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Abstract
In this paper we deal with Mellin convolution of generalized Gamma densities which leads to
integrals of modified Bessel functions of the second kind. Such convolutions allow us to explicitly
write the solutions of the time-fractional diffusion equations involving the adjoint operators of a
square Bessel process and a Bessel process.

1 Introduction and main result

In the last years, the analysis of the compositions of processes and the corresponding governing
equations has received the attention of many researchers. Many of them are interested in compo-
sitions involving subordinators, in other words, subordinated processes Y (T (t)), t > 0 (according
to [9]) where T (t), t > 0 is a random time with non-negative, independent and homogeneous
increments (see [4]). If the random time is a (symmetric or totally skewed) stable process we have
results which are strictly related to the Bochner’s subordination and the p.d.e.’s connections have
been investigated, e.g., in [6; 7; 8; 22; 23]. If the random time is an inverse stable subordinator
we shall refer to the governing equation of Y (T (t)) as a fractional equation considering that a frac-
tional time-derivative must be taken into account. In the literature, several authors have studied
the solutions to space-time fractional equations. In the papers by Wyss [30], Schneider and Wyss
[29], the authors present solutions of the fractional diffusion equation ∂ λt T = ∂ 2

x T in terms of
Fox’s functions (see Section 2). In the works by Mainardi et al., see e.g. [17; 18] the authors have
shown that the solutions to space-time fractional equation x Dαθu = t D

β
∗ u can be represented by

means of Mellin-Barnes integral representations (or Fox’s functions) and M-Wright functions (see
e.g. Kilbas et al. [13]). The fractional Cauchy problem Dαt u = L u has been thoroughly studied by
yet other authors and several representations of the solutions have been carried out, but an explicit
form of the solutions has never been obtained. Nigmatullin [25] gave a physical derivation when
L is the generator of some continuous Markov process. Zaslavsky [31] introduced the space-time
fractional kinetic equation for Hamiltonian chaos. Kochubei [14, 15] first introduced a mathemat-
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ical approach while Baeumer and Meerschaert [1] established the connections between fractional
problem and subordination by means of inverse stable subordinator when L is an infinitely divis-
ible generator on a finite dimensional vector space. In particular, if ∂t p = Lp is the governing
equation of X(t), then under certain conditions, ∂ βt q = Lq + δ(x)t−β/Γ(1− β) is the equation
governing the process X(Vt) where Vt is the inverse or hitting time process to the β-stable subordi-
nator, β ∈ (0,1). Orsingher and Beghin [26, 27] found explicit representations of the solutions to
∂ νt u = λ2∂ 2

x u only in some particlular cases: ν = (1/2)n,1/n, n ∈ N and ν = 1/3, 2/3, 4/3. Also,
they represented the solutions to the fractional telegraph equations in terms of stable densities,
see [3; 26]. In general, the solutions to fractional equations represent the probability densities of
certain subordinated processes obtained by using a time clock (in the following we will refer to it
as Lνt ) which is an inverse stable subordinator (see Section 4). For a short review on this field, see
also Nane [24] and the references therein.

We will present the role of the Mellin convolution formula in finding solutions of fractional dif-
fusion equations. In particular, our result allows us to write the distribution of both stable sub-
ordinator and its inverse process whose governing equations are respectively space-fractional or
time-fractional equations. This result turns out to be useful for representing the solutions to the
following fractional diffusion equation

Dνt ũγ,µ
ν = Gγ,µ ũγ,µ

ν (1.1)

where ũγ,µ
ν = ũγ,µ

ν (x , t), x > 0, t > 0, Dνt is the Riemann-Liouville fractional derivative, ν ∈ (0,1]
and Gγ,µ is an operator to be defined below (see formula (3.4)). We present, for ν = 1/(2n+ 1),
n ∈ N ∪ {0}, the explicit solutions to (1.1) in terms of integrals of modified Bessel functions of
the second kind (Kν) whereas, for ν ∈ (0,1], we obtain the solutions to (1.1) in terms of Fox’s
functions. After some preliminaries in Section 2, in Section 3 we recall the generalized Gamma
density Qγµ starting from which we define the distribution gγµ of the (generalized Gamma) process
Gγ,µ

t and the distribution eγµ of the process Eγ,µ
t . The latter can be seen as the reciprocal Gamma

process, indeed Eγ,µ
t = 1/Gγ,µ

t , or in a more striking interpretation, as the hitting time process
for which (Eγ,µ

t < x) = (Gγ,µ
x > t). We shall refer to Eγ,µ

t as the reciprocal or equivalently the
inverse process of Gγ,µ

t . It must be noticed that eγµ = g−γµ because G−γ,µ
t = 1/Gγ,µ

t . Furthermore,

we introduce the most important tool we deal with in this paper, the Mellin convolutions gγ,?n
µ̄ (see

formula (3.14)) and e?nµ̄ (see formula (3.13)) where e?nµ̄ stands for e1,?n
µ̄ . In Section 4 we draw some

useful transforms of the distribution hν of the stable subordinator τ̃νt and the distribution lν of the
inverse process Lνt . Similar calculations can be found in the paper by Schneider and Wyss [29].
The inverse (or hitting time) process is defined once again from the fact that (Lνt < x) = (τ̃νx > t)
(see also [1; 4]). In Section 5 we present our main contribution. We show that the following
representations hold true:

hν(x , t) = e?nµ̄ (x ,ϕn+1(t)), x > 0, t > 0, ν = 1/(n+ 1), n ∈ N

and

lν(x , t) = g(n+1),?n
µ̄ (x ,ψn+1(t)), x > 0, t > 0, ν = 1/(n+ 1), n ∈ N.

