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EXPLICIT SOLUTIONS TO PHASE CHANGE PROBLEMS*
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Abstract. We examine two heat transfer and phase change problems having explicit

solutions. The first involves melting of an initially cold material and clarifies the meaning

of a recent result of Tarzia [5]. The second concerns a model of binary alloy solidification

which, in some cases, is seen to be incorrect.

Introduction. This paper was motivated by a recent discussion of Tarzia [5]. In it we

consider the heating of a semi-infinite slab of material whose temperature is initially below

the melting point, by a heat flux of the form h0/ Jt at its surface. The fact that if h0 is too

small, then no melting will occur [e.g., the Neumann solution does not exist] is derived in a

complicated fashion; the actual reason for this result is that if /i0 is too small, the slab

temperature is never raised up to the melting point, and hence melting is never initiated.

This is the subject of Sec. 1.

The fact that problems that appear to be reasonable may not have a solution is clear in

such cases as that of Sec. 1. A similar situation has been noted earlier in [6] for

supercooling. However, problems of greater subtlety exist and are little recognized as

possibly lacking solutions. One such problem arises in the process of binary alloy

solidification. In [3] such a problem is formulated and an explicit, Neumann-like solution

is provided for it. Subsequent studies (e.g., [2, 4]) have been based upon this formulation.

Upon close examination, one finds that this solution in fact may not solve the original

problem, in the sense that it produces a "mushy zone" in place of a sharp phase change

front. This is the subject of Sec. 2.

The nomenclature used is given after Sec. 2.

1. On the paper of Tarzia. Consider a semi-infinite slab x > 0 of material that melts at

temperature Tcr. Suppose that it is initially cold at the uniform temperature Ts< Tcr. If a
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constant temperature TL > Tcr is imposed at x = 0, then instantaneous melting occurs with

a melt front x = X(t) emanating from x = 0: JV(0) = 0. However, what happens if a heat

flux q0 is imposed at x — 0? If q0 is constant, then melting is not immediately begun at

t = 0, for the material temperature 7\0, t) must be raised from Ts to Tcr before melting

begins. Recalling [1, p. 75] that

T(0,t) = Ts + ̂ f^

we find that T(0, t) attains the value Tcr at time

(Tcr~Ts)Ks

a. 2%

What happens if q0 is a function of /? In the special case where q0 = h0tn/1 for

n = — 1,0,1,..., we find

h0][a~T(^n + l)
no t\ =  i,(«+i)/2 + T.

K,T{tn+l)

if n = 0,1,2,..., then T(0, t) will only reach Tcr at the time t0 for which T(0, t0) = Tcr or

'l (Tcr - Ts)

*o^r(in + 1)

whence ^(^o) = 0. However, suppose that n = — 1. Now

, . h0^sT(j) h0

no, o = —Ys— + T°= -~kT + Ts

and so T(0, t) is constant in time. However, if this constant temperature is less than Tcr,

the solid can never reach its melt temperature. Thus melting will only occur if

ho has

or

+ T> T

h0>-^(Tcr-Ts)

which is the condition derived in [5].

2. On a model of binary alloy solidification. Consider a semi-infinite slab of a binary

alloy consisting of two components A, B. Let C be the concentration of "A". Suppose that

solidification of the alloy is governed by an equilibrium phase diagram consisting of a

liquidus curve T = fL(C), and a solidus curve T = fs(C), 0 < C < 1. As in [3] we assume

fL, fs to be monotonically increasing, fL(C) > fs(C) and fL(0) = fs(0) = TcAr, fL( 1) = /s(l)

= Tfr. Material is in its solid state if T *£ /S(C) and liquid if T > fL(C). If fs(C) < T <
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fL(C), then the material state is not well defined; it is then referred to in such terms as

" mushy", " heterogeneous" and " unstable".

Consider the following process. The semi-infinite alloy is initially liquid at constant

temperature Tinit and concentration Cinit, for which Tinit > fL(Cinil). Beginning at time

t = 0, a cold temperature 7waU < TcAr is imposed at x = 0. Freezing occurs with, in

principle, a sharp phase change front x = X(t) separating solid alloy (x < X(t)) from

liquid alloy (x > X(t)).

