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Abstract: The motive of the study was to explore the nonlinear Riemann wave equation, which
describes the tsunami and tidal waves in the sea and homogeneous and stationary media. This study
establishes the framework for the analytical solutions to the Riemann wave equation using the new
extended direct algebraic method. As a result, the soliton patterns of the Riemann wave equation
have been successfully illustrated, with exact solutions offered by the plane solution, trigonometry
solution, mixed hyperbolic solution, mixed periodic and periodic solutions, shock solution, mixed
singular solution, mixed trigonometric solution, mixed shock single solution, complex soliton shock
solution, singular solution, and shock wave solutions. Graphical visualization is provided of the
results with suitable values of the involved parameters by Mathematica. It was visualized that the
velocity of the soliton and the wave number controls the behavior of the soliton. We are confident
that our research will assist physicists in predicting new notions in mathematical physics.

Keywords: new extended direct algebraic methodology; Riemann wave equation; soliton solutions;
sensitivity analysis

1. Introduction

The nonlinear partial differential equation is critical for investigating the characteris-
tics of nonlinear physical events. The Schrödinger governing equation is a one-of-a-kind
mechanism for appropriately understanding the complicated physical nonlinear model,
with vital applications in plasma, fiber optics, telecommunication engineering, mathe-
matical physics, and optics. Obtaining reliable analytical solutions for the Schrödinger
equations is an essential research topic since exact solutions represent the physical features
of nonlinear systems in applied mathematics [1–8]. Nonlinear partial differential equations
(PDEs) have increased in popularity and importance in both applied and pure mathematics
during the last decade. For mathematicians, computer technology has expanded the scope
of applied sciences. Nonlinear models are becoming increasingly prevalent in mathematical
physics and engineering sciences. PDEs are generally used to create mathematical models
of important tangible phenomena in various nonlinear sciences and engineering areas.
Nonlinear PDEs have a wide range of practical applications, including mass and heat
transportation, continuum mechanics, wave theory, hydrodynamics, chemical technol-
ogy, acoustics and plasma physics [9–13], biology [14,15], population ecology [16], plasma
waves [17], civil engineering [18], quantum mechanics [19–21], and so on. In geographical
fields, regarding environmental processes induced by energy transportation on floating or
synthetic structure fields, waves are primary energy sources.

The mathematical explanation includes the discovery of solitons, the great diversity of
the structure, and its essential features. The story of solitons begins with an observation
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of the translation wave made by John Scott Russell. Before the 1870s, when Russell’s
work was eventually proven, notable scientists and philosophers praised its scientific
implications. Boussinesq’s 1872 work was practiced extensively and it predicted major
concepts that are employed today involving forward-thinking scientists and philosophers.
Boussinesq expressed his opinion on the water wave equation. As a result, his estimate
suggests that the movement may be a duplex. However, Boussinesq and Rayleigh’s work
still prove the essential issues of dispersion and non-linearity. The Stokes–Airy argument
against making an equation of unidirectional motion is still rendering; it is now recognized
by their names by using bell-shaped and kink-shaped sech-solutions, simulating wave
phenomena in plasma, optical fiber, elastic media, chemical electrical circuits, and other
fields. The traveling wave solutions of the Boussinesq and Korteweg de Vries equations,
which describe water waves, are well-known examples. For more information, see [22–27].

Many schemes and approaches, such as the Kudryashov method [28], sine-Gordon
expansion scheme [29], bilinear neural network technique [30], and a simple extended
equation method [31], have been developed to secure exact analytical solutions for partial
nonlinear differential equations to find soliton solutions, [32] F-expansion technique [33],
unified auxiliary equation technique (m + G

G′
) expansion strategy [34], Hirota bilinear

technique [35], extended exponential function method [36], generalized exponential rational
function method [37], variational iteration method [38], and several others [39–46].

In this paper, we used a new algebraic extended approach to identify broad-ranging
solitary wave solutions to the Riemann wave equation. In the geographical fields, regarding
environmental processes induced by energy transportation on floating or synthetic structure
fields, waves are the primary energy sources. The Riemann wave equation is a nonlinear
equation used in studying tidal and tsunami waves in seas and rivers, homogeneous
and stationary media, ion and magneto-sound waves in plasma, electromagnetic waves
in power lines, marine and coastal engineering, and other fields. This study establishes
the framework for the analytical solutions to the Riemann wave equation using the new
algebraic extended method. The soliton patterns of the Riemann wave equation have been
successfully illustrated, with exact solutions offered by the plane solution, trigonometry
solution, mixed hyperbolic solution, mixed periodic and periodic solutions, shock solution,
singular solution, mixed singular solution, mixed trigonometric solution, mixed shock
single solution, complex solitary shock solution, and shock wave solutions. The survey
results are compared to the highly recognized results and the results are presented. Graph-
ical comparisons are provided for the Riemann wave equation model solutions, which
are presented diagrammatically by adjusting the values of the embedded parameters in
Mathematica. For accuracy, the results are visually displayed in 3D, contour, and 2D. We
also demonstrated the sensitivity analysis for the redesigned dynamical structural system
wave profiles, where the soliton wave velocity and wave number parameters regulate
the water wave singularity. We are confident that our research will assist physicists in
predicting new notions in mathematical physics. The Riemann coupled wave system of
equations is given as [47],

