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EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL STOPPING

By L. A. SHEPP
Bell Telephone Laboratories, Inc., Murray Hill

Suppose we are allowed to view successively as many terms as we please of a
sequence X1, Xa, --- of independent random variables with common distribu-
tion F. We can decide to stop viewing at any time and if we decide to stop at time
n, we receive the payoff (X: 4+ --- + X.)/n. How should we choose a stopping
rule in order to maximize the expected payoff? This problem was introduced
[5] in the context of inducing an illusory bias by selectively stopping an ESP
experiment. .

Based on their general theory of optimal stopping rules, Y. S. Chow and Her-
bert Robbins [9] succeeded in proving that an optimal rule exists when F is a
two point distribution. They also proved the intuitively obvious but nontrivial
fact that the unique minimal optimal rule is to stop at the first n at which
X:4+ -+ + X, = Ba, where 81, 82, - - - is a sequence of numbers, and gave a
way to calculate 8, in principle. Aryeh Dvoretzky [14], and also H. Teicher and
J. Wolfowitz [25] then proved that the same results hold for any F with finite
second moment (the 8’s depend on F, of course). Dvoretzky also showed that if
F has zero mean and unit variance then 0.32 < 8,/n' < 4.06 for n sufficiently
large, and conjectured that lim B/} exists.

We prove the conjecture and find the value of the limit (which is independent
of F as long as ¥ has zero mean and unit variance) as the root o = 0.83992 - - .
of (1.3). The method is to use as an approximation the analogous continuous
time problem, for which we can obtain the explicit optimal rule.

In the continuous time problem, also considered by Dvoretzky, the Wiener
process W (t),t = 0 is sampled continuously and stopping at time ¢ gets the pay-
off W(¢t)/(a + t). Dvoretzky pointed out that if @ > 0 there exists an optimal
stopping time. We show that there is a unique optimal stopping time and we
find it explicitly: it is the first time = that W (r) = a(a + ) (the same « as
above). The expected payoff under the optimal rule is also given explicitly
(Theorem 1). Except for the constant , the parabolic form of the boundary de-
termining = is easily guessed by using the invariance of W under a change of
scale. @ can then be determined by using the “principle of smooth fit,”” due to
Herman Chernoff and others for various special problems and treated carefully
and in some generality by B. 1. Grigelionis and A. N. Shiryaev [18]. However,
to prove the optimality of 7 rigorously we use a different approach, based on the
fundamental Wald identity and on the work of Chow, Robbins, and Dvoretzky.

The continuous time problem discussed above is basically similar to the familiar
Wald sequential probability ratio problem where, again on heuristic considera-
tions of homogeneity, the optimal stopping rule is given in terms of a pair of
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994 L. A. SHEPP

straightline stopping boundaries. The close analogy to Wald’s problem is dis-
cussed in some detail in Section 6. Other applications of the homogeneity prin-
ciple in stopping rule problems can be found in [2], [7], [13], and [24].

Our methods also apply and give explicit solutions to a number of related prob-
lems (Section 6) including the problem of maximizing EW (¢) over stopping
times ¢ < 1, where W (1) is assumed known in advance. However, these problems
are rather special, and slight changes in formulation make them very difficult.
On the other hand, typical stopping time problems are not effectively treated by
any of the available methods and it is hoped that the elementary cases considered
here will be useful as illuminating guides to more complex problems. As an ex-
ample of this we refer to the work [2] of John Bather and Herman Chernoff,
who used the elementary solution of a very similar problem to obtain tight bounds
on an optimal stopping boundary. )

We give the more difficult parts of proofs in Section 7 and Section 8, an exten-
sion of the Wald identity in Section 9, and some speculations on the
(X1 + --- + X,)/n problem when the X’s have infinite variance in Section 10.

1. Continuous time; a precise formulation of the results. Let W () = W(¢, o),
0 <t< =, we, bea standard Wiener process, continuous in ¢ for fixed » and
with EW (t) = 0, EW*(t) = t. A nonnegative random variable T'(w) < +  is
called a stopping time if it does not anticipate the future in the sense that
(T>tef:=6W(s)s<i,0=t< . Forgivenu, —o < u < « and
b > 0 the expected payoff under T is defined as

L) Vi, b, T) = Eu+ W(T(0), )/ + T())

where the integrand (or expectand) in (1.1) is taken to be zero at points
where T(w) = «. We wish to find V (u, b) = sup V(u, b, T'), the sup being
taken over all stopping times T for which the expectation in (1.1) is defined. Our
original problem was the special case u = 0.

Forc¢ > 0,let 7, = 7.(u, b) = min [t2u + W) = ¢ + t)¥], noting that
7o = 0 if w = cb®. That 7. is almost surely defined (finite) will be seen later;
this is also a consequence of known facts about W. We will also see later that as a
function of ¢, V (u, b, 7.) takes on its maximum value at a unique value of c.
Denote this value of ¢ by a.

TuEoREM 1. For b > 0, 7,(u, b) is an optimal stopping time in the sense that

1.2) Vu,b) = V(ubd, ).

