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Abstract
We construct explicit solutions to continuous motion of discrete plane curves described by

a semi-discrete potential modified KdV equation. Explicit formulas in terms the τ function
are presented. Bäcklund transformations of the discrete curves are also discussed. We finally
consider the continuous limit of discrete motion of discrete plane curves described by the
discrete potential modified KdV equation to motion of smooth plane curves characterized by
the potential modified KdV equation.

2010 Mathematics Subject Classification: 53A04, 37K25, 37K10, 35Q53.

Keywords and Phrases:
discrete curves; discrete motion; discrete potential mKdV equation; discrete integrable sys-
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1 Introduction
As is well known, many integrable partial differential equations (integrable systems) have close re-
lationship to differential geometry. In fact, surfaces of specific curvature property in 3-dimensional
space forms have sine-Gordon type equation as the integrability condition of surfaces. More gen-
erally, harmonic maps of conformal 2-manifolds into semi-Riemannian symmetric spaces are con-
structed by solutions to 2-dimensional Toda lattice equation (2DTL).

Transformation of solutions to integrable systems have origins in classical differential geome-
try. The Bäcklund transformation of the sine-Gordon equation are originally formulated as trans-
formations of pseudo-spherical surfaces in Euclidean 3-space.

On the other hand, substantial progress has been made in the study of discretization of inte-
grable systems preserving “integrable structure”. Motivated by extensive study on discrete inte-
grable systems, discretizations of curves and surfaces have been recently studied actively.
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This paper concerns with geometry of discrete curves in terms of semi-discrete integrable sys-
tems. In [3–5], Doliwa and Santini introduced continuous motion of discrete curves in 3-sphere
described by the Ablowitz-Ladik hierarchy [2]. The semi-discrete potential mKdV equation was
deduced as the simplest case. Hoffmann and Kutz [13] introduced the notion of discrete curva-
ture for plane discrete curves. Using the discrete curvature, they deduced the semi-discrete mKdV
equation from continuous motion of plane discrete curves.

In our previous works [14, 17], we have studied discrete motions of plane discrete curves in
purely Euclidean geometric manner. The compatibility condition of a discrete motion is the dis-
crete potential mKdV equation proposed by Hirota [8]. In discrete differential geometric setting,
the primal geometric object is the potential function rather than curvature (see [17]). Note that
potential function coincides with the turning angle function in smooth curve theory. We have
constructed explicit solutions of discrete motions of plane discrete curves in [14].

As a continuation of the previous works, in this paper we study continuous motions of plane
discrete curves in terms of potential function. The purpose of the present paper is to construct
explicit solutions to continuous motions of plane discrete curves by using the so-called τ func-
tion. Moreover we shall give Bäcklund transformations of continuous motions of plane discrete
curves. The discrete curvature functions and the semi-discrete mKdV equation discussed in [13]
are recovered from our results.

We have been working on three categories of curves motions: (1) continuous motions of plane
smooth curves, (2) continuous motions of plane discrete curves and (3) discrete motions of plane
discrete curves. In this paper we investigate the relationship of these three motions, and show that
these motions are connected by appropriate continuous limiting procedure.

This paper is organized as follows. After recalling the requisite facts on the geometry of plane
discrete curves and their continuous motion in Section 2, we prepare a representaion formula for
continuous motion of plane discrete curves in terms of τ function. This representation enable us to
give explicit parametrization of motions determined by multi-solitons as well as multi-breathers in
the next Section 4.

As we have mentioned before, Bäcklund transformation is a fundamental and effective tool
for construction of solutions. In Section 5, we extend Bäcklund transformations of plane discrete
curves studied in our previous work [14] to those of continuous motions. In particular, we give a
new formula for Bäcklund transformations on the semi-discrete potential mKdV equation.

In the final section, we shall discuss continuous limits of motions of plane discrete curves.
More precisely, first we shall investigate continuous limits of discrete motions of plane discrete
curves to continuous motion of those. Next we study continuous limits of continuous motions
of plane discrete curves to continuous motions of plane smooth curves. It should be emphasized
that these limiting procedure preserve solutions of equations. More precisely, we shall show that
these limiting procedure preserve soliton type solutions. This is confirmed by careful analysis of τ
functions. Appendix will be devoted to detailed computations of bilinear equations for our use.

In a separate publication [6], we study discrete hodograph transformations and apply those
to obtain discretizations of some integrable systems associated with continuous motions of plane
smooth curves.
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2 Continuous Motion of Plane Discrete Curves
We start with the following definition.

Definition 2.1 A map γ : Z → R2; l 7→ γl is said to be a discrete curve of constant segment
length ε if ∣∣∣∣∣γl+1 − γl

ε

∣∣∣∣∣ = 1. (2.1)

We introduce the angle function ψl of a discrete curve γ by

γl+1 − γl

ε
=

[
cosψl

sinψl

]
. (2.2)

A discrete curve γ satisfies
γl+1 − γl

ε
= R(Kl)

γl − γl−1

ε
, (2.3)

for Kl = ψl − ψl−1, where R(Kl) denotes the rotation matrix given by

R(Kl) =
[

cos Kl − sin Kl

sin Kl cos Kl

]
. (2.4)

We consider the following motion of discrete curves:

dγl

ds
=

1
cos Kl

2

R
(
−Kl

2

)
γl+1 − γl

ε
. (2.5)

