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We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate
resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2)
[P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction.
The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness
error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain
error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important
feature of the DEC scheme is the inherent error control defined by a single parameter, and this
feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working
equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test
molecules. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4951696]

I. INTRODUCTION

It is well known that the accurate determination of
molecular energies requires an accurate description of electron
correlation effects. The coupled cluster (CC) hierarchy has
proven to be the most powerful approach for systematically
describing dynamical electron correlation.1,2 However, the
high-order polynomial scaling of the computational cost with
system size prohibits the application of CC methods in their
standard formulation to large molecular systems. For example,
one of the simplest correlation methods, second-order Møller-
Plesset perturbation theory (MP2), scales as O(N5) where
N is a measure of the system size. In addition, the slow
convergence of the correlation energy for standard basis sets
poses a problem in practical calculations. In this work we
present a method which tackles the scaling problem as well
as the basis set problem of the MP2 model.

In the past few decades much effort has been directed
towards developing linear-scaling correlated methods that
can handle ever larger molecules. The scaling problem of
correlation methods in their standard formulations is to a large
part due to the use of de-localized canonical molecular orbitals
(MOs) to describe local correlation effects. Several alternative
formulations of MP2 and other correlation models with
reduced computational scaling have been devised, including
local correlation methods based on local occupied MOs and
projected atomic orbitals (PAOs),3–7 pair natural orbitals
(PNOs),8–11 or orbital specific virtual orbitals (OSVs).12–14

Other local correlation schemes include the fragment
orbital method,15–17 the incremental scheme,18–20 and the

a)Electronic mail: ymwang@chem.au.dk

cluster-in-molecule (CIM) method.21–23 We have recently
developed the Divide-Expand-Consolidate (DEC) method,
where local occupied and local virtual orbitals are used to
partition the correlated energy calculation of a large molecular
system into many small and independent fragment calculations
employing subsets of the total orbital space. This leads to a
linear-scaling and massively parallel implementation of CC
methods.24,25,27–32 One unique feature of the DEC method
is that the error of the correlation energy compared to a
conventional calculation is controlled by a single energy-
based parameter, which determines the local orbital spaces
adaptively in a black box manner.

It is well known that the residual error in the correlation
energy falls off as O(l−3

max), where lmax is the maximum angular
momentum of the basis set.33–35 The reason for this slow
basis set convergence is the inability of the wave function
to represent the Coulomb cusp,2 because conventional wave
functions expressed in terms of Slater determinants do not
satisfy Kato’s cusp condition.36 The Coulomb cusp condition
can be fulfilled by including the inter-electronic distance
operator into the wave-function ansatz.37–40 Methods, which
explicitly incorporate the inter-electronic distance operator,
are referred to as explicitly correlated methods. The most
generally applicable explicitly correlated methods, known as
F12 methods, have matured into a powerful tool to correct for
the basis set incompleteness error (BSIE) which is challenging
the results obtained using basis set extrapolation;41,42 for recent
reviews, see Refs. 43–45. Important contributions to the F12
technology include the fixed amplitude ansatz,46 where the F12
contribution becomes a non-iterative correction to the MP2
energy,47 and the numerical approximation of many-electron
integrals via the complementary auxiliary basis set (CABS)
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FIG. 1. Comparison of conventional and DEC calculations. In a conventional
calculation, the complementary space (α′β′) spans the space outside the
computational basis, which is partitioned into an occupied space (i, j), and
a virtual space (a,b). In a DEC calculation there are many fragments, each
of which has a different truncated computational basis and thus its own
complementary space.

approximation.48,49 Furthermore, density fitting50,51 is now a
widely used tool which reduces the computational costs of
evaluating integrals. Several of the reduced scaling correlation
methods have been augmented with F12 corrections,52–58 and
it has been shown that the domain error of the local method
can be reduced by the F12 correction.59–62