∂U
∂ t

+ f
∂U 3

∂ x2∂ y
+ jU ∂ V

∂ x
+ kV ∂W

∂ x
= 0,

∂U
∂ x

=
∂V
∂ x

,

(1)

where f, j, and k are non-zero parameters, Equation (1) explains the (2 + 1)-dimensional
interaction of a Riemann wave traveling down the y-axis with a long wave propagating
along the x-axis. These equations are fully integrable and have extensive applications in
ocean tsunamis and tidal wave propagation. Another significant aspect of Equation (1)
describes the turbulent state by combining whistling wave packets featuring random
phases with limited amplitude. Whistler turbulence interferes with the magnetic sound
wave, damping it and, hence, the electrostatic wave in the plasma [48].
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The extraction of analytical solutions to partial differential equations by using the
various analytical methodologies is a significant and attractive field of mathematical physics.
It has lately emerged as the most fascinating and exciting field of research. The exact
solutions to these equations should be examined while researching the physical processes
of natural occurrences defined. In the literature, there are a few common strategies for
finding accurate solutions to the integrable Riemann wave equation [49–57]. As a result,
we desire to employ the new algebraic extended method to provide inclusive, standard,
substantial, and understandable soliton structured solutions to Riemann wave equations
that are confined in all (2 + 1)-dimensional directions.

Recently, in December 2022, Attaullah et al. [47] investigated the Riemann wave Equa-
tion (1) in solitons. The modified Exp function method was applied to the considered model
and obtained dark, periodic, and logarithmic analytical soliton solutions. The modified
Exp function provides only five different families of solutions. Indeed, solutions are correct
but many types of soliton solutions are not found for the Riemann wave equation and the
sensitivity analysis of the considered model is a gap. This ongoing study inspired us to
perform this work. The new extended direct algebraic method is one of the generalized
methods that provides twelve different families along with thirty-seven soliton solutions
in which dark, bright, singular, rational, plane solution, trigonometry solution, mixed
hyperbolic solution, mixed periodic and periodic solutions, shock solution, singular solu-
tion, mixed singular solution, mixed trigonometric solution, mixed shock single solution,
complex solitary shock solution, and shock wave solutions are included. The other thing is
the sensitivity analysis, which was not previously done with the Riemann wave equation.
The sensitive visualization of the model is presented and visualized on different initial
conditions and attempts to fill this study gap.

The core purpose of this research is to cast aspersions on the projected Riemann wave
equation model. To obtain an exact analytical solution, a new extended direct algebraic
method was used. We begin with a basic explanation and define the famous Riemann wave
equation governing model. In Section 2, we construct analytical solutions using the new
extended direct algebraic method. The description of method mentioned. The application of
the new extended direct algebraic method is shown in Section 2. Furthermore, for different
values of wave velocity, we see diverse wave textures in the 3D, contour, and 2D graphical
depictions of the solutions. We discuss the visual representation of the study findings
in Section 3. Section 4 presents the sensitivity assessment for the wave velocity profiles
graphically with the discussions and results analysis. The study’s conclusion is given in
Section 5.

2. Structures of Analytical Solutions
2.1. New Extended Direct Algebraic Method

The new extended direct algebraic equation method is a generalized technique that
provides thirty-seven soliton solutions with twelve different families. The analytical exact
solutions that came up with this approach contain, for example, trigonometric, hyperbolic–
trigonometric, rational, logarithmic, and periodic solutions.

Assume a general NPDE (nonlinear partial differential equation) of the type:

Y(Ω, Ωt, Ωx, Ωtt, Ωxx, · · · ) = 0. (2)

The ordinary differential equation can be obtained as follows:

Q(E,E′,E′′, . . . ) = 0, (3)

by the mean of transformation, which is given below,

Ω(x, y, z, t) = E(ξ), (4)
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where ξ = k1x + k2y + k3t and k1, k2, k3 are real constant. It can be modified according to
the physical phenomenon. Consider the following solution of Equation (3):

E(ξ) =
m

∑
j=0

[
bj(η(ξ))

j
]

, (5)

along with,

η
′
(ξ) = α ln(A) + β S(ξ) ln(A) + γ (S(ξ))2 ln(A),

where α, β and γ are real constants and S = β2 − 4αγ. The general solutions concerning
the parameters α, β and γ are:

(Family 1): When γ 6= 0, and β2 − 4αγ < 0,

η1(ξ) = − β

2γ
+

√
−S
2γ

tanχ

(√
−S
2

ξ

)
, (6)

η2(ξ) = − β

2γ
−
√
−S
2γ

cotχ

(√
−S
2

ξ

)
, (7)

η3(ξ) = − β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sξ

)
±
√

mn secχ

(√
−Sξ

))
, (8)

η4(ξ) = − β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sξ

)
±
√

mn cscχ

(√
−Sξ

))
, (9)

η5(ξ) = − β

2γ
+

√
−S
4γ

(
tanχ

(√
−S
4

ξ

)
− cotχ

(√
−S
4

ξ

))
. (10)

(Family 2): When γ 6= 0 and β2 − 4αγ > 0,

η6(ξ) = − β

2γ
−
√
S

2γ
tanhχ

(√
S

2
ξ

)
, (11)

η7(ξ) = − β

2γ
−
√
S

2γ
cothχ

(√
S

2
ξ

)
, (12)

η8(ξ) = − β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sξ
)
± i
√

mnsechχ

(√
Sξ
))

, (13)

η9(ξ) = − β

2γ
+

√
S

2γ

(
− cothχ

(√
Sξ
)
±
√

mncschχ

(√
Sξ
))

, (14)