Then from the compatibility condition of (2.3) and (2.5), there exists a potential function θl such
that

ψl =
θl+1 + θl

2
, Kl =

θl+1 − θl−1

2
, (2.6)

and it follows that from the isoperimetric condition (2.1) that θl satisfies

dθl

ds
=

2
ε

tan
(
θl+1 − θl−1

4

)
. (2.7)

Equation (2.7) is called the semi-discrete potential modified KdV (mKdV) equation.
Hoffmann and Kutz [12, 13] introduced (2.5) as the edge tangential flow of discrete plane

curves, which was deduced by discretizing the curvature function of motion of plane smooth
curves. We note that Doliwa and Santini formulated in [3–5] the integrable motion of discrete
curves in 3-sphere described by the Ablowitz-Ladik hierarchy, where the semi-discrete potential
mKdV equation (2.7) arises as the simplest case. Their formulation includes the motion of plane
curves as a limiting case.
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3 Representation Formula in terms of τ Function
In this section, we present a representation formula for curve motions in terms of τ function. We
also give explicit τ functions which correspond to soliton and breather solutions.

Let τl = τl(s; y) be a complex function dependent on the discrete variable l and two continuous
variables s and y, satisfying the following system of bilinear equations:

Ds τl · τ∗l =
1
2ε

(
τ∗l−1τl+1 − τ∗l+1τl−1

)
, (3.1)

τlτ
∗
l =

1
2

(
τ∗l−1τl+1 + τ

∗
l+1τl−1

)
, (3.2)

1
2

DsDy τl · τl = −τ∗l+1τ
∗
l−1, (3.3)

Dy τl+1 · τl = −ετ∗l+1τ
∗
l . (3.4)

Here, ∗ denotes the complex conjugate, Ds, Dy are the Hirota’s bilinear differential operators (D-
operators) defined by

Di
sD

j
y f · g = (∂s − ∂s′)i(∂y − ∂y′) j f (s, y)g(s′, y′)

∣∣∣
s=s′,y=y′

. (3.5)

We refer to [9] for calculus of D-operators. The functions satisfying the bilinear equations are
called the τ functions.

Theorem 3.1 Let τl be a solution to eqs.(3.1)–(3.4). Define a real function θl(s; y) and an R2-
valued function γl(s; y) by

θl(s; y) :=
2
√
−1

log
τl

τ∗l
, (3.6)

γl(s; y) :=


−1

2
(
log τlτ

∗
l
)

y

1

2
√
−1

(
log

τl

τ∗l

)
y

 . (3.7)

Then for any s, y ∈ R and l ∈ Z, the functions θl = θl(s; y) and γl = γl(s; y) satisfy (2.1), (2.3) (2.5)
and (2.7).

Proof. Express γl =
t(Xl,Yl). From (3.4) and its complex conjugate we have(

log
τl+1

τl

)
y
= −ε

τ∗l+1τ
∗
l

τl+1τl
,

(
log

τ∗l+1

τ∗l

)
y

= −ε τl+1τl

τ∗l+1τ
∗
l

. (3.8)

Adding these two equations we obtain(
log τl+1τ

∗
l+1

)
y −

(
log τlτ

∗
l
)

y = −ε
(
τ∗l+1τ

∗
l

τl+1τl
+
τl+1τl

τ∗l+1τ
∗
l

)
, (3.9)

which yields
Xl+1 − Xl

ε
= cosψl, ψl =

1
√
−1

log
(
τl+1τl

τ∗l+1τ
∗
l

)
=
θl+1 + θl

2
. (3.10)
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Subtracting the second equation from the first equation in eq.(3.8) we have

Yl+1 − Yl

ε
= sinψl.

Therefore we obtain
γl+1 − γl

ε
=

[
cosψl

sinψl

]
. (3.11)

which gives eq.(2.1). Next, from eq.(3.11) we see that

γl+1 − γl

ε
= R(ψl − ψl−1)

γl − γl−1

ε
, ψl − ψl−1 =

θl+1 − θl−1

2
= Kl, (3.12)

which is nothing but eq.(2.3). In order to show (2.5), we identify R2 as C. Then by using (2.2) and
(2.6), we see that (2.5) is rewritten as

cos
Kl

2
γ̇l = e−

√
−1 Kl

2
γl+1 − γl

ε
= e

√
−1 θl+1+2θl+θl−1

4 . (3.13)

We have

cos
Kl

2
=

1
2

[
e
√
−1 θl+1−θl−1

4 + e−
√
−1 θl+1−θl−1

4

]
=

1
2

(τl+1τ
∗
l−1

τ∗l+1τl−1

)1/2

+

(
τ∗l+1τl−1

τl+1τ
∗
l−1

)1/2
=

1
2
τl+1τ

∗
l−1 + τl−1τ

∗
l+1

|τl+1τl−1|
=

τlτ
∗
l

|τl+1τl−1|
, (3.14)

where we have used (3.2). Noticing that

γl = Xl +
√
−1Yl = −

(
log τ∗l

)
y , (3.15)

the left hand side of (3.13) can be rewritten by using (3.3) as

cos
Kl

2
dγl

ds
=

τlτ
∗
l

|τl+1τl−1|
× (−1)

(
log τ∗l

)
ys = −

τlτ
∗
l

|τl+1τl−1|

1
2 DsDy τ

∗
l · τ∗l(

τ∗l

)2 =
τl+1τl−1

|τl+1τl−1|
τl

τ∗l

= e
√
−1 θl+1+2θl+θl−1

4 ,

which implies (3.13). Finally, the semi-discrete potential mKdV equation (2.7) can be derived by
dividing (3.1) by (3.2). �

4 Explicit Solutions
We now present explicit formulas for the τ function which correspond to multi-soliton and multi-
breather solutions to the bilinear equations, respectively.