where µ̄ = (µ1, . . . ,µn), µ j = j ν , j = 1, 2, . . . , n, ν = 1/(n + 1), n ∈ N and the time-stetching
functions are given by ϕm(s) = (s/m)m and ψm(s) = ms1/m, s ∈ (0,∞), m ∈ N, ψ= ϕ−1.
The discussion made so far allows us to introduce the result stated in Theorem 1. For ν = 1/(n+1),
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n ∈ N∪ {0}, the solutions to (1.1) can be written as follows

ũγ,µ
ν (x , t) =

∫ ∞

0

gγµ(x , s1/γ) g1/ν ,?(1/ν−1)
µ̄ (s,ψ1/ν(t)) ds, x ∈ (0,∞), t > 0

where, for n ∈ 2N∪ {0}, we have

g1/ν ,?(1/ν−1)
µ̄ (x , t) =

1

ν1/2ν

� x

π2 t3

�
1−ν
4ν

∫ ∞

0

. . .

∫ ∞

0

Q 1−ν
2
(x , s1) . . .Q 1−ν

2
(sn−1, t)ds1 . . . dsn−1

and
Q 1−ν

2
(x , t) = K 1−ν

2

�

2
p

(x/t)1/ν
�

, x > 0, t > 0.

As a direct consequence of this result we obtain ũγ,µ
1 = g̃γµ, for ν = 1, where g̃γµ(x , t) = gγµ(x , t1/γ)

and the governing equation writes

∂

∂ t
ũγ,µ

1 =
1

γ2

�

∂

∂ x
x2−γ ∂

∂ x
− (γµ− 1)

∂

∂ x
x1−γ

�

ũγ,µ
1 , x > 0, t > 0.

Furthermore, for γ= 1, 2 and ν ∈ (0,1] we obtain

Dνt ũ1,µ
ν =

�

x
∂ 2

∂ x2 − (µ− 2)
∂

∂ x

�

ũ1,µ
ν , x > 0, t > 0, µ > 0 (1.2)

and

Dνt ũ2,µ
ν =

1

22

�

∂ 2

∂ x2 −
∂

∂ x

(2µ− 1)
x

�

ũ2,µ
ν , x > 0, t > 0, µ > 0. (1.3)

Equation (1.3) represents a fractional diffusion around spherical objects and thus, the solutions
we deal with obey radial diffusion equations.

2 Preliminaries

The H functions were introduced by Fox [10] in 1996 as a very general class of functions. For our
purpose, the Fox’s H functions will be introduced as the class of functions uniquely identified by
their Mellin transforms. A function f for which the following Mellin transform exists

M [ f (·)](η) =
∫ ∞

0

xη f (x)
d x

x
, ℜ{η}> 0

can be written in terms of H functions by observing that

∫ ∞

0

xηHm,n
p,q

�

x

�

�

�

�

(ai ,αi)i=1,..,p
(b j ,β j) j=1,..,q

�

d x

x
=Mm,n

p,q (η), ℜ{η} ∈ D (2.1)

where

Mm,n
p,q (η) =

∏m
j=1 Γ(b j +ηβ j)

∏n
i=1 Γ(1− ai −ηαi)

∏q
j=m+1 Γ(1− b j −ηβ j)

∏p
i=n+1 Γ(ai +ηαi)

. (2.2)
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The inverse Mellin transform is defined as

f (x) =
1

2πi

∫ θ+i∞

θ−i∞
M [ f (·)](η)x−ηdη

at all points x where f is continuous and for some real θ . Thus, according to a standard notation,
the Fox H function is defined as follows

Hm,n
p,q

�

x

�

�

�

�

(ai ,αi)i=1,..,p
(b j ,β j) j=1,..,q

�

=
1

2πi

∫

P(D)
Mm,n

p,q (η)x
−ηdη

where P(D) is a suitable path in the complex plane C depending on the fundamental strip (D) such
that the integral (2.1) converges. For an extensive discussion on this function see Fox [10]; Mathai
and Saxena [20]. The Mellin convolution formula

f1 ? f2(x) =

∫ ∞

0

f1(x/s) f2(s)
ds

s
, x > 0 (2.3)

turns out to be very useful later on. Formula (2.3) is a convolution in the sense that

M
�

f1 ? f2(·)
�

(η) =M
�

f1(·)
�

(η)×M
�

f2(·)
�

(η). (2.4)

Throughout the paper we will consider the integral

f1 ◦ f2(x , t) =

∫ ∞

0

f1(x , s) f2(s, t)ds (2.5)

(for some well-defined f1, f2) which is not, in general, a Mellin convolution. We recall the fol-
lowing connections between Mellin transform and both integer and fractional order derivatives.
In particular, we consider a rapidly decreasing function f : [0,∞) 7→ [0,∞), if there exists a ∈ R
such that

lim
x→0+

xa−k−1 dk

d x k
f (x) = 0, k = 0, 1, . . . , n− 1, n ∈ N, x ∈ R+

then we have

M
�

dn

d xn f (·)
�

(η) =(−1)n
Γ(η)
Γ(η− n)