η10(ξ) = − β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
ξ

)
+ cothχ

(√
S

4
ξ

))
. (15)

(Family 3): When β = 0 and αγ > 0,

η11(ξ) =

√
α

γ
tanχ(

√
αγξ), (16)

η12(ξ) = −
√

α

γ
cotχ(

√
αγξ), (17)

η13(ξ) =

√
α

γ

(
tanχ(2

√
αγξ)±

√
mn secχ(2

√
αγξ)

)
, (18)

η14(ξ) =

√
α

γ

(
− cotχ(2

√
αγξ)±

√
mn cscχ(2

√
αγξ)

)
, (19)

η15(ξ) =
1
2

√
α

γ

(
tanχ

(√
αγ

2
ξ

)
− cotχ

(√
αγ

2
ξ

))
. (20)
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(Family 4): When β = 0 and αγ < 0,

η16(ξ) = −
√
− α

γ
tanhχ

(√
−αγξ

)
, (21)

η17(ξ) = −
√
− α

γ
cothχ

(√
−αγξ

)
, (22)

η18(ξ) =

√
− α

γ

(
− tanhχ

(
2
√
−αγξ

)
± i
√

mnsechχ

(
2
√
−αγξ

))
, (23)

η19(ξ) =

√
− α

γ

(
− cothχ

(
2
√
−αγξ

)
±
√

mncschχ

(
2
√
−αγξ

))
, (24)

η20(ξ) = −1
2

√
− α

γ

(
tanhχ

(√
−αγ

2
ξ

)
+ cothχ

(√
−αγ

2
ξ

))
. (25)

(Family 5): When α = γ and β = 0,

η21(ξ) = tanχ(αξ), (26)

η22(ξ) = − cotχ(αξ), (27)

η23(ξ) = tanχ(2αξ)±
√

mn secχ(2αξ), (28)

η24(ξ) = − cotχ(2αξ)±
√

mn cscχ(2αξ), (29)

η25(ξ) =
1
2

(
tanχ

(α

2
ξ
)
− cotχ

(α

2
ξ
))

. (30)

(Family 6): When α = −γ and β = 0,

η26(ξ) = − tanhχ(αξ), (31)

η27(ξ) = − cothχ(αξ), (32)

η28(ξ) = − tanhχ(2αξ)± i
√

mnsechχ(2αξ), (33)

η29(ξ) = − cotχ(2αξ)±
√

mn cschχ(2αξ), (34)

η30(ξ) = −1
2

(
tanhχ

(α

2
ξ
)
+ cothχ

(α

2
ξ
))

. (35)

(Family 7): When β2 = 4αγ,

η31(ξ) =
−2α(βξ log[χ] + 2)

β2ξ log[χ]
. (36)

(Family 8): When α = pq, (q 6= 0), γ = 0 and β = p,

η32(ξ) = χpξ − q. (37)

(Family 9): When γ = β = 0,

η33(ξ) = αξ log[χ]. (38)

(Family 10): When α = β = 0,

η34(ξ) =
−1

γξ log[χ]
. (39)

(Family 11): When β 6= 0 and α = 0,

η35(ξ) = −
mβ

γ(coshχ(βξ)− sinhχ(βξ) + m)
, (40)
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η36(ξ) = −
β(sinhχ(βξ) + coshχ(βξ))

γ(sinhχ(βξ) + coshχ(βξ) + n)
. (41)

(Family 12): When γ = pq, (q 6= 0), α = 0 and β = p,

η37(ξ) = −
mχpξ

m− qnχpξ
, (42)

sinhχ(ξ) =
mχξ − nχ−ξ

2
, coshχ(ξ) =

mχξ + nχ−ξ

2
,

tanhχ(ξ) =
mχξ − nχ−ξ

mχξ + nχ−ξ
, cothχ(ξ) =

mχξ + nχ−ξ

mχξ − nχ−ξ
,

sechχ(ξ) =
2

mχξ + nχ−ξ
, cschχ(ξ) =

2
mχξ − nχ−ξ

,

sinχ(ξ) =
mχiξ − nχ−iξ

2i
, coηχ(ξ) =

mχiξ + nχ−iξ

2
,

tanχ(ξ) = −i
mχiξ − nχ−iξ

mχiξ + nχ−iξ , cotχ(ξ) = i
mχiξ + nχ−iξ

mχiξ − nχ−iξ ,

where n, m > 0 are parameters of arbitrary constant deformations.

2.2. Application of the New Extended Direct Algebraic Method

In order to find the analytical exact solution of the Riemann wave equation, the next
wave transformation was applied to the system (1),

U (x, y, t) = U (ξ), V(x, y, t) = V(ξ), ξ = (λ x + ω y− ct), (43)

where c is the wave velocity of the traveling wave while λ and ω are wave numbers.