We have recently introduced the Resolution of the Identity
(RI) MP2 method into the DEC framework by applying density
fitting techniques to all two-electron integrals occurring in the
DEC-MP2 method and denoted the resulting method DEC-
RIMP2.63 In this work we augment the DEC-RIMP2 method
with the MP2-F12 correction often labelled approximation
3C33,64 in combination with the fixed amplitude ansatz,65 using
density fitting also for the F12 integrals. The resulting DEC-
RIMP2-F12 method retains the linear-scaling and massively
parallel features of DEC-RIMP2 and corrects also for the basis
set error. The main purpose of the present study is to develop
the general theoretical framework necessary for introducing
the F12 correction within a DEC context. This is done for the
simplest correlated model, RIMP2, in order to set the stage for
future developments of more accurate DEC-CC-F12 models,
such as the coupled-cluster singles doubles (CCSD) model.

II. MP2-F12 THEORY

A. General considerations

A conventional MP2 calculation is formulated in terms
of Hartree–Fock (HF) molecular orbitals (MOs), which are

partitioned into a set of occupied (i, j, k, . . .) and virtual
(a,b,c, . . .) MOs. The MOs are expanded in a finite basis
of atomic orbitals (AOs), and we refer to this basis as
the computational basis. The philosophy behind the F12
method is to correct for the BSIE by approximately describing
the wave function components in the complementary space
α′, β′, γ′, . . ., which is in principle infinite, see Fig. 1 (left).
The notation for the different orbital spaces is summarized in
Table I.

A DEC calculation consists of many fragment calcula-
tions, where each fragment contains a subset of the occupied
and virtual orbital spaces for the full system. While in a
conventional calculation the orbitals in the complementary
space α′, β′, γ′, . . . represent the basis set error associated with
the use of a finite computational basis, in a DEC calculation
the complementary orbitals represent this basis set error as
well as the domain error associated with the use of truncated
occupied and virtual spaces in the fragment calculations,
see Fig. 1 (right). The F12 correction thus becomes even
more important in a DEC calculation than in a conventional
calculation.

Fig. 1 summarizes the basic philosophy of applying
the F12 correction in a DEC context. The specific working
equations for the RIMP2-F12 model using the approximation
3C64 and the fixed amplitude ansatz65 are given in Section II B.
These equations provide the necessary framework that allows
us to develop the DEC-RIMP2-F12 model in Section III.

B. MP2-F12 theory for a conventional system

The closed-shell correlation MP2-F12 energy in a real
spin-free orbital basis is given by35

EMP2-F12 = EMP2 + EF12, (1)
EMP2 = t i j

ab
(2gabi j − gabji ), (2)

where the Einstein summation convention has been used and
will be used throughout this paper (unless stated otherwise).
EMP2 is the standard MP2 energy, where gabi j is the Coulomb
integral (using the Dirac notation and MOs {φ})

gabi j = ⟨φiφ j |r−1
12 |φaφb⟩

=


dr1dr2 φi(r1)φ j(r2)r−1

12φa(r1)φb(r2), (3)

and t i j
ab

are the standard first-order doubles amplitudes, which
can be determined from the amplitude equation

gabi j + f ca t i j
cb
+ f cb t i jac − tk j

ab
f ik − t ikab f j

k
= 0, (4)

TABLE I. Index conventions for the different orbital spaces.

µ,ν AOs in computational basis
µ′′,ν′′, ρ′′,σ′′ AOs in finite resolution of identity space (CABSAO+)
p,q, r, s MOs in computational basis
i, j, k, l,m,n Occupied MOs in computational basis
a,b,c,d Virtual MOs in computational basis
a′,b′,c′,d′ MOs in finite complementary virtual basis (CABSMO)
α, β,γ,δ Orbitals in auxiliary basis set for density fitting

α′, β′,γ′, δ′ Orbitals in formally complete complementary basis
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where f j
i and f ba are occupied-occupied and virtual-virtual

Fock matrix elements. Using the fixed amplitude ansatz65 with
the approximation 3C,64 the F12 correlation energy correction
EF12 is partitioned into 4 contributions

EF12 = EV
F12 + EC

F12 + EB
F12 + EX

F12, (5)