M
�

f (·)
�

(η− n) (2.6)

and, for 0< α < 1

M
�

dα

d xα
f (·)
�

(η) =
Γ(η)
Γ(η−α)

M
�

f (·)
�

(η−α) (2.7)

(see Kilbas et al. [13]; Samko et al. [28] for details). The fractional derivative appearing in (2.7)
must be understood as follows

dα

d xα
f (x) =

1

Γ(n−α)

∫ x

0

(x − s)n−α−1 dn f

dsn (s) ds, n− 1< α < n (2.8)

that is the Dzerbayshan-Caputo sense. We also deal with the Riemann-Liouville fractional deriva-
tive

Dαx f =
1

Γ(n−α)
dn

d xn

∫ x

0

(x − s)n−α−1 f (s) ds, n− 1< α < n (2.9)
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and the fact that

Dαx f =
dα

d xα
f −

n−1
∑

k=0

dk

d x k
f

�

�

�

�

�

x=0+

x k−α

Γ(k−α+ 1)
, n− 1< α < n, (2.10)

see Gorenflo and Mainardi [11] and Kilbas et al. [13]. We refer to Kilbas et al. [13]; Samko et al.
[28] for a close examination of the fractional derivatives (2.8) and (2.9).

3 Mellin convolution of generalized Gamma densities

In this section we introduce and study the Mellin convolution of generalized gamma densities. In
the literature, it is well-known that generalized Gamma r.v. possess density law given by

Qγµ(z) = γ
zγµ−1

Γ
�

µ
� exp {−zγ} , z > 0, γ > 0, µ > 0.

Our discussion here concerns the function

gγµ(x , t) = sign(γ)
1

t
Qγµ

� x

t

�

= |γ|
xγµ−1

tγµΓ(µ)
exp
�

−
xγ

tγ

�

, x > 0, t > 0, γ 6= 0, µ > 0. (3.1)

Let us introduce the convolution

gγ1
µ1
? gγ2

µ2
(x , t) =

∫ ∞

0

gγ1
µ1
(x , s)gγ2

µ2
(s, t)ds = sign(γ1γ2)

1

t

∫ ∞

0

Qγ1
µ1
(x/s)Qγ2

µ2
(s/t)

ds

s
(3.2)

for which we have (see formula (2.4))

M
h

gγ1
µ1
? gγ2

µ2
(·, t)

i

(η) =M
h

gγ1
µ1
(·, t1/2)

i

(η)×M
h

gγ2
µ2
(·, t1/2)

i

(η) (3.3)

as a straightforward calculation shows. We now introduce the generalized Gamma process (GGP in
short). Roughly speaking, the function (3.1) can be viewed as the distribution of a GGP {Gγ,µ

t , t >
0} in the sense that ∀t the distribution of the r.v. Gγ,µ

t is the generalized Gamma distribution (3.1).
Thus, we make some abuse of language by considering a process without its covariance structure.
In the literature there are several non-equivalent definitions of the distribution on Rn

+ of Gamma
distributions, see e.g. Kotz et al. [16] for a comprehensive discussion. In Section 5 (Corollary 1)
we will show that the distribution (3.1) satisfies the p.d.e.

∂

∂ t
gγµ =

d(tγ)
d t
Gγ,µ gγµ, x > 0, t > 0

where

Gγ,µ f =
1

γ2

�

∂

∂ x
x2−γ ∂

∂ x
− (γµ− 1)

∂

∂ x
x1−γ

�

f , x > 0, t > 0 (3.4)

and γ 6= 0, f ∈ D(Gγ,µ). For γ = 1, equation (3.1) becomes the distribution of a 2µ-dimensional

squared Bessel process {BESSQ(2µ)t/2 , t > 0} and, for γ = 2 we obtain the distribution of a 2µ-

dimensional Bessel process {BES(2µ)t/2 , t > 0}, both starting from zero. Some interesting distribu-
tions can be realized through Mellin convolution of distribution gγµ. Indeed, after some algebra we
arrive at

gγµ1
? g−γµ2

(x , t) =
γ

B(µ1,µ2)
xγµ1−1 tγµ2

(tγ + xγ)µ1+µ2
, x > 0, t > 0, γ > 0 (3.5)
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and

g−γµ1
? gγµ2

(x , t) =
γ

B(µ1,µ2)
xγµ2−1 tγµ1

(tγ + xγ)µ1+µ2
, x > 0, t > 0, γ > 0 (3.6)

where B(·, ·) is the Beta function (see e.g. Gradshteyn and Ryzhik [12, formula 8.384]). Moreover,
in light of the Mellin convolution formula (2.4), the following holds true

M
h

gγµ1
? g−γµ2

(·, t)
i

(η) =M
h

g−γµ2
? gγµ1

(·, t)
i

(η).

A further distribution arising from convolution can be presented. In particular, for γ 6= 0, we have

gγµ1
? gγµ2

(x , t) =
2|γ| (xγ/tγ)

µ1+µ2
2

x Γ(µ1)Γ(µ2)
Kµ2−µ1

 

2

r

xγ

tγ

!