Theorem 4.1 For N ∈ Z≥0, consider the τ function

τl(s; y) = exp
[− (s + εl) y

]
det

(
f (i)

j−1

)
i, j=1,...,N

, (4.1)

f (i)
n = αi pn

i (1 − εpi)−le
pi

1−ε2 p2
i

s+ 1
pi

y
+ βi(−pi)n(1 + εpi)−le

− pi
1−ε2 p2

i
s− 1

pi
y
, (4.2)

where αi, βi and pi (i = 1, . . . ,N) are parameters.

5



(1) Choosing the parameters as

pi, αi ∈ R, βi ∈
√
−1R (i = 1, . . . ,N), (4.3)

then τl satisfies the bilinear equations (3.1)–(3.4). This gives the N-soliton solution to (2.7).

(2) Taking N = 2M, and choosing the parameters as

pi, αi, βi ∈ C (i = 1, . . . , 2M), p2r = p∗2r−1 (r = 1, . . . , M),

α2r = α
∗
2r−1, β2r = −β∗2r−1 (r = 1, . . . , M),

(4.4)

then τl satisfies the bilinear equations (3.1)–(3.4). This gives the M-breather solution to
(2.7).

In order to prove Theorem 4.1, we first consider the following “generic” τ function and system
of bilinear equations. Then Theorem 4.1 is derived by applying the reduction.

Proposition 4.2 Let σk
l,m = σk

l,m(u, v; y) is a function depending on three discrete independent
variables k, l,m ∈ Z and three continuous independent variables u, v, y ∈ R defined by

σk
l,m(u, v; y) = det

(
f (i)
k+ j−1(l,m)

)
i, j=1,...,N

, (4.5)

f (i)
k (l,m) = αi pk

i (1− api)−l(1− bpi)−me
u

1−api
+ v

1−bpi
+ 1

pi
y
+ βiqk

i (1− aqi)−l(1− bqi)−me
u

1−aqi
+ v

1−bqi
+ 1

qi
y (4.6)

where a, b, αi, βi, pi and qi (i = 1, . . . ,N) are parameters. Then σk
l,m satisfies the following bilinear

equations:

(Du − 1) σk−1
l,m · σk

l,m = −σk
l+1,mσ

k−1
l−1,m, (4.7)

(Dv − 1) σk−1
l,m · σk

l,m = −σk
l,m+1σ

k−1
l,m−1, (4.8)

bσk+1
l,m+1σ

k
l+1,m − aσk+1

l+1,mσ
k
l,m+1 + (a − b)σk+1

l+1,m+1σ
k
l,m = 0, (4.9)

1
2

DuDy σ
k
l,m · σk

l,m = a(σk
l,m)2 − aσk+1

l+1,mσ
k−1
l−1,m, (4.10)

1
2

DvDy σ
k
l,m · σk

l,m = b(σk
l,m)2 − bσk+1

l,m+1σ
k−1
l,m−1, (4.11)(

Dy − a
)
σk

l+1,m · σk
l,m = −aσk+1

l+1,mσ
k−1
l,m . (4.12)

Proof of Theorem 4.1 We show that Theorem 4.1 holds from Proposition 4.2. We impose the
reduction conditions on σk

l,m as

σk
l+1,m+1 = Bσk

l,m, (4.13)

σk+1
l,m = Cσ∗kl,m, C ∈ R (4.14)
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where B,C are constants. Then putting b = −a, the bilinear equations (4.7)–(4.12) are reduced to

(Du − 1) σ∗l · σl = −σl+1σ
∗
l−1, (4.15)

(Dv − 1) σ∗l · σl = −σl−1σ
∗
l+1, (4.16)

σ∗l−1σl+1 + σ
∗
l+1σl−1 − 2σ∗lσl = 0, (4.17)

1
2

DuDy σl · σl = a(σl)2 − aσ∗l+1σ
∗
l−1, (4.18)

1
2

DvDy σl · σl = −a(σl)2 + aσ∗l−1σ
∗
l+1, (4.19)(

Dy − a
)
σl+1 · σl = −aσ∗l+1σ

∗
l , (4.20)

respectively. Here we have used (4.13) and (4.14) to eliminate the m- and k-dependence, respec-
tively, and denoted σk

l,m = σl. We next consider the specialization of continuous independent
variables

u = cs, v = −cs, c ∈ R. (4.21)

Then, subtracting (4.16) from (4.15) we have

Ds σ
∗
l · σl = c

(
σl−1σ

∗
l+1 − σl+1σ

∗
l−1

)
. (4.22)

Similarly, we get from (4.18) and (4.19)

DsDy σl · σl = 4ac
{
(σl)2 − σ∗l−1σ

∗
l+1

}
. (4.23)