Moreover, T, is the unique stopping time (up to changes on a null set) for which
(1.2) holds. The number o is independent of both u and b and s the unique real root

of

(1.3) a=(1—2a) [7 ™M an
Further, for b =2 0, —0 < u < o,
(14) Vb)) = (1 —a) 5™ dn,  u < ab

V(u, b) = u/b, u > abl.
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We remark that (1.4) shows that V (u, 0) = « for u = 0, agreeing with a re-
mark of Dvoretzky ([14], Remark 8). Note that if follows from (1.4) that for
b >0,V (ub)> u/bif and only if u < b,

The proof of Theorem 1 is based on the scale-change invariance property of
W. Letting W* (t) = bW (bt) and ¥ = 7/b we note that ™ is a stopping time
for W* and so,

(1.5) E@w+ WE)® + )™ = b @b + W) + )™

Since W* is also a Wiener process, taking the supremum over 7 in (1.5) gives
immediately

(1.6) Viu,b) = bV (/b 1).

V(u,b) = u/bsince r = 0 is a stopping time. Equality ¥V (», b) = u/b holds if
and only if 7 = 0 is optimal for (u, b). It is intuitive after some thought that the
set of z for which V(z, 1) = z holds is a half-line { = ¢} for some ¢. It follows from
(1.6) that we should stop at + = 0if and only if u = cb?. Because W begins anew
at each time it seems clear that we should stop the first time = that
u 4+ W(r) = ¢(b + 7)%. But this 7 is 7. (u, b) by definition. This heuristic argu-
ment which gives the insight into (1.2), will be made precise in Section 7 and
the actual value of ¢ will be found in Section 3. A similar scale-change or dimen-
sional analysis argument appears in [2]} and [7].

The first step in a rigorous proof of the theorem consists in showing (Section 7,
Lemma 2) that V (z, 1) = z for z large enough. Paradoxically, for any z, with
probability one there will be a ¢ for which the payoff (x + W{¢))/(1 4 t) > =.
However, within the class of allowable stopping rules, there is no way to stop and
(almost) always get a payoff larger than x. (This paradox is no doubt well known
in a slightly simpler setting: even though max [W (¢):0 < ¢ < 1] is almost surely
strictly positive, for any stopping time = < 1, we have [22]

.7) EW((r) =0.)

On the other hand, if we drop the restriction that r must be a stopping time
and allow the observer to know the future he of course can receive EZ where
(18) Z(w) = SUPo<i<0 (u + W(t, w))(b + t)_l.

Sinee [12], P{W () = at -+ b for some ¢t = 0} = exp (—2ab),a = 0,b = 0 we
have

EZ = [ P{Z =z a} da = [gexp (—2a(ab — u)) da, u=0,b>0.
Sinee V (u, b) < EZ, this gives an upper bound for V (u, b).

2. The fundamental Wald identity in continuous time. We will calculate
V (u, b, 7.), the payoff under 7. , by using the Wald identity. The identity can be
stated [15], [22] for more general stopping times, but we need it in a special form
for first passage times. Let f(¢), ¢ = 0, be a continuous function and let T(w) be
the first time ¢ that W (¢, ) = f(¢) (set T(w) = oo if there is no such ). Let
F(@) = P{T = i}.
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TrEOREM 2. If (i) A > 0, (ii) f(0) > 0, (iii) f(t)/t — O ast — =, then
(2.1) [5 N gy = 1,

The following proof is based on the proof [1], p. 17, of the so-called Wald funda-

mental identity of sequential analysis.
The process Y (¢) = exp (\W (¢) — N%/2), t = 0, satisfies for each fixed ¢,

(2.2) ' . EY(@) =1

Let x4 denote the indicator of the set 4 and B 49 = Exug. For any stopping time
T, the properties of the conditional expectation give for fixed ¢ > 0

(23) EireyY (@) = EEBlxiz<s Y () | T, Y(T)]

= Exir<aBIY ¢) | T, Y(T)].
The strong Markoir property [20] gives E[Y () | T, Y(T')] = Y(T) and so
(24) | Biren¥ (¢) = Biren¥ (T).

Forour T, T (w)
we have

(2.5) EirsY () £ Eipgpge/ O

2 ¢implies W (t, ) < f(t) by continuity of f, and since A > 0

—A2¢/2
e)\f(t) A2¢f ;

IIA

Ast— «, the exponent of the last term in (2.5) tends to — oo by (iii) and from
(2.2) and (2.4) we get

(26) o E(T<oo)6)‘W(T)—)‘2T/2 = lim,_,w E{T<t)Y(T) =1,

Since W(T') = f(T') the left sides of (2.6) and (2.1) coincide and so (2.6) is
just the assertion of the theorem. In Section 9 we give an extended form of the
identity, finding the right-hand side of (2.1) for general f and A.

We remark that if T is any bounded stopping time (not necessarily a first
passage time) and 7' £ M with probability one, then choosing ¢ > M it follows
immediately from (2.2) and (2.4) that forany A, — o < A < o,

(2 7) Ee)\W(T)—)\zTIZ = 1
M ?
which proves equation (1) of [22], stated there without proof.

3. The payoff under 7,. We now prply (2.1) to find V(u, b, 7.). Let f{f) =
¢ + 1) — u and suppose u < cb’. Setting F,(t) = Plr, £ t}, we get from
(2.1) for A > 0,

(3.1) f;o ex(c(b+t)b—u)—x2t/2 ch(t) = 1.

As X — 0 the integrand goes to one dominatedly. Thus P <y = [o dF.(t) = 1
and 7, is almost surely defined, as was claimed. Now multiply in (3.1) by ¢
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exp (\u — A% /2) and integrate over A from 0 to « to obtain
(3‘2) cf:’ d\ f:)o e)\c(b+t)§—)\2(b+t)/2 dF, (t) = ¢ ﬁ)o e)\u—)\2b/2 dn.