EV
F12 =

5
4

V i j
i j −

1
4

V j i
i j , (6)

EC
F12 =

5
4

Cab
i j t i j

ab
− 1

4
Cab

ji t i j
ab
+

7
32

Cab
i j δt i j

ab
+

1
32

Cab
ji δt i j

ab
, (7)

EX
F12 = −

7
32

(
X ik
i j f j

k
+ X k j

i j f ik
)
− 1

32

(
X ki
i j f j

k
+ X jk

i j f ik
)
, (8)

EB
F12 =

7
32

Bi j
i j +

1
32

B j i
i j . (9)

The doubles amplitudes δtabi j are determined by solving the
amplitude equation

Cab
i j + f caδt i j

cb
+ f cbδt i jac − δtk j

ab
f ik − δt ikab f j

k
= 0, (10)

and the intermediates are given in Ref. 47

V kl
i j = ⟨φiφ j | f12Q̂12r−1

12 |φkφl⟩, (11)

Cpq
i j = ⟨φiφ j | f12Q̂12(F̂1 + F̂2)|φpφq⟩, (12)

X kl
i j = ⟨φiφ j | f12Q̂12 f12|φkφl⟩, (13)

Bkl
i j = ⟨φiφ j | f12Q̂12(F̂1 + F̂2) f12Q̂12|φkφl⟩, (14)

where F̂1 and F̂2 are Fock operators for electrons with
coordinates r1 and r2, respectively. We have chosen to solve
equations for both the standard MP2 amplitudes t i j

ab
in Eq. (4)

and the δt i j
ab

amplitudes in Eq. (10) to enable a separation of
the MP2 and F12 contributions which will prove useful for
error analyses, but we note that the terms involving t i j

ab
and

δt i j
ab

may be combined such that only one equation needs to
be solved. The intermediate matrix element in Eq. (11) can be
written as

V kl
i j = ⟨wi j |r−1

12 |φkφl⟩, (15)

where the two-electron F12-basis functions (geminals) are
given by

|wi j⟩ = Q̂12 f12|φiφ j⟩. (16)

Q̂12 is a projection operator that ensures strong orthogonality
of the geminals to any product of MOs within the
computational basis44

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (17)

where Ô and V̂ projects onto the finite occupied and finite
virtual spaces, respectively,

Ô1 =

i

|φi(r1)⟩⟨φi(r1)|, (18)

V̂1 =

a

|φa(r1)⟩⟨φa(r1)|. (19)

The inter-electronic distance function f12 can be written as65–67

f12 = −
1
γ

e−γr12 ≈
n

ν=1

cνe−γνr
2
12, (20)

where γ is a basis set dependent parameter which we have
chosen in accordance with the recommendations of Ref. 68.
The cν and γν parameters can be determined as described in
Ref. 67.

The geminals |wi j⟩ in Eq. (16) represent a two-
electron basis outside the computational basis, since the f12
operator working on |φiφ j⟩ yields two-electron states in the
formerly complete basis, while the Q̂12 operator projects out
components from the computational basis. The introduction
of geminals |wi j⟩ ultimately allows for an efficient description
of the Coulomb cusp in the wave function with a relatively
small computational basis.

III. DEC-RIMP2-F12

A. DEC-MP2

In a DEC calculation the HF orbitals are localized69–71

and assigned32 to atomic sites P,Q, . . .. The set of occupied
orbitals {φi} and virtual orbitals {φa} assigned to P is denoted
P and P, respectively. The standard MP2 correlation energy
expression in Eq. (2) can be rewritten in terms of atomic
fragment and pair fragment contributions

EMP2 =

P

EP +

P>Q

EPQ, (21)

where the atomic fragment energy EP and pair fragment
energy EPQ are given by

EP =

i j ∈P


ab

t i j
ab
(2gabi j − gabji ), (22)

EPQ =
�

i∈P
j∈Q

+

i∈Q
j∈P

�
ab

t i j
ab
(2gabi j − gabji ). (23)