ω f λ2 dU
dξ3 + jλU dV

dξ
+ kV dV

dξ
= 0,

ω
dU
dξ

= λ
dV
dξ

.
(44)

Integrating the second equation of system (44) with zero constants of integration we
have

V =
ω

λ
U . (45)

Substituting Equation (45) into the first system of Equation (44) after integration, we
have

2ω f λ2 dU 2

dξ2 + ω(j + k)U 2 − 2cU = 0. (46)

The homogeneous balancing constant of Equation (46) is m = 2. Thus, the general
solution (5) is expanded by using m = 2 for Equation (46), so the solution is given as,

U (ξ) = b0 + b1η(ξ) + b2η2(ξ), (47)
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where

η
′
(ξ) = α ln(A) + β S(ξ) ln(A) + γ (S(ξ))2 ln(A). (48)

Equation (47) is substituted in Equation (46). We obtain the algebraic system by
equating the coefficients of distinct powers of η(ξ),

η(ξ)0 :2 ω f λ2b1β (ln(A))2α + ω kb0
2 + ω jb0

2 − 2 cb0 + 4 ω f λ2b2α2(ln(A))2 = 0,

η(ξ)1 :4 ω f λ2b1γ (ln(A))2α + 12 ω f λ2b2α (ln(A))2β + 2 ω f λ2b1β2(ln(A))2−
2 cb1 + 2 ω jb0b1 + 2 ω kb0b1 = 0,

η(ξ)2 :ω jb1
2 + ω kb1

2 + 6 ω f λ2b1β (ln(A))2γ + 16 ω f λ2b2α (ln(A))2γ+

8 ω f λ2b2β2(ln(A))2 − 2 cb2 + 2 ω jb0b2 + 2 ω kb0b2 = 0,

η(ξ)3 :20 ω f λ2b2β (ln(A))2γ + 4 ω f λ2b1γ2(ln(A))2 + 2 ω jb1b2 + 2 ω kb1b2 = 0,

η(ξ)4 :ω jb2
2 + ω kb2

2 + 12 ω f λ2b2γ2(ln(A))2 = 0.

(49)

The aforementioned system (49) is solved with the help of Mathematica and we
obtained the values of the desired parameters,

Case 1:

c =
−S(m + n)ω b0

12α γ
, f = − b0(j + k)

12α γ λ2(ln(A))2 , b0 = b0, b1 =
β b0

α
, b2 =

γ b0

α
. (50)

Case 2:

c = −Sλ2 f ω (ln(A))2, f = f , b0 = − 3 f λ2(ln(A))2β2

j + k
, b1 = − 12β f γ λ2(ln(A))2

j + k
,

b2 = − 12(ln(A))2γ2 f λ2

j + k
.

(51)

We obtain the general solution by substituting Equation (50) into Equation (47),

U (ξ) = b0 +
β b0

α
ηξ +

γ b0

α
η2

ξ . (52)

For case 1,
(Family 1): When γ 6= 0 and β2 − 4αγ < 0,
The mixed trigonometric solutions are derived as,

U1(ξ) = b0 +
β b0

γ α

(
− β

2
+

√
−S
2

tanχ

(√
−S
2

ξ

))

+
b0

γ α

(
− β

2
+

√
−S
2

tanχ

(√
−S
2

ξ

))2

.

(53)

V1(ξ) =
ω

λ

[
b0 +

β b0

γ α

(
− β

2
+

√
−S
2

tanχ

(√
−S
2

ξ

))

+
b0

γ α

(
− β

2
+

√
−S
2

tanχ

(√
−S
2

ξ

))2]
.

(54)
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U2(ξ) = b0 +
β b0

γ α

(
− β

2
+

√
−S
2

cotχ

(√
−S
2

ξ

))

+
b0

γ α

(
− β

2
+

√
−S
2

cotχ

(√
−S
2

ξ

))2

.

(55)

V2(ξ) =
ω

λ

[
b0 +

β b0

γ α

(
− β

2
+

√
−S
2

cotχ

(√
−S
2

ξ

))

+
b0

γ α

(
− β

2
+

√
−S
2

cotχ

(√
−S
2

ξ

))2]
.

(56)

U3(ξ) = b0 +
β b0

α

(
− β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sξ

)
±
√

mn secχ

(√
−Sξ

)))

+
b0

γ α

(
− β

2
+

√
−S
2

(
tanχ

(√
−Sξ

)
±
√

mn secχ

(√
−Sξ

)))2

.

(57)

V3(ξ) =
ω

λ

[
b0 +

β b0

α

(
− β

2γ
+

√
−S
2γ

(
tanχ

(√
−Sξ

)
±
√

mn secχ

(√
−Sξ

)))

+
b0

γ α

(
− β

2
+

√
−S
2

(
tanχ

(√
−Sξ

)
±
√

mn secχ

(√
−Sξ

)))2]
.

(58)

U4(ξ) = b0 +
β b0

α

(
− β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sξ

)
±
√

mn cscχ

(√
−Sξ

)))

+
b0

γ α

(
− β

2
+

√
−S
2

(
cotχ

(√
−Sξ

)
±
√

mn cscχ

(√
−Sξ

)))2

.

(59)

V4(ξ) =
ω

λ

[
b0 +

β b0

α

(
− β

2γ
+

√
−S
2γ

(
cotχ

(√
−Sξ

)
±
√

mn cscχ

(√
−Sξ

)))

+
b0

γ α

(
− β

2
+

√
−S
2

(
cotχ

(√
−Sξ

)
±
√

mn cscχ

(√
−Sξ

)))2]
.

(60)

U5(ξ) = b0 +
β b0

α

(
− β

2γ
+

√
−S
4γ

(
tanχ

(√
−S
4

ξ

)
− cotχ

(√
−S
4

ξ

)))

+
b0

γ α

(
− β

2
+

√
−S
4

(
tanχ

(√
−S
4

ξ

)
− cotχ

(√
−S
4

ξ

)))2

.

(61)

V5(ξ) =
ω

λ

[
b0 +

β b0

α
− β

2γ
+

√
−S
4γ

(tanχ(

√
−S
4

ξ)− cotχ(

√
−S
4

ξ)))

+
b0

γ α
(− β

2
+

√
−S
4

(tanχ(

√
−S
4

ξ)− cotχ(

√
−S
4

ξ))2
]

.