Interchanging integrals and replacing \ by y/(b + ¢)}, the integrals separate
and we get an expression for

[oe®+ ) dF.(¢t) = Ec(o+ ) = E@w+ W(w))® + =)
The latter is just V (u, b, 7.) and so we obtain for u < cb? that
(3.3) V(u,b, 1) =c o dN/ [T e dy.

The maximum over ¢ of the right side of (3.3) occurs at ¢ = « given by (1.3),
and for ¢ = o, (3.3) agrees with (1.4).

The evaluation of V follows the technique used by us’in [22]. Alternatively, it
could have been obtained by the Laplace transform method of D. A. Darling and
A. J. F. Siegert [10], but only with much more calculation.

4, The original problem. Let S, = X; 4+ - + X, n =1, 2, --- |, where
Xy, X,, +-- are independent and have common distribution #. A random
variable NV, whose values are positive integers or + o« is called a stopping time if
foreachn = 0, {N > n} ¢ &{X1, ---, X.}. The theory would be simpler and
more complete if we included zero as a stopping time; we exclude it here only for
ease of reference to [8] and [14]. There is an obviously equivalent constructive
definition of a stopping time N. To each N corresponds a sequence Dy, Ds, - - -
of sets, D, C E,, Euclidean n-space; N takes the value n if and only if

(X1, ---, Xa) e D, for the first time at n; N = oo if there is no such n.
Givenu and n, — o <u < o, n = 0, the payoff under N is defined as
(4.1) v(u,n, N) = E(u 4+ Sy)(n + N).

Let v (u, n) = sup v (u, n, N) where the sup is taken over all stopping times N.
Assuming that F has a second moment, Dvoretzky proved that v < « and that
there is a unique minimal optimal stopping time » defined as follows: The equa-
tion
4.2) Br/n = v(Bn,m)
defines the number 3, uniquely for each n = 0 and

v =v(u,n) = min [k:u + S; = Buti

v is optimal in the sense that v (u, n, »') < v(u, n, ») for all stopping times »';
» is minimal in the sense that equality holds only if »' = » almost surely.

TaroreM 3. If F has mean u and finite variance o and if 8. is defined by (4.2)
then with o given by (1.3)

4.3) limpse (Br — un)e n? = a

It is enough to prove the theorem when u = 0 and ¢ = 1 since the general case
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reduces to this by a change of scale. We first prove that lim inf 8,/n* = a. If this
is false then for a sequence of values of n, 8,/n* — v < «. By (4¢.2) we have for
any stopping time N

(44) B./nt = vB., n, N)n* = E@./n* + Sy/n)Q + N/n)™

In particular putting N = min [kinly + S = a® + k) and setting
7 = 7(n) = N/n we have from (4.4) that

4.5) Bu/nt = E(B. /0t + Su/nt) @ + 7).

Asn— =, Snl/n% converges in distribution to W (¢) and = (n) converges formally
t0 7. = 74(v, 1) (defined in Section 1). Along the sequence of n for which
Br/n* — v we have

46) E@/nt + Sw/i)(1 + 1) > By + W) (A + )™

The rigorous proof of (4.6) is based on the invariance principle and is deferred
to Section 8. Assuming (4.6) and passing to the limit in (4.5) we get

(4.7) Yy Z E(y + W) 1 + ).

The right side is V(y, 1) by Theorem 1. By the remark after Theorem 1, V(v, 1)
> vy since v < a. This contradiets (4.7) and so lim inf 8,/n' = a.

To prove the inequality lim sup Bn/n% = «, suppose instead that for a sequence
Q of values of n, Bn/n% — v > a. Dvoretzky showed that for u < 8., u/n <
v (u, n) which can be written

4.8) 1 < E(+ 8/n) 1+ v/n)”

where n = u/n’ and » = v(u, n) is defined as above. Fix 7, @ < 7 < v. In Sec-
tion 8 we will show that (i) along a subsequence of @, u(nn%, n)/n converges in
distribution to a stopping time (call it &) for W, (ii) another application of the
invariance principle gives

(4.9) E@w+ S/ (1 +v/mn) > E@+ WE)QL + £)™

From (4.8) and (4.9) we haven < V (n, 1, £). Dvoretzky showed that 8, = But1
and on the basis of this we will prove in Section 8 that (iii) ¢ = ¢(y) =
min [t:q + W({t) = v]; in particular ¢ # 0. Since n > «, Theorem 1 implies that
T«(n, 1) = 0 and so0 £ # 7.(n, 1). But by the uniqueness assertion of Theorem 1
we get the strict inequality n = V(n, 1, 7o) > V(n, 1, &), Since we already
showed that 9 = V (n, 1, £) we have a contradiction. Thus lim sup Bn/n* £ o and
so lim 8,/n' = a. ‘

6. The principle of smooth fit at the optimal boundary. One expects [7], p. 82,
the solution of an optimal stopping problem for a Markov process to be given in
terms of a so-called continuation set C. Namely, the optimal rule is to continue
observing the process while it is in €' and to stop and take the payoff (call it ¢)
at the time 7(C) of first exit from C. One technique [7], credited in [18] to V. S.
Mikhalevich, for finding C consists in observing that the payoff V under +(C)
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for the optimal C satisfies a free boundary problem [18]: (1) @V = 0 in C where
@ is the generator of the process; (2) V agrees with ¢ in the complement of C;
(3) V fits smoothly along the boundary of C.