At this point the energy expressions have not been
approximated, and Eqs. (2) and (21) give identical results.
Consider now the Coulomb integrals gabi j for i j ∈ P,

gabi j =


dτρia(r1)r−1

12 ρ jb(r2), (24)

where the charge distributions are defined by

ρia(r1) = φi(r1)φa(r1). (25)

The integral in Eq. (24) is non-vanishing only if ρia and ρ jb

are both non-zero. The ρia (ρ jb) charge distribution falls off
exponentially with the distance between a (b) and the center
P. Thus, virtual orbitals with significant influence on P are
restricted to a local domain close to center P, denoted [P̄],
and we may therefore restrict the summations in Eqs. (22) and
(23) in the following manner:

EP =

i j ∈P


ab∈[P̄]

t i j
ab
(2gabi j − gabji ), (26)

EPQ =
�

i∈P
j∈Q

+

i∈Q
j∈P

� 
ab∈[P̄]∪[Q̄]

t i j
ab
(2gabi j − gabji ). (27)

The amplitudes in DEC calculations are determined by solving
the MP2 amplitude equation in Eq. (4) in a restricted orbital
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space, e.g., the amplitudes t i j
ab

in Eq. (26) are determined
in a space with i j ∈ [P] and ab ∈ [P], where [P] ([P]) is
a set of occupied (virtual) orbitals spatially local to atomic
site P. The [P] and [P] spaces are determined adaptively
in a black box manner to yield atomic fragment energies
to a predefined precision, denoted the fragment optimization
threshold (FOT).32 Pair fragments are then determined using
unions of spaces from atomic fragment calculations. We note
that in practice Eq. (4) for each fragment is trivially solved
in a pseudocanonical basis, and the resulting amplitudes are
then transformed to the local basis where the atomic (or pair)
fragment energy is evaluated, see Ref. 63 for details.

A localized MO φP
r assigned to center P can be written

as

φP
r =

µ

χµCP
µr , (28)

where the index µ runs over all AOs in the computational
basis (see Table I). To avoid calculating AO integrals in the
full computational basis, we approximate the orbital φP

r by an
orbital φ̃P

r given by

φ̃P
r =


µ∈{P}AO

χµC̃P
µr , (29)

where the atomic fragment extent {P}AO is a restricted set
of atomic sites located close to atomic site P. The MO
coefficients C̃P

µr are determined such that φ̃P
r resembles φP

r as
much as possible in a least square sense. Details regarding the
determination of {P}AO and C̃P

µr are given in Ref. 32.
The number of atomic fragment calculations scales

linearly with the system size, while the number of pair
fragment calculations formally scales quadratically with the
system size. However, the pair fragment energies for distant
pairs describe dispersion effects, which decay with the inverse
pair distance to the sixth power.29 This can be used to screen
away pairs that are well separated in space without affecting
the overall precision.25,28 In this way, the total number of
fragments and thus the total computational time can be reduced
to scale linearly with system size for large systems. We also
note that the DEC method is massively parallelizable, since
the fragment calculations are independent.

B. DEC-MP2-F12

In a conventional F12 calculation, the basis functions for
the full molecular system is divided into a regular AO space
(the computational basis) and a CABSAO space, and the union
of these spaces are denoted the CABSAO+ space,49 see Fig. 2
(left). The CABSMO basis is then determined as the subset of
CABSAO+, which is orthogonal to the computational basis.

As described in Section III A, in a DEC-MP2 calculation
for an atomic fragment P, we operate with the spaces [P]
(occupied space), [P] (virtual space MOs), and {P}AO (regular
AOs), all of which span subspaces of the total computational
basis. In a DEC-MP2-F12 calculation, CABSAO and
CABSMO spaces are also needed. The CABSAO space for
atomic fragment P is created by including all CABSAO
orbitals assigned to atomic sites in the {P}AO space. The
resulting space is denoted {P}CABSAO, while the union of the

FIG. 2. In a conventional calculation the CABSAO+ space consists of a
regular AO and a CABSAO, while for a DEC fragment the regular AO and
CABSAO are subsets of those in the full calculation. For atomic fragment
P, the CABSMO [P]′ is constructed by orthogonalizing the fragment CAB-
SAO+, {P}CABSAO+, against the fragment MO space, [P]∪ [P].