(62)
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(Family 2): When γ 6= 0 and β2 − 4αγ > 0, the various forms of solutions are as follows.
The shock solution is

U6(ξ) = b0 −
β b0

α

(
β

2γ
+

√
S

2γ
tanhχ

(√
S

2
ξ

))

+
b0

γ α

(
β

2
+

√
S

2
tanhχ

(√
S

2
ξ

))2

.

(63)

V6(ξ) =
ω

λ

[
b0 −

β b0

α

(
β

2γ
+

√
S

2γ
tanhχ

(√
S

2
ξ

))

+
b0

γ α

(
β

2
+

√
S

2
tanhχ

(√
S

2
ξ

))2]
.

(64)

The singular solution is obtained as follows:

U7(ξ) = b0 −
β b0

α

(
β

2γ
+

√
S

2γ
cothχ

(√
−S
2

ξ

))

+
b0

γ α

(
β

2
+

√
S

2
cothχ

(√
S

2
ξ

))2

.

(65)

V7(ξ) =
ω

λ

[
b0 −

β b0

α

(
β

2γ
+

√
S

2γ
cothχ

(√
−S
2

ξ

))

+
b0

γ α

(
β

2
+

√
S

2
cothχ

(√
S

2
ξ

))2]
.

(66)

The mixed complex solitary-shock solution is extracted as follows:

U8(ξ) = b0 +
β b0

α

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sξ
)
± i
√

mnsechχ

(√
Sξ
)))

+
b0

γ α

(
− β

2
+

√
S

2

(
− tanhχ

(√
Sξ
)
± i
√

mnsechχ

(√
Sξ
)))2

.

(67)

V8(ξ) =
ω

λ

[
b0 +

β b0

α

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sξ
)
± i
√

mnsechχ

(√
Sξ
)))

+
b0

γ α

(
− β

2
+

√
S

2

(
− tanhχ

(√
Sξ
)
± i
√

mnsechχ

(√
Sξ
)))2]

.

(68)

The mixed singular solution is obtained as follows:

U9(ξ) = b0 +
β b0

α

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sξ
)
± i
√

mncschχ

(√
Sξ
)))

+
b0

γ α

(
− β

2
+

√
S

2

(
− tanhχ

(√
Sξ
)
± i
√

mncschχ

(√
Sξ
)))2

.

(69)
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V9(ξ) =
ω

λ

[
b0 +

β b0

α

(
− β

2γ
+

√
S

2γ

(
− tanhχ

(√
Sξ
)
± i
√

mncschχ

(√
Sξ
)))

+
b0

γ α

(
− β

2
+

√
S

2

(
− tanhχ

(√
Sξ
)
± i
√

mncschχ

(√
Sξ
)))2]

.

(70)

U10(ξ) = b0 +
β b0

α

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
ξ

)
+ cothχ

(√
S

4
ξ

)))

+
b0

γ α

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
ξ

)
+ cothχ

(√
S

4
ξ

)))2

.

(71)

V10(ξ) =
ω

λ

[
b0 +

β b0

α

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
ξ

)
+ cothχ

(√
S

4
ξ

)))

+
b0

γ α

(
− β

2γ
−
√
S

4γ

(
tanhχ

(√
S

4
ξ

)
+ cothχ

(√
S

4
ξ

)))2]
.

(72)

(Family 3): When β = 0 and αγ > 0,

U11(ξ) = b0

(
1 + tan2

χ(
√

αγξ)
)

. (73)

V11(ξ) =
b0 ω

λ

(
1 + tan2

χ(
√

αγξ)
)

. (74)

U12(ξ) = b0

(
1 + cot2

χ(
√

αγξ)
)

. (75)

V12(ξ) =
b0 ω

λ

(
1 + cot2

χ(
√

αγξ)
)

. (76)

U13(ξ) = b0

(
1 +

(
tanχ(2

√
αγξ)±

√
mn secχ(2

√
αγξ)

)2
)

. (77)

V13(ξ) =
b0 ω

λ

(
1 +

(
tanχ(2

√
αγξ)±

√
mn secχ(2

√
αγξ)

)2
)

. (78)

U14(ξ) = b0

(
1 +

(
cotχ(2

√
αγξ)±

√
mn cscχ(2

√
αγξ)

)2
)

. (79)

V14(ξ) =
b0 ω

λ

(
1 +

(
cothχ(2

√
αγξ)±

√
mn cschχ(2

√
αγξ)

)2
)

. (80)

U15(ξ) = b0

(
1 +

(
tanχ

(√
αγ

2
ξ

)
− cotχ

(√
αγ

2
ξ

))2
)

. (81)

V15(ξ) =
b0 ω

λ

(
1 +

(
tanχ

(√
αγ

2
ξ

)
− cotχ

(√
αγ

2
ξ

))2
)

. (82)
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(Family 4): When β = 0 and αγ < 0,

U16(ξ) = b0

(
1 + tanh2

χ(
√

αγξ)
)

. (83)

V16(ξ) =
b0 ω

λ

(
1 + tanh2

χ(
√

αγξ)
)

. (84)

U17(ξ) = b0

(
1 + coth2

χ(
√

αγξ)
)

. (85)

V17(ξ) =
b0 ω

λ

(
1 + coth2

χ(
√

αγξ)
)

. (86)