In our problem, we are viewing (W (¢), ¢) and if W (u) = b we can stop and
take the payoff g(u, b) = u/b. Ignoring the necessary differentiability of ¥V and
C, conditions (1)-(3) above become:

(5.1) 0V /3b) + 1 (0*V/u’) = 0, (u, b) & C,
(56.2) V =y, (u,b) £ C,
(5.3) oV /du = dg/du, 9V /db = dg/db, (u, b) € 9C,

where V = V(u,b), —o <u < «,b=0.

Equations (5.1)-(5.3), which are similar to the Stefan problem in partial
differential equations, hopefully would determine V and’ C uniquely. It is easy to
check that (1.4) provides one solution to (5.1)—(5.3) and it is of the form
Viu,b) =h(u/ b?) / b. That the solution should be of this form is intuitive proba-
bilistically as we have seen in (1.6). Substituting A (u/ b*) /bt for Vin (5.1) gives a
second order equation for » which of course has two linearly independent solu-
tions. One solution gives (1.4), and the other gives

(5.4) V¥, b) = (eb) """, u < b
V*(u, b) = u/b, u = bl

which satisfies (5.1)-(5.3) with C* = {u < b%}. However, V*(u, b) may be re-
jected because it does not tend to zero as u — — «, and perhaps under this ad-
ditional assumption (5.1)-(5.3) have the unique solution (1.4). It would be of
interest to find enough conditions on V and C for (5.1)-(5.3) to have a unique
solution and to derive Theorem 1 by this method.

6. Other sequential problems with simple solutions. a. Suppose we have an
urn with m minus ones and p plus ones. We draw at random without replacement
until we want to stop. We know the values of m and p and are also allowed not to
draw at all. Which urns are favorable ? That is to say, for which m and p can we
make the expected return positive?

Letting C denote the set of (m, p) urns for which the expected return Vi,
under optimal stopping is positive, it is clear that we should stop as soon as the
depleted urn is not in C. It is intuitive but not trivial to prove that Vmpn =
Vp = Vaiip - To prove that Vg = Vi, we may argue as follows: Any strategy
for the (m, p) game can be used for the (m, p + 1) game provided we are allowed
to single out one of the plus ones and distinguish it. The distinguished plus one is
ignored in applying the (m,p) strategy but we get paid for it, thereby getting a big-
ger payoff if the distinguished one comes up in the course of play and getting the
same payoff as in the (m, p) game if the distinguished one does not appear. To
get around the objection that singling out one of the plus ones is not legitimate we
can proceed as follows: Each time we draw a plus we decide probabilistically
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whether this one was the distinguished one by performing an additional random
experiment on the side. It is clear that we can design the random experiment so
that the payoff has the same distribution as if we actually had previously dis-
tinguished one of the pluses. For those who object to introducing additional
randomness we add that it is easy to see that allowing additional randomness
does not increase Vapy and so there is a “proper strategy” which does as well or
better than the above randomized strategy. This completes the proof that
Vs = Vmpra. The proof that Vayiy < Vap is similar and is omitted. W. M.
Boyce (to whom we are grateful for obtaining enlightening numerical calcula-
tions on a number of stopping rule problems) has proven further that
Vup £ Vigr,pea for all m and p, which he had conjectured on the basis of numeri-
cal evidence.

The urn problem is computationally simpler than the S./n problem (where
techniques of backward induction and limits must be applied [21], [24]) because
Vmp satisties an easily derived forward recursion formula. However, for large m
and p roundoff error again introduces difficulties. Using similar techniques to the
S./n problem, we can again find the asymptotic boundary of C. Since

Vatip = Vmp, there is a sequence 8(1), B(2), --- of integers for which
C={(m,p)m = B(p)}. Of course 3(p) = p and for large p we have
(6.1) limy.. B(p) —p)@p)" = @,

where « is again given by (1.3).

b. The method of proof of (6.1) again uses a continuous time approximation
with exact solution, as follows: Given u and b, — o < u < « and b > 0 consider
the process W™ which is the Wiener process W conditioned (pinned) to pass
through —wu at ¢ = b. Find

Qu, b) = sup EW*(r)

where the sup is taken over all stopping times 7 < b. This problem can be solved
via scale change invariance and the Wald identity, but it is simpler to reduce it
directly to the problem of Section 1 by applying the following representation of
W* due to J. L. Doob [12],

6.2) W*(s) = —us/b + 1 — s/b)W(s/(1 — s/b)), 0<s=b
Setting s/ (1 — s/b) = t for any stopping time s, we have
(6.3) EW*(s) = —u4+bE@wm 4+ WE)® 4+ )™

Since the transformation between s and ¢ is one-one we get immediately from
Theorem 1 and (6.3) that

(6.4) G, b) = —u + bV (u, b)

where V is given by (1.4). The optimal stopping time 7 corresponds to 7. for W
and from (6.2) comes out to be the first time 7 that

(6.5) u+ W) = a®d — )b
It is easy to check that 7 < b almost surely.
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To connect up with the urn problem, let e, * « * , €myp be the random sequence
of #+1’s obtained by drawing until the end. Fix m and p ,andfor0 £ k <m +»
and & < (m + p)t = k + 1 define an approximate pinned Wiener process

Wap@) = (a+ -+ + &) (m + p)7, 0=t=1.
Let u be defined by
(6.6) ~u = (~m + p)(m + p)~".
Then Wip(1) = —u and if u is fixed, Wiy (¢) converges in distribution as

p — o to W*(t) the Wiener process pinned to —u at ¢ = 1. Settingb = 1 in
(6.5), a formal passage to the limit shows that if m and p satisfy (6.6) for u
fixed and p large enough then (i, p) ¢ C if and only if u < . Sincem + p ~ 2p
from (6.6), this is equivalent to (6.1).