Putting

a = ε, c =
1
2ε
, (4.24)

and introducing τl by
τl = e−(s+εl)yσl, (4.25)

the bilinear equations (4.22), (4.17), (4.23), (4.20) are reduced to (3.1), (3.2), (3.3), (3.4), re-
spectively. Let us next realize the reduction conditions (4.13) and (4.14) by imposing suitable
restriction on parameters of solution. We put

qi = −pi (i = 1, . . . ,N), b = −a. (4.26)

Then it is easy to verify that the entries of the determinant satisfy

f (i)
k (l + 1,m + 1) =

1
1 − a2 p2

i

f (i)
k (l,m), (4.27)

so that the condition (4.13) is realized as

σk
l+1,m+1 =

N∏
i=1

1
1 − a2 p2

i

σk
l,m. (4.28)
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As for the condition (4.14), we have to consider the cases (1) and (2) in Theorem 4.1 separately:
Case (1). We impose the condition (4.3). Then we see that

f (i)
k+1(l,m) = pi f (i)∗

k (l,m), (4.29)

and so

σk+1
l,m = C σk

l,m, C =
N∏

i=1

pi ∈ R. (4.30)

Case (2). We impose the condition (4.4). Then we see that

f (2r)
k+1 (l,m) = p∗2r−1 f (2r−1)∗

k (l,m), f (2r−1)
k+1 (l,m) = p∗2r f (2r)∗

k (l,m), (4.31)

and so

σk+1
l,m = C σ∗kl,m, C = (−1)M

M∏
r=1

|p2r|2 ∈ R. (4.32)

Finally, putting m = 0 without loss of generality and applying the specialization (4.21) and
(4.24), (4.6) is rewritten as

f (i)
k (l, 0) = αi pk

i (1 − εpi)−le
s

2ε

(
1

1−εpi
− 1

1+εpi

)
+ 1

pi
y
+ βi(−pi)k(1 + εpi)−le

s
2ε

(
1

1+εpi
− 1

1−εpi

)
− 1

pi
y

= αi pk
i (1 − εpi)−le

pi
1−ε2 p2

i
s+ 1

pi
y
+ βi(−pi)k(1 + εpi)−le

− pi
1−ε2 p2

i
s− 1

pi
y
,

which is equivalent to (4.2). Therefore we have derived Theorem 4.1 from Proposition 4.2. �

The bilinear equations in Proposition 4.2 are reduced to the quadratic identities of determinants
(Plücker relations). In particular, (4.9) and (4.12) have already appeared in [14]. Moreover, by the
symmetry between the set of variables (l, u) and (m, v) in σk

l,m, it suffices to show only (4.7) and
(4.10). These bilinear equations will be proved in the Appendix.

Remark 4.3 In the τ function in Theorem 4.1, the parameter dependence of the time evolution
in entries of the Casorati determinant have singularities different from 0 and ∞. These types of
singularities can be seen in the solutions of equation of principal chiral fields, i.e., harmonic maps
of conformal 2-manifolds into compact Lie groups [15, 23, 24] and Maxwell-Bloch equation [16].

Remark 4.4 By introducing ul := ε
2

dθl
ds , the semi-discrete potential mKdV equation (2.7) can be

transformed to the semi-discrete mKdV equation

dul

ds′
=

(
1 + u2

l

)
(ul+1 − ul−1), (4.33)

where we put s = 2εs′ for convenience. An auxiliary linear problem for (4.33) is given by [3]

Φl+1 =
1√

1 + u2
l

[
λ λ−1ul

−λul λ−1

]
Φl,

d
ds′
Φl =

[
λ2−λ−2

2 ul + λ
−2ul−1

−ul − λ2ul−1 −λ2−λ−2

2

]
Φl. (4.34)
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Apparently, the dispersion relation suggested from the linear problem is different from the one in
Theorem 4.1. However, putting

pi =
1
ε

λ2
i − 1
λ2

i + 1
(4.35)

in (4.2), then f (i)
n can be rewritten as

f (i)
n m αi

(
1
ε

λ2
i − 1
λ2

i + 1

)n

λl
ie

1
2 (λ2

i −λ−2
i )s′+

λ2
i +1

λ2
i −1

εy
+ βi

(
−1
ε

λ2
i − 1
λ2

i + 1

)n

λ−l
i e
− 1

2 (λ2
i −λ−2

i )s′+
λ2

i +1

λ2
i −1

εy
,

in which the dispersion relation with respect to l and s′ is consistent with (4.34). We have chosen
the parametrization as in (4.2) so that the continuous limits explained in Section 6 become simpler.

5 Bäcklund Transformations
In this section we discuss the Bäcklund transformation of the continuous motion of plane discrete
curves. The Bäcklund transformation of the plane discrete curves has already been formulated
in [14]:

Proposition 5.1 Let γl be a discrete curve of segment length ε. Let θl be the potential function
defined by

γl+1 − γn

ε
=

[
cosψl

sinψl

]
, ψl =

θl+1 + θl

2
. (5.1)

For a nonzero constant λ, take a solution θ̃n to the following equation

tan
 θ̃l+1 − θl

4

 = 1
λ
+ ε

1
λ
− ε

tan
 θ̃l − θl+1

4

 , (5.2)

then

γ̃l = γl +
1
λ

R
 θ̃l − θl+1

2

 γl+1 − γl

ε
(5.3)

is a discrete curve with the potential function θ̃l.