U18(ξ) = b0

(
1 +

(
tanhχ(2

√
αγξ)±

√
mn sechχ(2

√
αγξ)

)2
)

. (87)

V18(ξ) =
b0 ω

λ

(
1 +

(
tanhχ(2

√
αγξ)±

√
mn sechχ(2

√
αγξ)

)2
)

. (88)

U19(ξ) = b0

(
1 +

(
cothχ(2

√
αγξ)±

√
mn cschχ(2

√
αγξ)

)2
)

. (89)

V19(ξ) =
b0 ω

λ

(
1 +

(
cothχ(2

√
αγξ)±

√
mn cschχ(2

√
αγξ)

)2
)

. (90)

U20(ξ) = b0

(
1 +

(
tanhχ

(√
αγ

2
ξ

)
− cothχ

(√
αγ

2
ξ

))2
)

. (91)

V20(ξ) =
b0 ω

λ

(
1 +

(
tanhχ

(√
αγ

2
ξ

)
− cothχ

(√
αγ

2
ξ

))2
)

. (92)

(Family 5): When α = γ and β = 0,

U21(ξ) = b0

(
1 + tan2

χ(γξ)
)

. (93)

V21(ξ) =
b0 ω

λ

(
1 + tan2

χ(γξ)
)

. (94)

U22(ξ) = b0

(
1 + cot2

χ(γξ)
)

. (95)

V22(ξ) =
b0 ω

λ

(
1 + cot2

χ(γξ)2
)

. (96)

U23(ξ) = b0

(
1 +

(
tanχ(2γξ)±

√
mn secχ(2γξ)

)2
)

. (97)
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V23(ξ) =
b0 ω

λ

(
1 +

(
tanχ(2γξ)±

√
mn secχ(2γξ)

)2
)

. (98)

U24(ξ) = b0

(
1 +

(
− cotχ(2γξ)±

√
mn secχ(2γξ)

)2
)

. (99)

V24(ξ) =
b0 ω

λ

(
1 +

(
− cotχ(2γξ)±

√
mn secχ(2γξ)

)2
)

. (100)

U25(ξ) = b0

(
1 +

1
4

(
tanχ

(γ

2
ξ
)
− cotχ

(γ

2
ξ
))2

)
. (101)

V25(ξ) =
b0 ω

λ

(
1 +

1
4

(
tanχ

(γ

2
ξ
)
− cotχ

(γ

2
ξ
))2

)
. (102)

(Family 6): When α = −γ and β = 0,

U26(ξ) = b0

(
1− tanh2

χ(γξ)
)

. (103)

V26(ξ) =
b0 ω

λ

(
1− tanh2

χ(γξ)
)

. (104)

U27(ξ) = b0

(
1− coth2

χ(γξ)
)

. (105)

V27(ξ) =
b0 ω

λ

(
1− cot2

χ(γξ)
)

. (106)

U28(ξ) = b0

(
1−

(
tanhχ(2γξ)±

√
mnsechχ(2γξ)

)2
)

. (107)

V28(ξ) =
b0 ω

λ

(
1−

(
tanhχ(2γξ)±

√
mnsechχ(2γξ)

)2
)

. (108)

U29(ξ) = b0

(
1−

(
− cothχ(2γξ)±

√
mnsechχ(2γξ)

)2
)

. (109)

V29(ξ) =
b0 ω

λ

(
1−

(
− cothχ(2γξ)±

√
mnsechχ(2γξ)

)2
)

. (110)

U30(ξ) = b0

(
1− 1

4

(
tanhχ

(γ

2
ξ
)
− cothχ

(γ

2
ξ
))2

)
. (111)

V30(ξ) =
b0 ω

λ

(
1− 1

4

(
tanhχ

(γ

2
ξ
)
− cothχ

(γ

2
ξ
))2

)
. (112)
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(Family 7): When β2 = 4αγ, we obtained only one solution:

U31(ξ) = b0

(
1 +

β

2 γ α

(
−βξ log[χ] + 2

ξ log[χ]

)
+

1
4 γ α

(
−βξ log[χ] + 2

ξ log[χ]

)2
)

(113)

V31(ξ) =
b0 ω

λ

(
1 +

β

2 γ α

(
−βξ log[χ] + 2

ξ log[χ]

)
+

1
4 γ α

(
−βξ log[χ] + 2

ξ log[χ]

)2
)

. (114)

(Family 8): When α = pq, (q 6= 0), γ = 0 and β = p, we obtained only one solution:

U32(ξ) = b0

(
1 +

1
q

(
χpξ − q

))
. (115)

V32(ξ) =
b0 ω

λ

(
1 +

1
q

(
χpξ − q

))
. (116)

(Family 9): When γ = β = 0,

U33(ξ) = b0. (117)

V33(ξ) =
b0 ω

λ
. (118)

Families 10, 11, and 12 are undefined.
We can construct soliton solutions for case 2 by adopting a similar process to case 1.

3. Graphical Representation
Graphical Discussion

In this part, we show 3D, contour, and 2D graphs of the calculated solutions to the
soliton velocity and wave number under consideration. The wave solution was used to
generate various sorts of graphs. The form of the traveling wave varies (as the unknown
factors associated with the solution changed when we investigated the nature of the
solution). The graphs representing the solutions to the succeeding nonlinear evolution
equations of the Riemann wave equation are now shown. A current modern programming
software application is used to plot the graph for better presentation, corresponding
numerical values for parameters can be used based on their physical ranges.

