient strategies", Working paper.