
CHAPTER SIXTY SIX 

EXPLICIT SOLUTIONS TO PRACTICAL WAVE PROBLEMS 

by 

Peter Nielsen* 

ABSTRACT 

Explicit formulae are provided for wave problems covered by linear 
wave theory.  Two goals are pursued.  The first is to provide a faster 
and more flexible tool than usual wave tables.  The second is to 
provide explicit, analytical solutions to problems that have so far 
demanded time consuming numerical integrations.  As an example we 
solve the problem of wave height variation due to refraction, shoaling 
and energy dissipation over a soft mud bottom.  The obtained explicit 
solutions are accurate enough for practical purposes and require very 
little computational effort, in fact they will enable the engineer to 
solve many wave problems with a handheld calculator.  Another 
advantage of analytical solutions is that they are always much more 
instructive than numerical results. 

INTRODUCTION 

Determination of local parameters like wave length, L, celerity, 
c, and height, H, for linear waves involves solution of the dispersion 
relation 

k„h = kh tanh kh (1) 

for finding the local wave number k at the depth h; k0 is the deep 
water wave number given by 

k0 = 4TT2/gT2 (2) 

Since (1) is a transcendental equation, k or kh has to be found either 
by an iterative numerical method or by using a wave table.  This is a 
troublesome process considering the limited accuracy with which linear 
wave theory represents the physical reality.  See Figure 1. 

On the other hand linear wave theory is often the only practical 
option so we will still want to use it, but preferably in a 
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Figure 1: Measured values of the shoaling coefficient H/HQ compared 
to linear theory (After Brink Kjaer and Jonsson 1973). The error is 
of the order 10 percent. 

mathematical form which is no more complicated than the accuracy of 
the theory justifies.  In other words, there is no reason to solve 
equation (1) to seven significant digits every time we need a value of 
kh. 

In the following we shall see how kh and many other functions 
related to linear waves can be expressed very simply in terms of kQh, 
and thus become explicit functions of the water depth. 

Not only is it possible to write linear wave functions in terms of 
kQh, but it turns out that these formulae are very simple and adequate 
for practical use. 

Take of example the function 

F(k0h)  - - (3) 

—°-  cosh kh 
co 

which occurs in relation to the problem of wave energy loss over a 
soft mud bottom.  This apparently complicated function becomes 

F(kQh)  = (koh)
-0-5[l - 0.5 k h + (4) 

the accuracy of which is better than 1 percent for kQh < 0.92 that is 
in depths up to 14 meters for an 8 second wave. 
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The advantage of using the explicit form (4) is not just to make 
the evaluation of F easier, in fact the main advantage is that the 
explicit expression makes it possible to evaluate integrals like 

/  Fdh 

hl 

(5) 

analytically.  With this ability we are able to give analytical 
solutions to many wave problems in intermediate depths, for which 
explicit solutions have so far only been possible in shallow water. 

The improvement of accuracy compared to using shallow water 
formulae all the way is by no means trivial. 

7^-cosh kh 

(koh) (l-'^koh) 

(koh) 

Figure 2:  Comparison of the two approximations (4) and (6) to correct 
values F(kQh) given by (3). 

Figure 2 shows equation (4) as well as the shallow water 
expression 

Fs(kQh) = (k0h) -0.5 (6) 

compared to correct values.  We see that the improvement by adding 
just one more term is remarkable.  And the accuracy of equation (4) is 
probably a lot better than the accuracy by which physical parameters 
of a natural mud bottom can be described. 
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The efficiency of formulae like (4) as simple and accurate 
approximations was first pointed out by Nielsen (1982). 

AN ALTERNATIVE WAVE TABLE 

Most coastal engineers are familiar with the use of wave tables 
for linear waves. 

2.0 

WAVE TABLE 

kh 

H/Hn 

tanh kh = •— = -p- 
o      o      o    L-O      *-0 

o 

0.1        0.2       0.3       0.4       0.5       0.6 hA^ 
_l , i u l _i i -i. 

1.0 2.0 3.0   k0h 

Figure 3:  A wave table provides discrete values of commonly used wave 
parameters in terms of k h or h/LQ. 