We next extend the Bäcklund transformation to that of motion of discrete curves. In order to do
so, we first present the Bäcklund transformation to the semi-discrete potential mKdV equation:

Lemma 5.2 Let θl be a solution to the semi-discrete potential mKdV equation (2.7). A function θ̃l

satisfying the following system of equations(
1
λ
− ε

)
tan

θ̃l+1 − θl

4
=

(
1
λ
+ ε

)
tan

θ̃l − θl+1

4
, (5.4)

(
1
λ
+ ε

)
θ̃ ′l

4 cos2 θ̃l − θl+1

4

+

(
1
λ
− ε

)
θ ′l

4 cos2 θ̃l+1 − θl

4

= tan
θ̃l − θl+1

4
+ tan

θ̃l+1 − θl

4
, (5.5)

gives another solution to eq.(2.7). We call θ̃l a Bäcklund transform of θl.
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Proof. First compute addition of (5.5)l−1 and the derivative of (5.4)l−1. Then, by using (5.4),
eliminate λ from this equation and (5.5) respectively. Adding those two equations yields ε2 θ̃ ′l cos

θ̃l+1 − θ̃l−1

4
− sin

θ̃l+1 − θ̃l−1

4

 sin
θ̃l+1 + θ̃l−1 − 2θl

4

=

(
ε

2
θ ′l cos

θl+1 − θl−1

4
− sin

θl+1 − θl−1

4

)
sin

θl+1 + θl−1 − 2̃θl

4
,

(5.6)

which implies Lemma 5.2. �

Proposition 5.3 Let γl be a motion of discrete curve. Take a Bäcklund transform θ̃l of θl defined in
Lemma 5.2. Then

γ̃l = γl +
1
λ

R
 θ̃l − θl+1

2

 γl+1 − γl

ε
(5.7)

is a motion of discrete curve with potential function θ̃l. We call γ̃l a Bäcklund transform of γl.

Proof. It suffices to show that γ̃l satisfies eqs.(2.1), (2.3) and (2.5) with potential function θ̃l, but
eqs.(2.1) and (2.3) follow from Proposition 5.1 immediately. Because the system (5.4)–(5.5) yields(

1 −
√
−1

ε

2
θ̃ ′l

)
e
√
−1 θ̃l+1−θl

2 =

(
1 −
√
−1

ε

2
θ ′l

)
e
√
−1 θ̃l−θl+1

2 +

√
−1
λ

θ̃ ′l + θ
′
l

2
,

we identify R2 with C, so that the motion γ̃l satisfies

γ̃ ′l = e
√
−1 θ̃l+1+θ̃l

2

(
1 −
√
−1

ε

2
θ̃ ′l

)
γ̃l =

γ̃l+1 − γ̃l

ε

1 − √−1 tan
θ̃l+1 − θ̃l−1

4

 ,
which implies (2.5) with 2K̃l = θ̃l+1 − θ̃l−1. �

Remark 5.4 In [12, 13], the Bäcklund transformation of the motions of discrete plane curves de-
scribed in this paper is characterized by the cross ratio of the four points γl, γl+1, γ̃l and γ̃l+1 being
constant. In fact, we can verify by direct computation that for the Bäcklund transformation given
in Proposition 5.3, the cross ratio of those four points is −λ2ε2.

6 Continuous Limits
In [14], the discrete motion of discrete plane curves and the continuous motion of smooth plane
curves have been formulated, together with the Bäcklund transformations and the explicit formulas
in terms of the τ functions. They are described by the discrete potential modified KdV equation and
the potential modified KdV equation, respectively. In this section, we present the two continuous
limits: one from the discrete motion of discrete plane curves to their continuous motion discussed
in the preceding sections, another one from the continuous motion of discrete plane curves to the
continuous motion of smooth plane curves.

We first summarize the formulations of three kinds of curve motions and explicit solutions. For
convenience, we identify Euclidean plane R2 with complex plane C.
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(1) Discrete motion of discrete plane curves.

Motion of curves: ∣∣∣∣∣∣γm
n+1 − γm

n

an

∣∣∣∣∣∣ = 1, (6.1)

γm
n+1 − γm

n

an
= e

√
−1Km

n
γm

n − γm
n−1

an−1
, (6.2)

γm+1
n − γm

n

bm
= e

√
−1Wm

n
γm

n+1 − γm
n

an
. (6.3)

Here, n,m ∈ Z denote the discrete independent variables corresponding to space and time, respec-
tively. Moreover, an, bm are real arbitrary functions of the indicated variables, which correspond to
the segment length of the curves and time interval, respectively.

Potential function:

Km
n =

θm
n+1 − θm

n−1

2
, Wm

n =
θm+1

n − θm
n+1

2
. (6.4)

Compatibility condition:

tan
(
θm+1

n+1 − θm
n

4

)
=

bm + an

bm − an
tan

(
θm+1

n − θm
n+1

4

)
. (6.5)

Explicit formula in terms of τ function:

θm
n =

2
√
−1

log
τm

n

τ∗nm
, γm

n =


−1

2
(
log τm

n τ
∗m

n
)

y

1

2
√
−1

(
log

τm
n

τ∗mn

)
y

 . (6.6)

Soliton type solutions:

τm
n = exp

−  n−1∑
n′

an′ +

m−1∑
m′

bm′

 y

 det
(

f (i)
j−1

)
i, j=1,...,N

, (6.7)

f (i)
k = αi pk

i

n−1∏
n′

(1−an′ pi)−1
m−1∏
m′

(1−bm′ pi)−1e
1
pi

y
+βi(−pi)k

n−1∏
n′

(1+an′ pi)−1
m−1∏
m′

(1+bm′ pi)−1e−
1
pi

y
. (6.8)

(2) Continuous motion of discrete plane curves.