A mathematical formulation of the solidification process is given in [3] as follows:

Problem-. Find temperature T(x, t), concentration C(x, t) and phase change front

x — X(t), for which:

c, = Dscxx> 0 <x<X(t), (la)

C, = DlCxx, x>X{t), (lb)

Tt = <*JXX, x<X(t), (lc)

T, = aLTxx, x>X(t), (Id)

Tcr = T(X(t), 0 =fs[C(X(t) - , 0] =fL[C(X(t) + ,/)], (le)

jf(/)[c(*(0-,0-c(*(/) + ,0]

= —DsCx(X(t) - , 0 + DLCx(X(t) + , t), (If)

pHX'(t) = ~KLTx(X(t) + ,t) + KsTx(X(t) - , 0, (lg)

r(o,/) = rwall, / > o, (ih)

T(x,0) = Tinit, x>0, (li)

C(x,0) = Cinit, x>0, (lj)

Cx(0,r) = 0, t> 0, (lk)

Tiait>fL(CiDil), (11)

^wall <TcAr> (1m)

^(0) - 0. (In)

Theorem. A solution to this problem exists for all choices of initial and boundary

conditions and thermal and diffusion parameters. Moreover, for this solution the solidus

and liquidus concentrations

Cs = C(X(t)~ ,t), CL = C(X(t) +,t)

as well as the phase change temperature

Tcr=T(X(t),t)

are unchanged in time.

Proof. We note first that solutions to the heat and diffusion equations (la)-(lb) can be

expressed in the form

C(x, t) = Cs = const., x<X(t), (2a)

T(x,t) = rwa)1 + (Tcr - rwaU)erf(x/l{aj)/erf X, x < X(t), (2b)
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C(x, t) = Cinit + (CL - Cinit)erfc(x/2{dl7)/erfc( \-jas/DL), (2c)

x>X(0,

T(x,t) = rinit +(rcr - rinit)erfc(x/l{a~t)/erfc(Uas/ai.), (2d)

x>X(t),

where

Tcr=fs(Cs)=fL(CLy, (3a)

the interface is of the form

*(f) = (3b)

where X and Tcr (or Cs, CL) are yet to be determined. Substitution into the interface

conditions (1 f), (lg) yields the equations

Tcr — + A2)/ (A3 + A4) (4a)

where

A, = PH + [KsTwall/^asXex2 erf x],

Ai = KLTMl/[^aLas Xe^"^"' erfc( X^as/aL )],

A3 = ^s/[v^«sAex2 erf xj,

A4 = AeA2°s/a'-erfc( A/as/a^ )],

and

(Clmt - CJ/(CS - CJ = i/5rX\jas/DL e^D> erfc(\Jas/DL ). (4b)

Let us write (4a) as

Tcr= W,(\),

and let us denote the functional dependence of Tcr on A via (3a), (4b) by

Tcr=W2{X).

We claim that there exists a X such that H^,(X) = W2( X), which will prove the Theorem.

To see this, let us study the behavior of W,(X) and W2(X).

A short calculation (cf. [3, pp. 55-56]) shows that W^A) is an increasing function of X.

As X — 0, W,(A) -> rwail. On the other hand, using the relation

\fn ze*2 erfc(z) -> 1 asz->oo, (5)

we obtain

-» pH = Tloit + f- asX-oo.
AL/aL CL
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As A -> 0, (4b) implies that

c — c
lnit q

Q-Q
or CL - Cinit> whence W2{\) - fL(CL) must tend to the value T£ = /L(Cinit) > TcAr.

Similarly, as A -» oo,

Qnit — CL . > I

Cs-CL

or Cs - Cinit. Hence W2(X) = fs(Cs) must tend to the value Tf = /s(Cinit) < 7init.

Thus we see that the continuous functions W|(A) and W2(\) satisfy:

^>(0) - < T* < T* = W2(0)

and

w2(co) = 7? < rinit < rinit + ^ = ^,(oo).