In Figures 1 and 2, we explained the graphical representation of the obtained solutions
for soliton velocity at the parametric values β = 1.5, α = 1, γ = 1, b0 = 1.5, S = 0.5,
λ = 0.8, ω = 0.25, and Figure 1 depicts the solution’s nonlinear propagation behavior of
U1(ξ). At c = 2.5, Figure 1a shows the kink 3D soliton by the Riemann wave equation,
Figure 1b shows the singular contour soliton, and Figure 1c shows the bright 2D behavior.
At c = 1.5; Figure 1d shows the kink 3D shape soliton by the Riemann wave equation,
Figure 1e shows the singular contour soliton and Figure 1f shows the bright 2D behavior. At
c = 0.5, Figure 1g shows the anti-bell kink shape 3D soliton; Figure 1h shows the singular
contour soliton, and Figure 1i shows the bright periodic 2D behavior.

Figure 2 depicts the solution’s nonlinear propagation behavior of V1(ξ). At c = 2.5,
Figure 2a shows the kink shape 3D soliton by the Riemann wave equation, Figure 2b
shows the singular contour soliton and Figure 2c shows the bright 2D behavior. At c = 1.5,
Figure 2d shows the flat kink anti-bell shape 3D soliton by the Riemann wave equation,
Figure 2e shows the singular contour soliton, and Figure 2f shows the bright 2D behavior.
At c = 0.5, Figure 2g strict anti-bell kink shape 3D soliton Figure 2h shows the singular
contour soliton and Figure 2i shows the bright periodic 2D behavior.
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In Figures 3 and 4 we explain the graphical representation of the obtained solutions
for the wave number at the parametric values β = 1.5, α = 1, γ = 1, b0 = 1.5, S = 0.5,
c = 1, ω = 0.25, Figure 3 depicts the solution’s nonlinear propagation behavior of U1(ξ).
At λ = 2.5, Figure 3a shows the anti-bell shape 3D soliton by the Riemann wave equation,
Figure 3b shows the singular contour soliton and Figure 3c shows the bright 2D behavior.
At λ = 1.5, Figure 3d shows the anti-bell kink shape 3D soliton by the Riemann wave
equation, Figure 3e shows the singular contour soliton, and Figure 1f shows the bright
2D behavior. At λ = 0.5, Figure 3g’s flat kink 3D soliton Figure 3h shows the singular
contour soliton and Figure 1i shows the bright periodic 2D behavior.

Figure 4 depicts the solution’s nonlinear propagation behavior of V1(ξ). At λ = 2.5,
Figure 4a shows the kink anti-bell 3D soliton by the Riemann wave equation, Figure 4b
shows the singular contour soliton, and Figure 4c shows the bright 2D behavior. At λ = 1.5,
Figure 4d shows the anti-bell shape 3D soliton by the Riemann wave equation, Figure 4e
shows the singular contour soliton, and Figure 4f shows the bright 2D behavior. At λ = 0.5,
Figure 4g’s strict flat kink shape 3D soliton Figure 4h shows the singular contour soliton
and Figure 4i shows the bright periodic 2D behavior.

Figure 5 depicts the solution’s nonlinear propagation behavior of U7(ξ), at the para-
metric values β = 1.5, α = 1, γ = 1, b0 = 1.5, S = 0.5, λ = 0.8, ω = 0.25, at c = 2.5,
Figure 5a shows the bell shape kink 3D soliton by the Riemann wave equation, Figure 5b
shows the singular contour soliton, and Figure 5c shows the bright 2D behavior. At c = 0.5,
the Figure 5d bell shape kink 3D soliton Figure 5e shows the singular contour soliton and
Figure 5f shows the dark periodic 2D behavior.

(a) (b) (c)

(d) (e) (f)

Figure 1. Cont.
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(g) (h) (i)

Figure 1. The 3D, contour, and 2D behavior comparisons for U1(ξ); (a) 3D wave profile at soliton
velocity c = 2.5; (b) contour wave profile at soliton velocity c = 2.5; (c) 2D wave profile at soliton
velocity c = 2.5; (d) 3D wave profile at soliton velocity at c = 1.5; (e) contour wave profile at soliton
velocity c = 1.5; (f) 2D wave profile at soliton velocity c = 1.5; (g) 3D wave profile at soliton velocity
c = 0.5; (h) contour wave profile at soliton velocity c = 0.5; (i) 2D wave profile at soliton velocity
c = 0.5.

(a) (b) (c)

(d) (e) (f)

Figure 2. Cont.
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(g) (h) (i)

Figure 2. The 3D, contour, and 2D behavior comparison for V1(ξ); (a) 3D wave profile at soliton
velocity c = 2.5; (b) contour wave profile at soliton velocity c = 2.5; (c) 2D wave profile at soliton
velocity c = 2.5; (d) 3D wave profile at soliton velocity c = 1.5; (e) contour wave profile at soliton
velocity c = 1.5; (f) 2D wave profile at soliton velocity c = 1.5; (g) 3D wave profile at soliton velocity
c = 0.5; (h) contour wave profile at soliton velocity c = 0.5; (i) 2D wave profile at soliton velocity
c = 0.5.