Motion of curves: ∣∣∣∣∣γl+1 − γl

ε

∣∣∣∣∣ = 1, (6.9)

γl+1 − γl

ε
= e

√
−1Kl

γl − γl−1

ε
, (6.10)

dγl

ds
=

e−
√
−1 Kl

2

cos Kl
2

γl+1 − γl

ε
. (6.11)
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Potential function:
Kl =

θl+1 − θl−1

2
. (6.12)

Compatibility condition:
dθl

ds
=

2
ε

tan
(
θl+1 − θl−1

4

)
. (6.13)

Explicit formula in terms of τ function:

θl =
2
√
−1

log
τl

τ∗l
, γl =


−1

2
(
log τlτ

∗
l
)

y

1

2
√
−1

(
log

τl

τ∗l

)
y

 . (6.14)

Soliton type solutions:
τl = exp

[− (s + εl) y
]

det
(

f (i)
j−1

)
i, j=1,...,N

, (6.15)

f (i)
k = αi pk

i (1 − εpi)−le
pi

1−ε2 p2
i

s+ 1
pi

y
+ βi(−pi)k(1 + εpi)−le

− pi
1−ε2 p2

i
s− 1

pi
y
. (6.16)

(3) Continuous motion of smooth plane curves.

Motion of curves:

|γ′| = 1, (6.17)
∂

∂x
γ′ =

√
−1κ γ′, (6.18)

∂

∂t
γ′ = −

√
−1

(
κ′′ +

κ3

2

)
γ′. (6.19)

Here γ = γ(x, t) ∈ R2 ' C is arc-length parametrized curve, x and t denote arc-length and time,
respectively, and ′ = ∂x. Moreover, κ = κ(x, t) is the curvature.

Potential function:
κ = θ′. (6.20)

Compatibility condition:

θt +
1
2

(θx)3 + θxxx = 0. (6.21)

Explicit formula in terms of τ function:

θ =
2
√
−1

log
τ

τ∗
, γ =


−1

2
(
log ττ∗

)
y

1

2
√
−1

(
log

τ

τ∗

)
y

 . (6.22)

Soliton type solutions:
τ = e−xy det

(
f (i)

j−1

)
i, j=1,...,N

, (6.23)

f (i)
k = αi pk

i e
pi x−4p3

i t+ 1
pi

y
+ βi(−pi)ke−pi x+4p3

i t− 1
pi

y
. (6.24)
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Theorem 6.1

(1) Putting

an = a (const.), bm = b (const.), δ =
a + b

2
, ε =

a − b
2

,

s
δ
= n + m, l = n − m,

(6.25)

and taking the limit δ→ 0, the discrete motion of discrete plane curves yields the continuous
motion of discrete plane curves.

(2) Putting

x = εl + s, t = −ε
2

6
s, (6.26)

and taking the limit ε → 0, the continuous motion of discrete plane curves yields the contin-
uous motion of smooth plane curves.

Theorem 6.1 can be verified by tedious but straightforward calculations. In fact, the statement
(1) can be checked by substituting the parametrization (6.25) into (6.1)–(6.8), expanding in terms
of powers of δ and taking the limit δ → 0. The statement (2) is also checked by a similar manner.
We note that the limiting procedures presented in (6.25) and (6.26) have been obtained in [7]
and [8] on the level of the equations for θ. Theorem 6.1 claims that the procedure applies to the
curve motions and solutions. Also, it should be noted that limiting procedure also applies to the
Bäcklund transformations.

In order to demonstrate the calculation, we here discuss the limits of the τ functions corre-
sponding to the soliton type solutions. Substituting (6.25) into (6.8), we have

(1 − api)−n(1 − bpi)−m = (1 − api)−
1
2 ( s

δ+l)(1 − bpi)−
1
2 ( s

δ−l) = e−
s

2δ log[1−2δpi+(δ2−ε2)p2
i ]

(
1 − εpi − δpi

1 + εpi − δpi

)− l
2

.

Noticing that

log
[
1 − 2δpi + (δ2 − ε2)p2

i

]
= logωi −

2pi

ωi
δ + O(δ2), ωi = 1 − ε2 p2

i ,

we get

(1 − api)−n(1 − bpi)−m ∼ e−
logωi

2δ s × e
pi
ωi

s
(
1 − εpi

1 + εpi

)− l
2

.

Similarly, we have

(1 + api)−n(1 + bpi)−m ∼ e−
logωi

2δ s × e−
pi
ωi

s
(
1 + εpi

1 − εpi

)− l
2

.