More generally, (6.4) and the above formal reasoning indicate that for
—w <y < « fixed we have

(6.7) lim,, e (2p)—%v[p+(2p)*u.p] = —u+ V(1)

where V (u, 1) is given by (1.4). For u = 0 this gives V,, ~ (1 — o) (zp)* as
p— . Sinee V(u, 1) = u foru < «, (6.7) is consistent with (6.1). A rigorous
proof of (6.7) has not actually been carried out by us but it seems that one similar
to the proof of Theorem 3 could be constructed.

¢! Wenext findfor —e0o <4< ©0,0<b,0<y < 2,

(6.8) ViU, b) = sup.zo Bl(u + W (@)1 0 + )~
where 2t = (z -+ |z|)/2. The heuristics of Section 1 indicate that the optimal
rule is again a 7. (see Theorem 1) for some ¢ = ¢ (, 8). The method of Section 3,
slightly modified (in (3.1) multiply also by (cA\)®, 8 = 26 — v — 1 and proceed as
before), shows that ¢ = c(y, 8) is the wuniqgue maximum of c¢'/fy M
-exp(A¢ — \?/2) d\ where 8 = 26 — v — 1 and indicates that

6.9) Vys(u, b) = ¢ [0\ exp Qu — Nb/2) d\/[5 M exp (A¢ — N?/2)d\.

Fory =48 = 1, (6.8) and (6.9) reduce to Theorem 1.

Dvoretzky [14], Remark 1, points out that if 0 < v < 26 and if # has a moment
of order max (2, v) then an optimal stopping time N for maximizing & (Sy*)”/N°
exists and is of the form N = min [k:8S; = 8] as before. It can then be shown
[30] that B./n' — c(v, 8).

d. We next find for —o < u < o andbd >0

(6.10) V' (u,b) = sup:zo E|(w + W(z))(d + )7

The heuristic method of Section 1 now indicates that the optimal rule is of the
form 7, = min [t:ju + W ()| = ¢ + t)]. The Wald identity argument of
Section 3 again can be used to determine ¢, but the calculations must be modified
as follows. Set T = 7. and note that on {T = ¢} we must have |u + W ()| <

1 The remainder of this section has been modified after seeing the thesis of L. H. Walker
[30] (see Acknowledgment at end of paper). We originally had treated only the special case

v = 8.
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¢(b + ¢)*. Thus in the notation of Section 2 for any A\, —w < A < o,
(6.11) EirsaY @) £ Eirag exp [N (u] + c® + ¢)') — Nt/2]
oxp [\ (ul + ¢ @ + )Y) — N¢/2].

Since (2.2) and (2.4) continue to hold we find as { — « for any A

(6.12) EQTTNE <

Multiplying in (6.12) by (%) exp A, writing the result also for ~A, and adding we
get

(6.13) % cosh \e (b + t)%e ™ dF,’ (t) = cosh u

where F.'(t) = P{r, < t}. Now multiply in (6.13) by exp (=Nb/2) and inte-
grate on A from 0 to « to obtain an expression for the payoff under .. It is easy
to see that the maximal payoff occurs for ¢ = 1 and we obtain

(6.14) V' (u, b) = (be)te*"®, lu| < b,
V' (u, b) = [ul/b, lul = b.

It is easily checked that V' and ¢' = { (u, b):u < b’} satisfy the appropriate free
boundary problem. '

We remark that it is possible to find explicitly for given b = 0 and
—oo < u < «: (1) forgiven 0 < v < 23,

(6.15) Viau, b) = suprse E(ju + W) G + 7)),

@ii) for given ¢ > 0, the maximum in (6.8) (or (6.15)) over 7 = e. (i) is a
straightforward extension of (6.10) and (ii) is obtained by observing that the
optimal stopping time 7 = eis simply e 4 7. (ore + 7o ). The explicit expressions
for the maxima are easily obtained. Moments of the stopping times .’ were
studied in [22], and further information on their distribution is obtainable from
[6]. In particular for ¢ = 1, which is a borderline case for the first moment,
Er) = .

e. Consider next the problem of maximizing E [ W () du over stopping times
7 £ 1. H. 8. Witsenhausen observed that the principle of scale change invariance
indicates that there is a number ¢ < 0 for which optimal stopping takes place at
the first ¢ < 1 at which W (¢) = ¢(1 — t)* orat ¢ = 1if thereis no such ¢ < 1. The
determination of ¢ seems to be difficult. Using integration by parts and the identity
obtained from the Wald identity by expanding in powers of A and setting the co-
efficient of A* to zero, it can be shown that for any stopping time 7 < 1,

(6.16) E [{W(u)du = ErW (r) = YEW' (7).