, x > 0, t > 0 (3.7)

which proves to be very useful further on. The function Kν appearing in (3.7) is the modified Bessel
function of imaginary argument (see e.g [12, formula 8.432]). For the sake of completeness we
have writen the following Mellin transforms:

M
h

gγµ(·, t)
i

(η) =
Γ
�

η−1
γ
+µ
�

Γ
�

µ
� tη−1, t > 0, ℜ{η}> 1− γµ, γ 6= 0,

and

M
h

gγµ(x , ·)
i

(η) =
Γ
�

µ− η

γ

�

Γ
�

µ
� xη−1, x > 0, ℜ{η}> γµ, γ 6= 0. (3.8)

Formula (3.8) suggests that

M
h

gγ1
µ1
? gγ2

µ2
(x , ·)

i

(η) =M
h

gγ1
µ1
(x1/2, ·)

i

(η)×M
h

gγ2
µ2
(x1/2, ·)

i

(η).

For the one-dimensional GGP we are able to define the inverse generalized Gamma process {Eγ,µ
t ,

t > 0} (IGGP in short) by means of the following relation

Pr{Eγ,µ
t < x}= Pr{Gγ,µ

x > t}.

The density law eγµ = eγµ(x , t) of the IGGP can be carried out by observing that

eγµ(x , t) = Pr{Eγ,µ
t ∈ d x}/d x =

∫ ∞

t

∂

∂ x
gγµ(s, x) ds, x > 0, t > 0 (3.9)

and, making use of the Mellin transform, we obtain

M
h

eγµ(·, t)
i

(η) =

∫ ∞

t

M
�

∂

∂ x
gγµ(s, ·)

�

(η) ds, ℜ{η}< 1

=
�

by (2.6)
�

=−(η− 1)

∫ ∞

t

M
h

gγµ(s, ·)
i

(η− 1) ds

=
�

by (3.8)
�

=−(η− 1)

∫ ∞

t

Γ
�

µ− η−1
γ

�

Γ
�

µ
� sη−2 ds =

Γ
�

µ− η−1
γ

�

Γ
�

µ
� tη−1
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The derivative under the integral sign in (3.9) is allowed from the fact that Ξ1(s) =
∂

∂ x
gγµ(s, x) ∈

L1(R+) as a function of s. From (2.2) and the fact that

Hm,n
p,q

�

x

�

�

�

�

(ai ,αi)i=1,..,p
(b j ,β j) j=1,..,q

�

= c Hm,n
p,q

�

x c

�

�

�

�

(ai , cαi)i=1,..,p
(b j , cβ j) j=1,..,q

�

(3.10)

for all c > 0 (see Mathai and Saxena [20]), we have that

eγµ(x , t) =
γ

x
H1,0

1,1





tγ

xγ

�

�

�

�

�

(µ, 0)
(µ, 1)



 , x > 0, t > 0, γ > 0. (3.11)

By observing thatM
h

eγµ(·, t)
i

(1) = 1, we immediately verify that (3.11) integrates to unity. The
density law gγµ can be expressed in terms of H functions as well, therefore we have

gγµ(x , t) =
γ

x
H1,0

1,1





xγ

tγ

�

�

�

�

�

(µ, 0)
(µ, 1)



 , x > 0, t > 0, γ > 0. (3.12)

In view of (3.11) and (3.12) we can argue that

Eγ,µ
t

law
= G−γ,µ

t
law
= 1/Gγ,µ

t , t > 0, γ > 0, µ > 0

and eγµ(x , t) = g−γµ (x , t), γ > 0, x > 0, t > 0.

Remark 1. We notice that the inverse process {E1,1/2
t , t > 0} can be written as

E1,1/2
t = inf{s; B(s) =

p
2t}

where B is a standard Brownian motion. Thus, E1,1/2 can be interpreted as the first-passage time
of a standard Brownian motion through the level

p
2t.

In what follows we will consider the Mellin convolution e?nµ̄ (x , t) = eµ1
?. . .?eµn

(x , t) (see formulae
(2.4) and (3.2)) where µ̄ = (µ1, . . . ,µn), µ j > 0, j = 1,2, . . . , n and, for the sake of simplicity,
eµ(x , t) = e1

µ(x , t). For the density law e?nµ̄ (x , t), x > 0, t > 0 we have

M
h

e?nµ̄ (·, t)
i

(η) =
n
∏

j=1

M
h

eµ j
(·, t1/n)

i

(η) = tη−1
n
∏

j=1

Γ
�

µ j + 1−η
�

Γ
�

µ j

� (3.13)

with ℜ{η}< 1. Furthermore, for the Mellin convolution gγ,?n
µ̄ (x , t) = gγµ1

?, . . . ,?gγµn
(x , t) we have

M
h

gγ,?n
µ̄ (·, t)

i

(η) =
n
∏

j=1

M
h

gγµ j
(·, t1/n)

i

(η) = tη−1
n
∏

j=1

Γ
�

η−1
γ
+µ j

�

Γ
�

µ j

� (3.14)

with ℜ{η}> 1−min j{µ j}.

Lemma 1. The functions gγµ and eγµ are commutative under ?-convolution.