The general form of wave tables is illustrated in Figure 3 and is 
based on the fact that the dependence of linear wave parameters on the 
depth h can be expressed in the form 

P  - P0F(k0h) (7) 

where subscript "o" denotes deep water properties.  For example, the 
local wave speed is given by 

c = c0tanh kh = c0G(kQh) (8) 
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The function G(kQh) does not have an exact explicit form in terms of 
usual functions but it is of course possible to construct explicit 
approximations to G(k0h) with any degree of accuracy.  The aim of the 
following is to suggest a standard method for providing such 
approximations and give a few examples. 

The most commonly used form of approximations to transcendental or 
implicitly given functions are MacLaurin series or power expansions 
around zero.  For example 

13  2  5 
tanh x = x--jx+yjrx-'" (9) 

However, such expansions do not exist for functions like G(k0h) in 
equation (8), because G(k h) is not analytical at kQh=0. 

It is therefore necessary to use a different form of expansions. 
We choose the form 

G(k0h)  = Gs(kQh)[l + a^h + a2(kQh)
2 + •••] (10) 

where the subscript s stands for shallow water.  The coefficients a. 
are constants. 

The shallow water expressions are always power functions of kQh, 
but the power is often not an integer. Still, functions of the form 
(10) are convenient in the sense that they are easy to integrate. 

Let us now consider the most fundamental example: 

F(kQh)  - kh (11) 

i.e., we want to write kh in the form 

kh = Fs(kQh)[l + aikQh + a2(kQh)
2 + •"] (12) 

The fundamental relation between kh and kQh is the dispersion relation 

kQh = kh tanh kh (1) 

First we find F (kh) by letting both kh and kQh approach zero.  We 
find 

Fs(kQh) = /Th (13) 
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Next, the coefficients a^ are found by inserting 

kh = ATE [l + a.k h + a„(k h)2 + •••] (14) 
O        10     z  o 

into the dispersion relation, using the expansion (9) for the 
hyperbolic tangent.  The result is 

kh    =    iTh[l4kh + ^r(kh)
2
+'"] (15) 

o bo 360       o 

This formula is accurate enough for most practical purposes.  For 
kQh < 0.31 which corresponds to 5 meters of water for an 8 second 
wave, the relative error is less than 0.01 percent.  For kQh < 0.63 
the error is less than 0.07 percent, and even for k h=2.5, 
corresponding to 40 meters of water for an 8 second wave the relative 
error is only 0.44 percent. 

ALTERNATIVE   WAVE   TABLE 

1% Limit k0h 

kh =yi^h[lf|-k0h+ jgQdioh)2] 2.72 

tanh kh    =,/k^h[l- ~ koh] 1.62 

Cg/C0       =yi^h [l - -L k0h + f- (k0h)*] 2.09 

-0.25 r        1 I-a Z-, 

Ks             =   (koh)      [l+^koh+^lkoh)] 1.34 

sinh kh 
(k0h)"a5[l - -L k0h] 1.54 

Figure 4:  An alternative wave table, the column to the right shows 
the limiting values of kQh below which the accuracy is better than one 
percent.  k0h=1.5 corresponds to a depth of 24 meters for an 8 second 
wave. 

Once we have an expression for kh it is straightforward to obtain 
similar expressions for different functions of kh like 
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c 
_g_ = tanh kh[0.5 + kh 

sinh 2kh (16) 

and 

H/H  = /0.5 c /c„ (17) 

c„ is the local group velocity- 

Figure 4 shows five commonly used functions and the limits below 
which the relative error is less than one percent. 

All the formulae shown above are tuned to the needs of nearshore 
coastal engineering work in that they are exact in the shallow water 
limit.  In deep water it is necessary to use another type of 
expansion.  The small parameter is no longer kQh but exp(-kQh) or 
exp(-kh). 

10% 

RELATIVE 
ERROR 

^hll+£koh+3a)(koh)j 

Figure 5: Relative error of (15) and (18), and of some truncated 
versions. 
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Again based on the dispersion relation (1) we find the following 
deep water approximation for kh: 

r     ~2k h. 
kh (18) 

Figure 5 shows the relative erros of eq. (18) and (15) and of some 
truncated versions. 