Tt follows that the same stopping time solves the problem of maximizing each of
the terms in (6.16).

f. The Wald problem of sequential hypothesis testing is similar in many ways
to the problem of Section 1. We state the Wald problem in continuous time for

liA
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purposes of comparison. A parameter u with a given prior distribution assumes
only two values. We observe W (t) + uf for as long as we please, finally stopping
at 7 and deciding on the value of u. Given ¢ > 0, it is desired to minimize Ert over
all stopping times 7 for which the probability of error (using the best decision
rule at time 7) is <e. Asis well known [3], p. 246, it is easy to see heuristically that
the optimal stopping boundary is a pair of straight lines, because #f we have not
stopped at any given time we are still in the initial situation except for new (posterior)
values of the prior probabilities. The heights of the two lines can be determined
either from Wald’s identity [1] or from the principle of smooth fit [26]. The prior
probabilities make the problem appear more difficult, but actually ([23]) only
amount to a change in the generator of the process.

Both problems are made much more difficult if slight changes are made in their
formulations; for example, if () the loss is 7%, @ £ 1, in Wald’s problem, or

(ii) 7 is required to be less than a fixed time in either problem, then the proper-
ties of invariance or homogeneity are lost. On the other hand, crude examples
indicate that the solutions of these and other optimal stopping problems are
stable in the sense that nearly optimal payoffs can be obtained with almost any
stopping boundary, reasonably close to the optimal boundary.

7. Proof of Theorem 1. We will be using many of the results of [8] and [14]
in the course of the proofs, so that it will be helpful to have these references at
hand. In continuous time the simple inductive definition (Section 4) of a stopping
time breaks down. We depend instead on Lemma 1 which allows us to approxi-
mate any stopping time for W by a stopping time which is (i) discrete-valued
and (i) based on discrete time observations of W.

For h > 0, let ® (k) denote the class of stopping times 7 for which (i) + = ka,
kE=0,1,2 ---,and (i) for all k£

(7.1) {r > kh} e S (h, 2h, - - - kh)

where (b, - - - , t,) is the o-field generated by W (1), - -+, W ().

LevmMa 1. Given any stopping téme T, there is a sequence T, with T, e D(27") for
which = lim 7, almost surely.

Proor. For any & > 0 let 7(h) = kh if k is the first integer for which

(7.2) P{r > kh|F0, -, kh)} £ 3.

It is clear that 7 (h) e D (k). To show that 7. = 7(27") — 7 almost surely, fix
a > 0. Since §(1-27", 2:27", .-+, [a2"]27") T F, as n T o the martingale
theorem gives that almost surely

(7.3)  Plr>a|$(1-27,2:27, -+, [a2"27")} - P{r > a|Fd}.

But 7 is a stopping time and so {r > a} ¢ F.. On {r < a} the left side of (7.3) is
tending to 0 in n and is therefore eventually less than 3. (We could as well have
replaced % in (7.2) by any number in (0, 1).) By definition 7(27") < a for n
sufficiently large and it follows that limsup+(2™) = 7. To prove that
lim inf 7 (27") = 7, suppose instead that for some number a and for a sequence of
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n,lim7(27") £ a < 7. Then (7.2) must hold where & = 2 " and k = k, < 2%a.
Passing to a subsequence for which k,2™" — b < a we see that for ¢ > 0 and n
sufficiently large (in the subsequence) that b + ¢ > k,27" and so

(74) P{r>b+€|51-277, -, k2)}
S Plr> k27501277, -+ k27

Since the right side of (7.4) is =1 by (7.2), applying the martingale theorem
to the left side gives

(7.5) P{r>b+¢|F <4
Now letting e — 0 gives P{r 2 b| F} < 1. But P{r = b| F;} = 1since we are on

the set where 1 > a = b. The contradiction shows that lim inf 7 (27") = 7 and the
lemma, is proved.

We can now prove the following analogue of [14], Lemma 8.

Lemuma 2. If u = 5b' > 0 then V (u, b, 7) = u/b for every stopping time 7.

Proov. If not, let 7 be a stopping time for which V (u, b, 7) > u/b. Let 7, be
the stopping times of Lemma 1 for 7 and define

(7.6) Ya(w) = ( + W(ra(w), @) b + @)
Y(@)= (u+ W), )b+ @)™

Wehave V (u, b, 7,) — V (u, b, 7) asn— o because (1) ¥, — y almost surely and
(ii) the sequence Y, is dominated by the integrable Z on (1.8). Thus
V (u, b, 7,) > u/b for some n. But this is impossible since 7, ¢ D(27") is an in-
duectively generated stopping time and [14], Lemma 8, is directly applicable to
show V (u, b, 7.) < u/b. The contradiction proves Lemma 2.

Using the continuous time analogue of [14], Lemma 10, which is based on the
notion [8] (see also [19]) of a regular stopping time it now follows that there exists
a stopping time = with

(7.7) Vu,b,7) = V(u,b).

In order to find the form of such a 7, fix b and let S be the set of ¢ for which
¢ = u/b for u satisfying V (u, b) > u/b. (1.6) shows that S does not depend on b,
and the proof of [14], Lemma, 5, carries over easily to show that S is a convex set
(a semi-infinite interval). Let v denote the lub of S (incidentally, Lemma 2
shows that v < 5). Let 7., be defined as in Section 1. For any stopping time 7,
taking conditional expectations show that V(u, b, 7) < V{(u, b, 7 A 7,), and it
follows that there is at least one optimal stopping time =r7,. More explicitly, the
proof of [8], Corollary 1, is adaptable to show that there is a stopping time
™ £ r, with

(7.8) V(u, b, 7*) = supr<r, V (%, b, 7).
To prove that r* = r, for any r* satisfying (7.8) suppose instead that
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P(r* < 7y)' > 0.If at the time 7*, u + W (*) < v (& + +*) then
B= (u+WE"))/®+ ") es,
so there is a stopping time 7 for which
(79) Bu+WE )+ WE +r)=WENO++ @ +r =)™
> w4+ WEE) o+ )7

Then V (u, b, 7* 4+ 7) > V (4, b) and so =* was not optimal. It is of course neces-
sary to show that = can be defined in such a way that +* -+ 7 is measurable, but
this is not difficult.