Therefore there exists at least one value of A such that W,(A) = ff2(A) which provides a

solution of (3), (4) and completes the proof of the Theorem.

But does this imply that our problem has a solution? We claim that the reasonable

condition that X(t) separate solid (x < X(t)) from liquid (x > X(t)) may not be satisfied

by the solution. Let us see how this can be. Consider the behavior of our solution in the

physically reasonable case in which the material diffusivity in the liquid is much smaller

than the solid thermal diffusivity, DL/as -> 0.

Lemma. A is bounded away from zero as as/DL — oo.

For if not, there would be a sequence {A„}, with A„ -> 0. But then there would be a

sequence {T"r} of Tcr values for which T"r -» Twall, which is not possible since rwall < TtAr.

Thus as as/DL -» oo, Aas/DL -> oo, and so Cs(Tcr) -> Cinit. Hence Tcr ->/s(Cinit), and

so the limiting solution for as/DL -» oo obeys

Cs = Qjut,

Tcr=fs(Cini,), (6)

while A tends to the solution A* for this choice of Tcr. Thus X(t) tends to the limiting

interface position X*(t) — 2A*\Jast.

Now consider what happens to the liquid concentration for fixed / > 0. Let x > X*(t)

+ S for any fixed S > 0. For DL -» 0, again using (5), we have

\fn  -ex2/4°L'erfc[x/2)jDLt j -* 1

and

fr \\Jas/DL ex2"^D> erfc( A]/as/DL ) -» 1,
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whence

erfc[x/2^DLt j

erfc( X\Jas/DL)

But for x > X*(t) + S, we know that

x \x2-X(t)2^

WY"p L

. x2 - x(tf,
exp I —4^— r "» 00 as Dl -> 0,

whence

eric^x/2\jDLt)

erfc( Uas/DL)

and so, by (2c), C(x, t) -» Cinit uniformly for x > X*(t) + 8. Meanwhile,

0,

(Cr — C ■ )e~x2/*DL'

cx(X,t) = -4= 7' ,
yjDLtiT erfc( X-Jas/DL )

whence at x = X(t),

(C, — C )e~x2"s/DL

Cx(X(t), t) = - p=   
{DLfn erfc( Ayas/DL )

~ (Q. ~ Qnit

Djisv erfc(\jas/DL )\jas/DL

-* ± oo

as Dl -» 0, accordingly as CL < Cinit or CL > Cinjt. We have shown the following.

Proposition. As DL -* 0, the explicit solution (2)-(4) has a limit. The concentration tends

to Cinit everywhere except at the front, while the temperature and phase front tend to

those of the classical two-phase Stefan problem with Tcr = fs(Cinit). The phase diagram is

no longer relevant.

A consequence of this convergence result is that the explicit solution may lose its

physical meaning for very small DL, as is shown in the following.

Corollary. For sufficiently small Dt and points x close to the front X(t) on the liquid

side (x > X(t)), the state (C, T) of the material at (x, t), t > 0, is between the liquids and

solidus curves.

Indeed, as DL -> 0, Tcr -> /s(Cimt), while the interfaces converge to some X(t). For

x > X(t) sufficiently close to X(t), T(x, t) > Tcr and C(x, t) < Cinit when DL is suffi-

ciently small. Then the monotonicity of fs(C) and fL(C) implies
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/s(C)</s(Cinit) = Tcr<T<fL(C),

which says that (x, t) lies neither in the liquid nor in the solid.

Nomenclature

x position (m)

t time(^)

X interface (m)

T temperature (°C)

q heat flux (KJ/M2 — S)

Tcr melting temperature (°C)

C concentration

K thermal conductivity (KJ/m — s — °C)

c specific heat (KJ/Kg — °C)

p density (KG/m3)

a = K/(cp) thermal diffusivity (m2/S)

H latent heat (KJ/Kg)

D material diffusion coefficient (m 2/s)

TcAr melt temperature of pure A (°C)

TcBr melt temperature of pure B (°C)

fL liquidus curve

fs solidus curve

Subscripts

L liquid

S solid
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