Proof. Consider the Mellin convolution (3.13). Let eµ j
be the distribution of the process Xσ j , then

formula (3.13) means that

E {Xσ1(Xσ2(. . . Xσn(t) . . .))}η−1 = E
¦

Xσ1(t1/n)Xσ2(t1/n) · · · Xσn(t1/n)
©η−1

for all possible permutations of {σ j}, j = 1, 2, . . . , n. The same result can be shown for eγµ j
. Suppose

now that the process Xσ j possesses distribution gγµ j
, from (3.14) we obtain the claimed result.
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4 Stable subordinators

The ν-stable subordinators {τ̃(ν)t , t > 0}, ν ∈ (0,1), are defined as non-decreasing, (totally)
positively skewed, Lévy processes with Laplace transform

E exp{−λτ̃(ν)t }= exp {−tλν} , t > 0, λ > 0 (4.1)

and characteristic function

E exp{iξτ̃(ν)t }=exp{−tΨν(ξ)}, ξ ∈ R (4.2)

where

Ψν(ξ) =

∫ ∞

0

(1− e−iξu)
ν

Γ(1− ν)
du

uν+1

(see Bertoin [4]; Zolotarev [32]). After some algebra we get

Ψν(ξ) =σ|ξ|ν
�

1− i sgn(ξ) tan
�πν

2

��

= |ξ|ν exp
�

−i
πν

2

ξ

|ξ|

�

.

For the density law of the ν-stable subordinator {τ̃(ν)t , t > 0}, say hν = hν(x , t), x > 0, t > 0 we
have the t-Mellin transforms

M
�

ĥν(ξ, ·)
�

(η) = |ξ|−ην exp
�

i
πην

2

ξ

|ξ|

�

Γ
�

η
�

(4.3)

and
M
�

h̃ν(λ, ·)
�

(η) = λ−ηνΓ
�

η
�

(4.4)

where ĥν(ξ, t) = F
�

hν(·, t)
�

(ξ) is the Fourier transform appearing in (4.2) and h̃ν(λ, t) =
L
�

hν(·, t)
�

(λ) is the Laplace transform (4.1). By inverting (4.3) we obtain the Mellin trans-
form with respect to t of the density hν which reads

M
�

hν(x , ·)
�

(η) =
1

2π

∫

R
e−iξxM

�

ĥ(ξ, ·)
�

(η)dξ (4.5)

=
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�
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(

ei πην
2

(i x)1−ην
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e−i πην
2
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)

=
Γ
�

η
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Γ
�

1−ην
�

2π x1−ην

§

exp
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−i
π

2
+ iπην

ª
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π

2
− iπην

ªª

=
Γ
�

η
�

Γ
�

1−ην
�

π x1−ην sinπην =
Γ
�

η
�

Γ
�

ην
� xην−1, x > 0, ν ∈ (0, 1)

where ℜ{ην} ∈ (0,1). Formula (4.5) can be also obtained by inverting (4.4). We are also able to
evaluate the Mellin transform with respect to x of the density law hν . From (4.3) and the fact that

∫ ∞

0

xη−1e−iξx d x =
Γ(η)
(iξ)η

, where (±iξ)ν = |ξ|ν exp
�

±i
νπ

2

ξ

|ξ|

�

, ν ∈ (0,1) (4.6)

we obtain
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�

(η) =
Γ
�

η
�

2π

∫
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|ξ|−η exp
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−i
πη
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=
Γ(η)
2π

¨

e−i πη
2

∫ ∞

0

ξ−ηe−tΦν (ξ)dξ+ ei πη
2

∫ ∞

0

ξ−ηe−tΦν (−ξ)dξ

«

=
Γ(η)
2πν

Γ
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1−η
ν

�

t
η−1
ν

¦

eiπ(1−η) + e−iπ(1−η)
©

=Γ
�

1−η
ν

�

t
η−1
ν

ν Γ
�

1−η
� , ℜ{η} ∈ (0, 1), t > 0. (4.7)

The inversion of Fourier and Laplace transforms by making use of Mellin transform has been also
treated by Schneider and Wyss [29].

We investigate the relationship between stable subordinators and their inverse processes. For a
ν-stable subordinator {τ̃(ν)t , t > 0} and an inverse process {L(ν)t , t > 0} (ISP in short) such that

Pr{L(ν)t < x}= Pr{τ̃(ν)x > t}

we have the following relationship between density laws

lν(x , t) = Pr{L(ν)t ∈ d x}/d x =

∫ ∞

t

∂

∂ x
hν(s, x)ds, x > 0, t > 0. (4.8)

We observe that ∂

∂ x
hν(s, x) exists and there exists ζ(s) ∈ L1(R+) such that Ξ2(s) =

∂

∂ x
hν(s, x) =

const · Dνs hν(s, x) ≤ ζ(s). The function hν is the distribution of a totally skewed stable process,
thus hν(x), x ∈ Rn

+ belongs to the space of functions in D((−4)ν/2), see Samko et al. [28]. Thus,
the integral in (4.8) converges. The density law (4.8) can be written in terms of Fox functions by
observing that

M
�

lν(·, t)
�

(η) =

∫ ∞

t

M
�

∂

∂ x
hν(s, ·)

�

(η) ds

=
�

by (2.6)
�

=−(η− 1)

∫ ∞

t

M
�

hν(s, ·)
�

(η− 1) ds

=
�

by (4.5)
�

=−
∫ ∞

t

Γ
�

η
�

Γ
�

ην − ν
� sην−ν−1ds

=
Γ
�

η
�

Γ
�

ην − ν + 1
� tν(η−1), ℜ{η}< 1/ν , t > 0. (4.9)

Thus, by direct inspection of (2.2), we recognize that

lν(x , t) =
1

tν
H1,0

1,1





x

tν

�

�

�

�

�

(1− ν ,ν)
(0,1)



 , x > 0, t > 0, ν(0,1). (4.10)