DISSIPATION PROBLEMS 

Explicit formulae are necessary for analytical evaluation of 
integrals.  For example the integral 

1=1  sinh kh dh 
hl 

(19) 

cannot be evaluated analytically because kh is an implicit function of 
h.  Such integrals occur frequently in coastal engineering and the 
only way of evaluating them has so far been by numerical integration. 

h=h 

h = h 

Figure 6:  Definition diagram for wave height predictions over 
straight parallel bottom contours. 

One of the most common problems for coastal engineers is to 
predict wave height variation due to shoaling, refraction and 
different sorts of energy dissipation.  Such calculations are based on 
energy flux (Ef) considerations and if the bed contours can be assumed 
straight and parallel as in Figure 6, the fundamental differential 
equation is 

d 
ds <Efcosa) 

D^cosa (20) 
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where DE is the energy dissipation per unit area, and s is the 
distance measured along the wave orthogonals. 

If the sea bed consists of sand and the effects of winds are 
neglected, most energy dissipation will be due to bed friction and the 
solution can be based on 

°E     "    f^eVmax <21> 

where fe is Jonsson's energy dissipation factor (Jonsson, 1966), and 
ub max *s tne wave induced velocity amplitude near the bed. 

The solution, as given by Nielsen (1984), is 

yc ,cosct 

cg2cosCt2 
(22) 

! + H _2_e /_gi 1 
1  "l 3* 

where J is given by 

k h,  1.5  -1.5„ 
o 2 c  cos   <* , 

J    = /   -?~H : ^ dkh (23) '     1.5 . , 3, ,  dh  o 
k h,  c  sinh kh o 1  g 

It turns out that the fairly complicated integrand in (23) has a 
reasonably simple approximation of the form (10) so that the solution 
can be evaluated on a handheld calculator with sufficient accuracy for 
practical purposes.  In fact the accuracy of the approximate solution 
which takes about 100 program steps on an HP-15c is probably far 
better than the accuracy of any available procedure for prediction of 
the energy dissipation factor fe. 

Figure 7 shows wave height variation due to refraction, shoaling 
and friction, calculated with numerical evaluation of J on a major 
computer and by the explicit solution 

1
"

X/P
  Ukh,)

1/p
-

2
-
25

       h, 
2
-
25

"
1/p 

pA
i/p      i- 2.25        "2 
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4
. 
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- - 0.25 
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[1  -   {£) 
2 

0.25-1/p 

(24) 

 1 1— 
x Numerical Solution 

o Equations 22 and 24- 

Htm] 

--30° oXoXO
xo^<rox 

—^  x° 

. *&°°x°x° 
ox 

him] 
JL 
20 

Figure 7:  Comparison between the explicit solution (equations 22 and 
24) and a numerical solution.  The shown example corresponds to T = 
8s, fe = 0.1 and a beach profile given by h = 0.1(xo - x)

2/i. 

The beach profile is assumed to have the form 

h = A(x„ - x)P (25) 
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and the coefficients  8 and u represent  the effects of refraction via 
Snell's  law.     They are given by 

0.75  sin a 

(26) 
k

o
h
i^ -KV 

4 
1.4  sin a 

V    =    — ^"J« (27) 

d| is the initial angle between wave crests and bed contours. 

ENERGY DISSIPATION OVER A MUD BOTTOM 

Waves propagating over a bed of soft mud will tend to induce a 
wave motion in the mud and thus feed energy into the mud at a rate of 

D^t)  = -p(t) |jj- (28) 

where p is the pressure at the interface and 1 is the local elevation 
of the deformed interface.  See e.g., Gade (1958). 