We have seen that there is a stopping time 7 satisfying (7.7) and that 7 is of
the form 7, , ¢ = 7. Since only 7, achieves the maximum payoff among the 7. we
must have ¢ = a = 5. The last paragraph also shows that 7. is the minimal
optimal stopping time.

It is not yet proved that 7, is the unique optimal stopping time, since there may
besomer > 7, with V (u, b, 7) = V (u, b). To prove this fact, which will be needed
in Section 8, we note that (by taking conditional expectations) it suffices to prove
that if 7 satisfies

(7.10) Viu, b v) = u/b

for some w and b, w > ab® > 0 then P{t = 0} = 1. We shall not need the fact
[20], p. 88, that P{¢{ = 0} is either 0 or 1. If P{r = 0} < 1 then we have

(7.11) EG+ )" <b™

and so the derivative with respect to u of the left slide of (7.10) is less than that of
the right side. Hence there exists u’, u > 4’ > ab’ for which

(7.12) V@', b r)>u/b

which contradiets that o = v, already proved. Thus 7, is unique and the proof of
Theorem 1 is complete.

8. Completion of the proof of Theorem 3. To prove (4.6), we observe that it
is sufficient to show that as n —

(8.1) Ev + 8w/t QA + ) > Ely + W) (A + 74)™

because the left sides of (8.1) and (4.6) differ by at most |y — 8./n}|. Define
So = 0,8; = Siy,t > 0and for fixed T consider the functional ¥ defined on piece-
wise continuous funetions X on [0, T] by F[X] = (v + X(6))/(1 + 6) where
0 =T ainffizy + X () = a(1 + )’]. We note that F is continuous in the uni-
form topology at any X = X (t) having no points of tangency to the curve
a(1 + ¢)* — . The set of such X has probability one (under W ). The invariance
principle {11] therefore applies and we obtain that as n — o for each 7 > 0 and
eachy, —x <y < o,
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8.2) P{(y + Sn(r/ﬂ')/”ﬁ)(l + (A T))—1 = y}
S P{(y+Wrae AT)A + (ra AT))" 2 y}.

Standard arguments allow us to integrate on y, pass to the limit T — oo, and
obtain (8.1).

The proof of (4.9) is more delicate and we give it in more detail. First we note

that in the definition of the numbers 8, in (4.2) we can let » be any nonnegative
number, not necessarily an integer. Define for ¢ = 0,
(8.3) fa®) = (L + )0
where we have written S(n) = B.. Since §(n) increases [14], p. 448, f.(¢) in-
creases in ¢. For fixed ¢ and n sufficiently large ([14], (49) and (50)) show that
fa(t) is bounded

(84) BA+ ) =50 <50+t

By choosing a countable, dense set of points ¢ and applying the usual Helly-Bray
diagonal argument, it is seen that there is a subsequence Q' of Q (the sequence
along which Bn/n' — v > a) along which lim £, (t) exists for each ¢ = 0. Thus
there is a left-continuous monotonically inecreasing function f(¢) with
B3 =10/ + t)} £ 5for which f, (¢) — f(t) asn ¢ Q tends to infinity for each ¢
at which f is continuous. We note that we may take

f(0) = lim f,(0) = lim B./n’ = 7.

As in Section 4 choose 5, a < 7 < v, and let n ¢ Q' satisfy m! < B, .In our
new notation, the definition (Section 4) of v, = v(yn®, n) becomes

(8.5) va/n = min [tin + Sp/nt = fa ()]
Let £ be the stopping variable for W defined by
(8.6) ¢ = min[tin + W) 2 f(@)]

To prove that »,/n — ¢ in distribution; we see from (8.5) that for fixed ¢ > 0,
(8.7) Piv./n £t} = Plg + Su/n' 2 fu(z), some 7 < ¢},

For any e > 0, if n is large enough we must have’ f(r) — ¢ < f.(r) < f(r+) + ¢
for all 7, 0 = 7 =< ¢ and so for large values of n,

P{n 4+ S,/mt = fr+) + ¢ some 7 < ¢}
(8.8) < Pin + S,./n' = fu(7), some 7 < )
< Pln + S,./n' > f(r) — ¢ some 7 < ().
Letting n — o, we may apply the invariance principle to the extreme terms in

2 NoTE ADPDED IN PROOF. We are grateful to Mrs. M. E. Thompson for kindly pointing
out that continuity of f is tacitly assumed in (8.8). She elegantly fills this gap by showing
directly that f, are equicontinuous.
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(8.8). The first term in (8.8) tends to P{n + W(r) = f(++) + ¢, some r < i}
and the last term tends to P{n + W () = f(v) — ¢, some 7 = t}. As ¢ — 0, the
difference between the latter probabilities is seen to be small and hence the middle
term in (8.8) tends to a limit. Since the middle term is simply P{r./n < &} we
obtain that
(8.9) Plva/n < t} — Pt < 8},
which proves assertion (i) of Section 4.