Density (4.10) integrates to unity, indeedM
�

lν(·, t)
�

(1) = 1. The t-Laplace transform

L [lν(x , ·)](λ) = λν−1 exp {−xλν} , λ > 0, ν ∈ (0, 1) (4.11)

comes directly from the fact that
∫ ∞

0

e−λtM
�

lν(·, t)
�

(η) d t =
Γ
�

η
�

λην−ν+1 =

∫ ∞

0

xη−1L
�

lν(x , ·)
�

(λ) d x .
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From (4.11) we retrieve the well-known fact thatL
�

lν(·, t)
�

(λ) = Eν(−λtν) (see also Bondesson
et al. [5]) where Eβ is the Mittag-Leffler function which can be also written as

Eν(−λtν) =
1

π

∫ ∞

0

exp
¦

−λ1/ν t x
© xν−1 sinπν

1+ 2xν cosπν + x2ν d x , t > 0, λ > 0. (4.12)

The distribution lν satisfies the fractional equation ∂ ν

∂ tν
lν = −

∂

∂ x
lν , x > 0, t > 0 subject to

lν(x , 0) = δ(x) where the fractional derivative must be understood in the Dzerbayshan-Caputo
sense (formula (2.8)). The governing equation of lν can be also presented by considering the
Riemann-Liouville derivative (2.9) and the relation (2.10) (see e.g. Baeumer and Meerschaert
[1]; Meerschaert and Scheffler [21]; Baeumer et al. [2]). It is well-known that the ratio involv-
ing two independent stable subordinator { 1τ̃

(ν)
t , t > 0} and { 2τ̃

(ν)
t , t > 0} has a distribution, ∀t,

given by

r(w) = Pr{ 1τ̃
(ν)
t / 2τ̃

(ν)
t ∈ dw}/dw =

1

π

wν−1 sinπν

1+ 2wν cosπν +w2ν , w > 0, t > 0. (4.13)

Here we study the ratio of two independent inverse stable processes { 1 L(ν)t , t > 0} and { 2 L(ν)t , t >
0} by evaluating its Mellin transform as follows

E
n

1 L(ν)t / 2 L(ν)t

oη−1
=M

�

lν(·, t)
�

(η)×M
�

lν(·, t)
�

(2−η) =
1

ν

sinνπ−ηνπ
sinηπ

(4.14)

with ℜ{η} ∈ (0, 1). By inverting (4.14) we obtain

k(x) =
1

νπ

sinνπ

1+ 2x cosνπ+ x2 =
1

2πi

∫ θ+i∞

θ−i∞

sinνπ−ηνπ
sinηπ

x−ηdη (4.15)

for some real θ ∈ (0,1). From (4.13) and (4.15) we can argue that
�

1τ̃
(ν)
t / 2τ̃

(ν)
t

�ν law
= 1 L(ν)t / 2 L(ν)t , ∀t > 0. (4.16)

We notice that the equivalence in law (4.16) is independent of t as the formulae (4.13) and (4.15)
entail. The distribution hν ◦ lν(x , t) of the process {τ̃(ν)

L(ν)t

, t > 0} has Mellin transform (by making

use of the formulae (4.7) and (4.9)) given by

M
�

hν ◦ lν(·, t)
�

(η) =M
�

hν(·, 1)
�

(η)×M
�

lν(·, t)
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η− 1

ν
+ 1
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sinπη

sinπ 1−η
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tη−1, t > 0

with ℜ{η} ∈ (0, 1). Thus, we can infer that

τ̃
(ν)

L(ν)t

law
= t × 1τ̃

(ν)
t / 2τ̃

(ν)
t t > 0

and hν ◦ lν(x , t) = t−1r(x/t) where r(w) is that in (4.13). For the process {L(ν)
τ̃
(ν)
t

, t > 0} with

distribution lν ◦ hν(x , t) we obtain (from (4.9) and (4.7))

M
�

lν ◦ hν(·, t)
�

(η) =M
�

lν(·, 1)
�

(η)×M
�

hν(·, t)
�

(ην − ν + 1) =
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ν

sinπν −πην
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with ℜ{η} ∈ (0, 1) and thus

L(ν)
τ̃
(ν)
t

law
= t × 1 L(ν)t / 2 L(ν)t , t > 0.

We have that lν ◦ hν(x , t) = t−1k(x/t) where k(x) is that in (4.15).
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5 Main results

In this section we consider compositions of processes whose governing equations are (generalized)
fractional diffusion equations. When we consider compositions involving Markov processes and
stable subordinators we still have Markov processes. Here we study Markov processes with random
time which is the inverse of a stable subordinator. Such a process does not belong to the family
of stable subordinators (see (4.12)) and the resultant composition is not, in general, a Markov
process. This somehow explains the effect of the fractional derivative appearing in the governing
equation, see Mainardi et al. [19]. Hereafter, we exploit the Mellin convolution of generalized
Gamma densities in order to write explicitly the solutions to fractional diffusion equations. We
first present a new representation of the density law hν by means of the convolution e?nµ̄ introduced
in Section 3. To do this we also introduce the time-stretching function ϕm(s) = (s/m)m, m ≥ 1,
s ∈ (0,∞).