Therefore f (i)
k yields

f (i)
k ∼ αi pk

i e
− logωi

2δ s e
pi
ωi

s
(
1 − εpi

1 + εpi

)− l
2

e
1
pi

y
+ βi(−pi)ke−

logωi
2δ s e−

pi
ωi

s
(
1 + εpi

1 − εpi

)− l
2

e−
1
pi

y

= e−
logωi

2δ s(1 − ε2 p2
i )

l
2

[
αi pk

i (1 − εpi)−l e
pi
ωi

s+ 1
pi

y
+ βi(−pi)k (1 + εpi)−l e−

pi
ωi

s− 1
pi

y
]
, (6.27)
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as δ ∼ 0. The prefactors of the entries in (6.27) can be factored out of the determinant, and it is
easily seen that the overall factor does not affect the solutions, namely, if we remove overall factor
from the τ functions, it gives the same θ and γ, as seen from (6.6). This implies that the determinant
in (6.7) yields that in (6.15) up to this trivial multiplicative factor. Also, the exponential factor in
(6.6) becomes that in (6.14) under the parametrization (6.25). Therefore, we have shown that (6.7)
is reduced to (6.15) as δ→ 0.

Similarly, substituting (6.26) into (6.16), we have

(1 − εpi)−l e
pi

1−ε2 p2
i

s
= exp

[
−

(
x
ε
+

6t
ε3

)
log (1 − εpi) +

pi

1 − ε2 p2
i

s
]
= exp

[
3p2

i

ε
t +

(
pix − 4p3

i t
)
+ O(ε)

]
,

and

(1 + εpi)−l e
− pi

1−ε2 p2
i

s
= exp

[
3p2

i

ε
t −

(
pix − 4p3

i t
)
+ O(ε)

]
,

from which we obtain as ε ∼ 0

f (i)
k ∼ e

3p2
i
ε t

[
αi pk

i e
pi x−4p3

i t+ 1
pi

y
+ βi(−pi)ke−pi x+4p3

i t− 1
pi

y
]
. (6.28)

The prefactor in (6.28) does not affect the solutions. Also, the exponential factor in (6.14) becomes
that in (6.22) under the parametrization (6.26). Therefore, we have shown that (6.15) is reduced to
(6.23) as ε → 0.

A Derivation of bilinear equations (4.7) and (4.10)
In this appendix we prove Proposition 4.2. As mentioned in Section 3, it suffices to show that the
τ function given in (4.5) and (4.6) actually satisfies the bilinear equations (4.7) and (4.10).

A.1 Equation (4.7)
We define the τ function σk

l,m(u, v; y) by

σk
l,m(u, v; y) = det

(
f (i)
k+ j−1(l,m)

)
i, j=1,...,N

, (A.1)

where the entries of determinant satisfy the linear relations

f (i)
k (l,m) − f (i)

k (l − 1,m)
a

= f (i)
k+1(l,m),

f (i)
k (l,m) − f (i)

k (l,m − 1)
b

= f (i)
k+1(l,m), (A.2)

∂u f (i)
k (l,m) = f (i)

k (l + 1,m), ∂v f (i)
k (l,m) = f (i)

k (l,m + 1), ∂y f (i)
k (l,m) = f (i)

k−1(l,m). (A.3)

Note that f (i)
k (l,m) given in (4.6) satisfy the above relations. In order to prove (4.7), it is convenient

to consider ρk
l,m defined by

ρk
l,m(u, v; y) = det

(
f (i)
k (l − j + 1,m)

)
i, j=1,...,N

, (A.4)
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instead of σk
l,m. Here, σk

l,m and ρk
l,m are related as

ρk
l,m = (−a)N(N−1)/2 σk

l,m, (A.5)

which can be easily verified by manipulating the columns of determinant with the first equation in
(A.2). We also introduce a notation

ρk
l,m =

∣∣∣ 0k
m, 1

k
m, · · · , N − 2k

m, N − 1k
m

∣∣∣ , jk
m =



f (1)
k (l − j,m)

f (2)
k (l − j,m)

...

f (N)
k (l − j,m)


. (A.6)

It is possible to reduce (4.7) to one of the Plücker relations which are quadratic quadratic identities
of determinants whose columns are appropriately shifted. To this end, we construct such formulas
that express the determinants in the Plücker relations in terms of derivative or shift of discrete
variable of ρk

l,m(u, v; y) by using the linear relations of the entries. For details of the technique, we
refer to [9, 18–21].

Lemma A.1 The following formulas hold:

∂u ρ
k
l,m = | − 1, 1, · · · , N − 2, N − 1| , (A.7)

ρk−1
l,m = aN−1

∣∣∣ 0, 1, · · · , N − 2,N − 1k−1
∣∣∣ , (A.8)

ρk−1
l,m = aN−1

∣∣∣ 0, 1, · · · , N − 2,N − 2k−1
∣∣∣ , (A.9)

(∂u − 1) ρk−1
l,m = aN−1

∣∣∣ − 1, 1, · · · , N − 2,N − 1k−1
∣∣∣ . (A.10)

Note that the superscripts of column vectors are shown only when k is shifted for notational sim-
plicity.