If the pressure has the form 

p(t)  = p0 + pjcos wt (29) 

and the interface elevation is given by 

n(t) = n0 - n1cos(^t - •) (30) 

Then the time averaged energy flux downwards through the interface is 

—       t+T 
DM " 1    

!
t     -P(t)f dt (31) 

= j PjWi^sin* (32) 

And introducing the mud response parameter (Tubman and Suheyda, 1976) 



pg ^ 

WAVE PROBLEMS SOLUTIONS 979 

(33) 

we get 

% " fMsin*-^- (34) 

For linear waves we have 

pi - 
p
«!^hh (35) 

and thus the energy flux Into the mud can be written 

DM - ^H£j^SiH2 (36) 

4T cosh kh 

WAVE HEIGHT VARIATION OVER A MUD BOTTOM 

For sinusoidal waves propagating over a mud bottom equation (20) 
becomes 

d     ,1 
[i PgH2c cosa)    -    -' PSMs^H2cosa (37) ds ,8 ^ .g~~,     ^ ^^2^ 

which has the solution 

2   c cosa. 

^  " ITT^ exP(Msin* I) (38) 
1      g2   2 

with 

s2 
I - / -|3L—^4- (39) 

s,    c cosh kh 
1     g 
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To evaluate this integral we must bring the integrand to an explicit 
form in terms of the independent variable. 

If h varies monotonically with s, we can change the variable of 
integration into kQh.  From Figure 6 we get 

d k h 
ds -  ^  (40) 

k fa cosa 
o dx 

and since c0kQ = 2if/T we find 

koh2      d k h 

I - -/    ~ 2  (41) 
k h,  dh ^g   „   .2. , 
o 1 —. tt cosa cosh kh dx c 

o 

Now using the alternative wave table (Figure 4) and a bit of algebra 
we find 

1  » (k h)~°'5[l - 0.5 k h] (42) 
ce    2 
-*•  cosh kh 
co 

the accuracy of which is discussed in Figure 2.  Since most natural 
mud bottoms are quite flat it is not very restrictive to assume 
constant bed slope and straight, parallel contours.  Then Snell's law 
gives 

2  2  .-0.5 
[l - 1^-) sin oj (43) 

cos<* *-, 

and we use 

—    =    tanh kh    »    /kT [l  - 7- k h) (44) 
c 060 

o 

to get 

JL-   -    [l - Sk h(l -k„b)] <«) 
cosa o Jo 

where 

,  2 
sin a 

1 (46) 
koVX  -3kohlj 
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After some algebra we then get 

k h 

^1°    [(kh)-°-
5
+i(s-i)(kh)

0
-
5 

i- u ° 2 ° dh  > u k h, 
o 1 

+ if 32 -^(^h)1'5] dkQh (47) 

and 

1
 - - S <«W°

,5
^°'

5
- i] + i (H)*0v

M
[§)

M
- i 

h 
2
-
5 

This formula together with (38) provides a very simple tool for 
predicting wave height variation over a soft mud bottom, and because 
the solution is explicit we can quite easily use it "in reverse", 
i.e.: If the final wave height, H2, is known we can solve directly for 
Msin<l>. 

DISCUSSION 

A set of simple explicit formulae have been provided (Figure 4) 
for easy calculation of linear wave properties.  These formulae 
provide a handy alternative to wave tables, thus the basic 

kh    -    /kT[l  +ikoh + ^(koh)
2
+"-] (15) 

can easily be memorized by people who deal with linear waves 
frequently. 

The major advantage of introducing explicit formulae is probably 
that it makes it possible to give analytical solutions to problems 
that involve integration.  Such a solution to the problem of wave 
height variation due to shoaling refraction and frictional dissipation 
was given by Nielsen (1984) and a similar solution has been given 
above for the case of energy absorption by a soft mud bottom. 

The accuracy of the solution (38) and (48) will depend on the 
depths hj and ti2 and on the starting angle <*j.  An error estimate can 



982 COASTAL ENGINEERING -1984 

be obtained by comparing discrete values of the integrands in (41) and 
(47). 

At the presentation of this paper, Dr. 0. Skovgaard of the 
Technical University of Denmark pointed out that a reduction by 20% or 
more in computing time could be obtained by using (15) as the first 
estimate in iterative procedures for determination of kh.  It could be 
added that extra accuracy gained by iteration is often of no practical 
consequence because of the limited accuracy with which the physical 
environment can be described and of the crudeness of other underlying 
assumptions. - This is a matter of opinion, but it seems reasonable to 
omit iteration and rely entirely on (15) at least in the "debugging" 
phase for big wave programs. 
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