Lemma 2. The Mellin convolution e?nµ̄ (x ,ϕn+1(t)) where µ j = j ν , for j = 1,2, . . . , n is the density

law of a ν-stable subordinator {τ̃(ν)t , t > 0} with ν = 1/(n+ 1), n ∈ N. Thus, we have

hν(x , t) = e?nµ̄ (x ,ϕn+1(t)), x > 0, t > 0, ν = 1/(n+ 1), n ∈ N.

Proof. From (3.13) we have that

M
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e?nµ̄ (·,ϕn+1(t))
i
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∏n
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�

1−η+µ j

�

∏n
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�η−1 . (5.1)

From Gradshteyn and Ryzhik [12, formula 8.335.3] we deduce that

n
∏

k=1

Γ
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n+ 1

�

=
(2π)

n
2

p
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, n ∈ N (5.2)

and formula (5.1) reduces to

M
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(η) =
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j=1 Γ
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Furthermore, by making use of the (product theorem) relation

Γ(nx) = (2π)
1−n

2 nnx−1/2
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∏
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Γ
�

x +
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(5.4)

(see Gradshteyn and Ryzhik [12, formula 3.335]) formula (5.3) becomes

M
h

e?nµ̄ (·,ϕn(t))
i

(η) =
Γ
� 1−η

ν

�

(2π)n/2(n+ 1)η/ν−n

Γ
�

1−η
�

(2π)n/2
�

ϕn+1(t)
�η−1 =

Γ
� 1−η

ν

�

ν Γ
�

1−η
� t

η−1
ν

(with ℜ{η} ∈ (0, 1)) which coincides with (4.7). The claimed result is obtained.
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In light of the last result we are able to write explicitly the density law of a stable subordinator.
For ν = 1/2, Lemma 2 says that

h1/2(x , t) = e?1µ̄ (x ,ϕ2(t)) = e1/2(x , (t/2)2) =
x−1/2−1e−

t2

4x

t−1
p

4Γ
�

1
2

� , x > 0, t > 0 (5.5)

which is the well-known density law of the 1/2-stable subordinator or the first-passage time of a
standard Brownian motion trough the level t/

p
2. For ν = 1/3, from (3.7), we obtain

h1/3(x , t) = e?2µ̄ (x ,ϕ3(t)) = e1/3 ? e2/3(x , (t/3)3) =
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3

�

2
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p
x

�

, x > 0, t > 0.

For ν = 1/4, by (3.7) (and the commutativity under ?, see Lemma 1), we have

h1/4(x , t) = e?3µ̄ (x ,ϕ4(t)) = e1/4 ? e2/4 ? e3/4(x , (t/4)4) = e1/2 ? (e1/4 ? e3/4)(x , (t/4)4)

where K1/2(z) =
p

π/2z exp{−z} (see [12, formula 8.469]). We notice that
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which is in line with the well-known fact that
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o

= exp{−tλν1ν2},

0 < νi < 1, i = 1, 2. For ν = 1/5, by exploiting twice (3.7) (and the commutativity under ?), we
can write

h1/5(x , t) = e?4µ̄ (x , (t/5)5) =(e1/5 ? e2/5) ? (e3/5 ? e4/5)(x , (t/5)5) (5.6)
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or equivalently

h1/5(x , t) = e?4µ̄ (x , (t/5)5) =(e1/5 ? e3/5) ? (e2/5 ? e4/5)(x , (t/5)5) (5.7)
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For ν = 1/(2n+ 1), n ∈ N, by using repeatedly (3.7) we arrive at

hν(x , t) =
xν/2 t1/ν−3/2

ν2−1/νπ1/2ν−1/2
K ◦n
ν

�

x , (ν t)1/ν
�

, x > 0, t > 0

where

K ◦n
ν (x , t) =
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0

. . .
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0

Kν(x , s1) . . .Kν(sn−1, t) ds1 . . . dsn−1

is the integral (2.5) (as the symbol "◦n" denote) where n functions are involved and Kν(x , t) =
x−2ν−1Kν

�

2
p

t/x
�

, x > 0, t > 0. We state a similar result for the density law lν and the

convolution gγ,?n
µ̄ (see Section 3). Let us consider the time-stretching function ψm(s) = m s1/m,

s ∈ (0,∞), m ∈ N, (ψ= ϕ−1 where ϕ has been introduced in the previous Lemma).
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Lemma 3. The Mellin convolution g(n+1),?n
µ̄ (x ,ψn+1(t)) where µ j = j ν , j = 1,2, . . . , n and ν =

1/(n+ 1), n ∈ N, is the density law of a ν-inverse process {L(ν)t , t > 0}. Thus, we have

lν(x , t) = g(n+1),?n
µ̄ (x ,ψn+1(t)), x > 0, t > 0, ν = 1/(n+ 1), n ∈ N.

Proof. The proof can be carried out as the proof of Lemma 2.