Proof. Equation (A.7) follows from the differential rule of determinants and the fist equation of
(A.2). Next, applying the first equation of the difference rule (A.3) to the first column of ρk−1

l,m , we
have

ρk−1
l,m =

∣∣∣ 0k−1, 1k−1, · · · , N − 1k−1
∣∣∣ = ∣∣∣ 0k−1 − 1k−1, 1k−1, · · · , N − 1k−1

∣∣∣ = a
∣∣∣ 0k, 1k−1, · · · , N − 1k−1

∣∣∣ .
Repeating this procedure for the j-th column ( j = 2, 3, . . . ,N − 1), we get

ρk−1
l,m = aN−1

∣∣∣ 0k, 1k, · · · , N − 2k, N − 1k−1
∣∣∣ ,

which is (A.8). Applying (A.2) to the N-th column of (A.8), we obtain (A.9).
Finally, differentiating (A.9) by u yields

∂u ρ
k−1
l,m = aN−1

∣∣∣ − 1k, 1k, · · · ,N − 2k, N − 1k−1
∣∣∣ + aN−1

∣∣∣ 0k, 1k, · · · , N − 2k,N − 2k−1
∣∣∣

= aN−1
∣∣∣ − 1k, 1k, · · · ,N − 2k, N − 1k−1

∣∣∣ + ρk−1
l,m
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which is equivalent to (A.10). Thus we have proved Lemma A.1. �

Now consider the Plücker relation (see, for example, [21])

0 = | − 1, 0, 1, · · · , N − 2| ×
∣∣∣ 1, · · · ,N − 2, N − 1, N − 1k−1

∣∣∣
+ | 0, 1, · · · , N − 2, N − 1| ×

∣∣∣ − 1, 1, · · · , N − 2,N − 1k−1
∣∣∣

−
∣∣∣ 0, 1, · · · , N − 2, N − 1k−1

∣∣∣ × | − 1, 1, · · · , N − 2, N − 1| .
(A.11)

(A.11) is rewritten by using Lemma A.1 as

0 = ρk
l+1,m × a−(N−1)ρk−1

l−1,m + ρ
k
l,m × a−(N−1)(∂u − 1) ρk−1

l,m − a−(N−1)ρk−1
l,m × ∂u ρ

k
l,m

= a−(N−1)
[
(Du − 1) ρk−1

l,m · ρk
l,m + ρ

k
l+1,mρ

k−1
l−1,m

]
, (A.12)

which implies (4.7).

A.2 Equation (4.10)
We derive (4.10) from (4.7) and (4.12). We first introduce Fk

l,m by the subtraction of the right hand
side of (4.10) from the left hand side

Fk
l,m :=

1
2

DuDy σ
k
l,m · σk

l,m − a(σk
l,m)2 + aσk+1

l+1,mσ
k−1
l−1,m, (A.13)

and consider

P := Fk
l,m

(
σk−1

l,m

)2
− Fk−1

l,m

(
σk

l,m

)2

=

[
1
2

DuDy σ
k
l,m · σk

l,m − a(σk
l,m)2 + aσk+1

l+1,mσ
k−1
l−1,m

] (
σk−1

l,m

)2

−
(
σk

l,m

)2
[
1
2

DuDy σ
k−1
l,m · σk−1

l,m − a(σk−1
l,m )2 + aσk

l+1,mσ
k−2
l−1,m

]
. (A.14)

Equation (A.14) can be rewritten as

P = Dy

(
Dx σ

k
l,m · σk−1

l,m

)
· σk

l,mσ
k−1
l,m + aσk+1

l+1,mσ
k−1
l−1,mσ

k−1
l,m σ

k−1
l,m − aσk

l+1,mσ
k−2
l−1,mσ

k
l,mσ

k
l,m, (A.15)

where we have used the exchange formula of the D-operator [9](
DuDy f · f

)
g2 − f 2

(
DuDy g · g

)
= 2Dy (Du f · g) · f g, (A.16)

for arbitrary functions f and g. We manipulate the first term of (A.15) as follows. Using (4.7) and
noticing Dy f · f = 0, we have

Dy

(
Dx σ

k
l,m · σk−1

l,m

)
·σk

l,mσ
k−1
l,m = Dy

(
−σk−1

l,m σ
k
l,m + σ

k
l+1,mσ

k−1
l−1,m

)
·σk

l,mσ
k−1
l,m = Dy σ

k
l+1,mσ

k−1
l−1,m ·σk

l,mσ
k−1
l,m .

Then applying another exchange formula

Dy αβ · γδ =
(
Dy α · γ

)
βδ +

(
Dy β · δ

)
αγ, (A.17)
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for arbitrary functions α, β, γ, δ, we get

Dy σ
k
l+1,mσ

k−1
l−1,m · σk

l,mσ
k−1
l,m =

(
Dy σ

k
l+1,m · σk

l,m

)
σk−1

l−1,mσ
k−1
l,m +

(
Dy σ

k−1
l−1,m · σk−1

l,m

)
σk

l+1,mσ
k
l,m

=
(
σk

l+1,mσ
k
l,m − aσk+1

l+1,mσ
k−1
l,m

)
σk−1

l−1,mσ
k−1
l,m +

(
−σk−1

l,m σ
k−1
l−1,m + aσk

l,mσ
k−2
l−1,m

)
σk

l+1,mσ
k
l,m

= −aσk+1
l+1,mσ

k−1
l,m σ

k−1
l−1,mσ

k−1
l,m + aσk

l,mσ
k−2
l−1,mσ

k
l+1,mσ

k
l,m

where we have used (4.12) in the second equality. Substituting the above result into (A.15), we see
that P = 0. Therefore, it follows from (A.14) that

1
2

DuDy σ
k
l,m · σk

l,m − a(σk
l,m)2 + aσk+1

l+1,mσ
k−1
l−1,m = A(u, y, l)(σk

l,m)2, (A.18)

where A(u, y, l) is an arbitrary function. Since σk
l,m = 1 (the case of N = 0) satisfies (4.7) and

(4.12), it should satisfy (A.18) as well. Therefore we see that A must be 0, which implies (4.10).
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