To prove (4.9) it is necessary to show that the overshoot of n + S,/n} over
fn(v/n) is small, where we have written v for », . For ¢ > 0, let 4, (¢) denote the
event that

(8.10) In + Suu/nt — fou/n)| < e
and let B, (¢) denote the complementary event. Set
B11) Yuo= (0 +8u/m)A+w/m)", Y=0O+WE)Q+E
The difference between the left and right sides of (4.9) is less than
(8.12) |BY, — EY| S [E(Ya — f@a/n)(1 + (a/n)) 7))
+ [E(Ga/n)) (1 + (a/n))" — EY|.

It is clear that the second term on the right of (8.12) tends to zero since v,/n — §
in distribution and ¥ = f(£)/(1 4 £). The first term is decomposed into an ex-
pectation over 4,(e) and over B, (e). In the integral over 4, (¢), the integrand
is everywhere <e by (8.10). Another application of the invariance principle shows
that P (B, (¢)) is small for large n and small ¢, and it follows that the integral over
B.(e) goes to zero. This proves (i) of Section 4. (ili) follows immediately from
(8.6) sincen < v = f(0) < f(@) as was already proved. The proof of Theorem 3
is now complete.

9. The general form of the Wald identity in the Gaussian case. For any f
and A, the proof of Theorem 2 shows that the left side of (2.1) is between zero
and one. This suggests that it can be written as a probability.

TueoreMm 4. If f(t), t = 0, s conttnuous and — o < A < » then

9.1) [5 VO GR (1) = P{W (t) = f(t) — M, for some ¢ < oo}
where F (1) = P{T < t}, and T is defined as in Section 2.

As before, the left side of (9.1) is Er<wy exp AW (T') — NT/2). Tt is said that
the Wald identity holds for a particular f and M provided that (9.1) is true with
the right side replaced by unity. For given f and A, Theorem 4 reduces the problem
of deciding when the Wald identity holds to a familiar problem, where Kol-
mogorov’s test [20] gives the answer in most cases. To prove the theorem, we
have in the notation of Section 2, by continuity of f and W and monotone con-

vergence
(92) E[T>1)Y(t) = limn_wo E{W(ti)<f(t,'),i=1y"'.ﬂ’Y(t)
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where 0 < #; < .-+ < ¢, < tis a sequence of refining partitions which become
dense in [0, ¢]. A short calculation shows that the nth term on the right side of
(9.2) can be written simply as P{W (¢;) + M; < f(t:),7 = 1, --- , n}. Again by
monotone convergence, we get

9.3) By V() = P{W(s) +2s < f(s),0 < s < ¢}.
Using (2.2) and (2.4) we get from (9.3)
(94) 1= Bapnd™ @™ L PIW(s) + s £ f(s),0 £ s < 4.

It is known that the last term in (9.4) does not change if the first inequality in
the braces is made strict. Letting 7' — o and noting that W(T) = f(T) we
obtain (9.1).

In the special case when the basic distribution is Gaussian® we can sharpen the
usual Wald identity [1], p. 17, in a similar way. Let 71, 72, --- be standard
Gaussian and independent and consider the general stopping time N (n1, 12, « -+ )
= minn:(m, 9, --)eD,] where D, is a given set in Euclidean space,
n=12 - ;8t N@,n, )= o if there is no n for which

(17177127"';77n)€Dn~

Suppose — © < A < o, and denote ¢ (\) = exp (\*/2), 8, =m +m+ - 41,
n=1,2---.Then

9.5) Eircai Yo \)™ = P{(m + N\, --+, 1, + ) £ D, for some n}.

This is proved in the same way as Theorem 4 and yields the Wald identity when-
ever the right side of (9.5) is unity.

Although we have made no use of the results, we have included this section for
its own interest. Theorem 4 is closely related to the interesting work of I. V.
Girsanov [17] which we intend to discuss elsewhere.

10. A conjecture for the case of infinite second moment. As pointed out by
Dvoretzky, the original S,/n problem makes sense even if the second moment of
F is infinite (so long as the first moment exists ) and it seems likely that an optimal
stopping rule exists [14], Remark 6. It seems reasonable by analogy with Theorem
3 that the following should be true.

If 8,/n'* converges in distribution to G, a strict sense [16] stable law with
exponent & (not to be confused with o of (1.3)) thenif 1 < o < 2: (i) thereisa
unique minimal optimal stopping time N for H(u + Sy)/(n + N) for each
nZ0and —o <y < o, (i) N = min [k:8S; = 8] for a sequence B, (iii) the
limit

—~(l/a)

(10.1) Limye Butt = ¢
exists, (iv) ¢ satisfies 8(b) = ¢b"* b > 0, where 8(b) is the least u for which
(10.2) Ew+XENb+n)" ' su

3 It was pointed out to the author by Gus Haggstrom that more general forms of (9.5)
have been obtained by R. R. Bahadur [27] and H. D. Millar [28].
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for all stopping times 7 = 0.In (iv), X = X (¢),¢ = 0, is the stable process deter-
mined by @, that is X has stationary, independent increments, X (0) = 0 and
X (1) has distribution G.

Acknowledgment. In a recent paper [29], which came to our attention after
this paper was submitted, Howard M. Taylor has explicitly solved several stop-
ping rule problems in continuous time, including the problem of our Theorem 1,
by using very elegant potential theoretic methods. Also Le Roy H. Walker,
using methods somewhat similar to ours, has independently solved the S./n
problem and obtained our Theorem 3 among other results. He also extends the
results to the case 8,°/n’ were 0 < a < 2b
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