We obtain that l1/2(x , t) = g2
1/2(x , 2t1/2) = e−

x2

4t /
p
πt, x > 0, t > 0. Moreover, by making use of

(3.7) and (5.2), we have that
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and l1/4(x , t) = g4
3/4 ? g4

2/4 ? g4
1/4(x , 4t1/4) follows (thank to the commutativity under ?) from
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where g4
3/4 ? g4

1/4(x , t) is given by (3.7) and K1/2(z) =
p

π/2z exp{−z} (see [12, formula 8.469]).
In a more general setting, by making use of (3.7) we can write down

g1/ν ,?(1/ν−1)
µ̄ (x , t) =

1

ν1/2ν

� x

π2 t3

�
1−ν
4ν
Q◦n1−ν
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(x , t), ν = 1/(2n+ 1), n ∈ N (5.8)

where the symbol ”◦n ” stands for the integral (2.5) where n functions Q 1−ν
2

are involved and

Q 1−ν
2
(x , t) = K 1−ν

2

�

2
p

(x/t)1/ν
�

, x > 0, t > 0. (5.9)

Now, we present the main result of this paper concerning the explicit solutions to (generalized)
fractional diffusion equations. We study a generalized problem which leads to fractional diffusion
equations involving the adjoint operators of both Bessel and squared Bessel processes. Let us
introduce the distribution ũγ,µ

ν = g̃γµ ◦ lν where g̃γµ(x , t) = gγµ(x , t1/γ) and the Mellin transform of
ũγ,µ
ν which reads
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ν , 1− γµ <ℜ{η}< 1+ γ/ν − γ. (5.10)

We state the following result.

Theorem 1. Let the previous setting prevail. For ν = 1/(2n+ 1), n ∈ N∪ {0}, the solutions to

Dνt ũγ,µ
ν = Gγ,µ ũγ,µ

ν , x > 0, t > 0 (5.11)

can be represented in terms of generalized Gamma convolution as
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where Gγ,µ is the operator appearing in (3.4),

vν(s, t) =
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. . .

∫ ∞

0

Q 1−ν
2
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is that in (5.9). Moreover, for ν ∈ (0, 1], we have
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in terms of H Fox functions.

Proof. By exploiting the property (2.6) of the Mellin transform and the fact that
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for the operator (3.4) we have that
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whereM
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(η) is that in (5.10). We obtain

M
�

Gγ,µũγ,µ
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and ũγ,µ
ν (x , t) solves (5.11) for ν ∈ (0, 1). In view of Lemma 3 we can write

ũγ,µ
ν (x , t) =
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and by means of (5.8) result (5.12) appears. Formula (5.13) follows directly from (2.2) by con-
sidering formula (3.10) and the fact that
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for all c ∈ R (see Mathai and Saxena [20]).
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We specialize the previous result by keeping in mind formula (2.10) and the operator (3.4).

Corollary 1. For ν = 1, Theorem 1 says that
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where ũγ,µ
1 = g̃γµ is the distribution of the GGP.

This is because L1
t

a.s.
= t. Indeed, for ν = 1, Lνt is the elementary subordinator (see [4]).

Proof. If ν = 1, then the equation (5.10) takes the form

Ψt(η) =M [ g̃γµ(·, t)](η) = Γ
�

η− 1

γ
+µ
�

t
η−1
γ

Γ(µ)
, ℜ{η}> 1− γµ (5.16)

where g̃γµ(x , t) = gγµ(x , t1/γ). For γ > 0, we perform the time derivative of (5.16) and obtain

∂

∂ t
Ψt(η) =

η− 1

γ
Γ
�

η− 1

γ
+µ
�

t
η−γ−1
γ

=
η− 1

γ

�

η− γ− 1+ γµ
γ

�

Γ
�

η− γ− 1

γ
+µ
�

t
η−γ−1
γ

=
1

γ2 (η− 1)(η− γ− 1+ γµ)Ψt(η− γ)

which coincides with (5.14) and ũγ,µ
1 (x , t) = g̃γµ(x , t), γ > 0. Similar calculation must be done for

γ < 0 and the proof is completed.

Corollary 2. Let us write ũµν (x , t) = ũ1,µ
ν (x , t). The distribution ũµν (x , t), x > 0, t > 0 µ > 0,

ν ∈ (0,1], solves the following fractional equation

∂ ν

∂ tν
uµν =

�

x
∂ 2

∂ x2 − (µ− 2)
∂

∂ x

�

uµν . (5.17)

In particular, for ν = 1/2, we have

ũµ1/2(x , t) =
xµ−1

p
πtΓ(µ)

∫ ∞

0

s−µ exp

¨

−
x

s
−

s2

4t

«

ds, x > 0, t > 0, µ > 0

which can be seen as the distribution of the process {G1,µ
|B(2t)|, t > 0} where B is a standard

Brownian motion run at twice its usual speed and Gγ,µ
t is a GGP. We notice that the process G1,µ

t is
a squared Bessel process starting from zero.

Corollary 3. The distribution ũ2,µ
ν = ũ2,µ

ν (x , t), x > 0, t > 0, µ > 0, ν ∈ (0, 1] solves the following
fractional equation

∂ ν

∂ tν
ũ2,µ
ν =

1

22

�

∂ 2

∂ x2 −
∂

∂ x

(2µ− 1)
x

�

ũ2,µ
ν .
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In particular, for ν = 1/3, we have

ũ2,µ
1/3(x , t) =

2 x2µ−1

πΓ(µ)
p

t

∫ ∞

0

e−
x2

s

sµ−1/2
K 1

3

�

2

33/2

s3/2

p
t

�

ds, x > 0, t > 0, µ > 0

and for µ= 1/2 we obtain

ũ2,1/2
1/3 (x , t) =

2

π3/2
p

t

∫ ∞

0

e−
x2

s K 1
3

�

2

33/2

s3/2

p
t

�

ds, x > 0, t > 0

which is the distribution of |B(L1/3
t )| where |B(t)| is a folded Brownian motion with variance t/2.
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