(a) (b) (c)

(d) (e) (f)

Figure 3. Cont.
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(g) (h) (i)

Figure 3. The 3D, contour, and 2D behavior comparison for U1(ξ); (a) 3D wave profile at wave
number λ = 2.5; (b) contour wave profile at wave number λ = 2.5; (c) 2D wave profile at wave
number λ = 2.5; (d) 3D wave profile at wave number λ = 1.5; (e) contour wave number soliton
solution at λ = 1.5; (f) 2D wave profile at wave number λ = 1.5; (g) 3D wave profile at wave number
λ = 0.5; (h) contour wave profile at wave number λ = 0.5; (i) 2D wave profile at wave number
λ = 0.5.

(a) (b) (c)

(d) (e) (f)

Figure 4. Cont.
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(g) (h) (i)

Figure 4. The 3D, contour, and 2D behavior comparison for V1(ξ); (a) 3D wave profile at wave
number λ = 2.5; (b) contour wave profile at wave number λ = 2.5; (c) 2D wave profile at wave
number λ = 2.5; (d) 3D wave profile at wave number λ = 1.5; (e) contour wave profile at wave
number λ = 1.5; (f) 2D wave profile at wave number λ = 1.5; (g) 3D wave profile at wave number
λ = 0.5; (h) contour wave profile at wave number λ = 0.5; (i) 2D wave profile at wave number
λ = 0.5.

(a) (b) (c)

(d) (e) (f)

Figure 5. The 3D, contour, and 2D behavior comparison for U7(ξ); (a) 3D wave profile at soliton
velocity c = 2.5; (b) contour wave profile at soliton velocity c = 2.5; (c) 2D wave profile at soliton
velocity c = 2.5; (d) 3D wave profile at soliton velocity c = 0.5; (e) contour wave profile at soliton
velocity c = 0.5; (f) 2D wave profile at soliton velocity c = 0.5.

Figure 6 shows the graphical representation of the nonlinear propagation behavior for
the wave number at the parametric values β = 1.5, α = 1, γ = 1, b0 = 1.5, S = 0.5, and
c = 1, ω = 0.25; at λ = 2.5, Figure 6a shows the bell kink shape 3D soliton by the Riemann
wave equation, Figure 6b shows the singular contour soliton, and Figure 6c shows the
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bright 2D behavior. At λ = 0.5, Figure 6d shows the bell shape kink 3D soliton, Figure 6e
shows the singular contour soliton, and Figure 6f shows the bright periodic 2D behavior.

As a result, these physical descriptions of our novel results may be useful for nonlinear
wave problems in applied sciences for further research.

(a) (b) (c)

(d) (e) (f)

Figure 6. The 3D, contour, and 2D behavior comparison for U7(ξ); (a) 3D wave profile at wave
number λ = 2.5; (b) contour wave profile at wave number λ = 2.5; (c) 2D wave profile at wave
number λ = 2.5; (d) 3D wave profile at wave number λ = 0.5; (e) contour wave profile at wave
number λ = 0.5; (f) 2D wave profile at wave number λ = 0.5.

4. The Sensitivity Assessment

In order to display the sensitivity of the Riemann wave equation, the dynamic planer
system can be contributed by using the Galilean transformation process. Thus, the Galilean
transformation yields the dynamic system of Equation (46) as follows:

dU
dξ = S,
dS
dξ = −(j+k)U2

2 f λ2 + cU
ω f λ2 .

(119)

In Figure 7, we take parameters c = 1.2, j = 1.5, k = 0.9, ω = 2, f = 0.6, λ = 0.5, where we
investigate sensitive phenomena of the dynamical system given below,
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(a)

(b)

(c)

(d)

Figure 7. Sensitivity assessment at different initial conditions. (a) Sensitive visualization for curve
1 at (0.001, 0.03) and curve 2 at (0.03, 0.02); (b) sensitive visualization for curve 1 at (0.02, 0.03) and
curve 2 at (0.03, 0.02); (c) sensitive visualization for curve 1 at (0.05, 0.03) and curve 2 at (0.03, 0.02);
(d) sensitive visualization for curve 1 at (0.1, 0.03) and curve 2 at (0.03, 0.02).
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The sensitivity analysis is a process that assesses how sensitive our system is. The sys-
tem’s sensitivity will be poor if only a minor adjustment is made to the initial conditions.
However, if the system suffers a considerable shift due to minor changes in the starting
circumstances, the system will be extremely sensitive. As a result, the system is sensitive
in this situation. Many figures are drawn for various initial conditions to highlight the
system’s sensitivity. The changes in the amplitude and frequency of the wave velocity in
the sensitivity graphs show the physical explanation for the system’s sensitivity.

5. Conclusions

This study investigated and examined the analytical solutions to the Riemann wave
problem in a soliton theory. The explicit soliton structures were discussed using the new
extended direct algebraic approach. As a result:

• We developed soliton solutions with twelve distinct families in which various newly
different solutions were derived, such as the plane solution, mixed hyperbolic solution,
trigonometry solution, mixed periodic and periodic solutions, shock solution, mixed
singular solution, mixed trigonometric solution, mixed shock single solution, complex
solitary shock solution, singular solution, and shock wave solutions.

• We displayed the 3D, 2D, and contour presentations of the obtained solutions with
the appropriate values of involved parameters.

• A sensitivity analysis of the obtained system is displayed with the appropriate values
of the involved parameters.

• The wave velocity and wave number parameters are responsible for controlling the
singularity of the water waves.

• The new extended direct algebraic performance is reliable and effective, and it provides
new solutions. The methodology utilized in this study will be used in future research
to discover novel solutions for other nonlinear wave equations.

Researchers and professionals may apply these results to new nonlinear equations
and complex nonlinear systems more quickly and efficiently.
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