{P}AO and {P}CABSAO orbitals is denoted the {P}CABSAO+
space. The CABSMO space [P]′ is then determined as the
subset of the {P}CABSAO+ space, which is orthogonal to the
union of the occupied and virtual MO spaces for the fragment,
[P] ∪ [P], see Fig. 2 (right).

The CABSMO space in a DEC calculation contains
some parts of the regular AO basis, since it is defined as
the space orthogonal to the MO space [P] ∪ [P], which is
generally smaller than {P}AO, see Fig. 2. This is not the
case in a conventional calculation, where the regular AO
basis spans the same space as the union of the occupied
and virtual MO spaces. We also note that the CABSMO for
atomic fragment P may contain very small components from
occupied orbitals outside [P]. This effectively implies that
the geminals in Eq. (16) may contain small components of
occupied orbitals i < [P], which would not be present in a
conventional calculation. However, the results in Section IV
indicate that the errors associated with this effect are negligible
compared to the precision defined by the FOT. The F12
energy expression in Eq. (5) is significantly more involved
than the standard MP2 energy expression in Eq. (2), but we
will now use locality arguments to demonstrate that the F12
energy contributions may also be expressed using the DEC
partitioning in Eq. (21). To show this we first consider EV

F12 in
Eq. (6). By analogy with the standard MP2 case in Eq. (21)
we can partition the energy into atomic fragment and pair
fragment contributions

EV
F12 =


P

EV
P +

P<Q

EV
PQ, (30)

where

EV
P =

i j ∈P

(5
4

V i j
i j −

1
4

V j i
i j

)
, (31)

EV
PQ =


i∈P
j∈Q

(5
4

V i j
i j −

1
4

V j i
i j

)
+

i∈Q
j∈P

(5
4

V i j
i j −

1
4

V j i
i j

)
. (32)
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The explicit expressions for the V -matrix can be written as44

V i j
i j = (gr)i ji j − r pq

i j g
i j
pq − rma′

i j g
i j

ma′ − ra
′m

i j g
i j

a′m, (33)

and EV
F12 can thus be partitioned into four contributions,

EV1, . . . ,EV4,

EV
F12 = EV1 + EV2 + EV3 + EV4, (34)

EV1 =
5
4
(gr)i ji j −

1
4
(gr) j ii j, (35)

EV2 = −5
4

r pq
i j g

i j
pq +

1
4

r pq
i j g

j i
pq, (36)

EV3 = −5
4

rma′
i j g

i j

ma′ +
1
4

rma′
i j g

j i

ma′, (37)

EV4 = −5
4

ra
′m

i j g
i j

a′m +
1
4

ra
′m

i j g
j i

a′m. (38)

In addition to the gabi j integral entering standard MP2
calculations (see Eq. (4)), the V -terms also involve integrals
of the types r pq

i j and (gr)pqi j
r pq
i j =

 
ρi p(r1) f12ρq j(r2)dr1dr2, (39)

(gr)pqi j =
 

ρi p(r1) f12r−1
12 ρq j(r2)dr1dr2. (40)

Using the same arguments as for the Coulomb integral in
Eq. (24), it follows that p and q need to be local to i and
j, respectively, for the integrals in Eqs. (39) and (40) to be
non-zero. This result will be used in the following locality
approximations.

Each of the terms in Eqs. (35)–(38) may be partitioned as
in Eq. (30). The DEC atomic and pair fragment energies for
the V1 term in Eq. (35) involve no locality approximations
and are written as

EV1
P =

5
4


i∈P
j∈P

(gr)i ji j −
1
4


i∈P
j∈P

(gr) j ii j, (41)

EV1
PQ =

5
4


i∈P
j∈Q

(gr)i ji j −
1
4


i∈P
j∈Q

(gr) j ii j

+
5
4


i∈Q
j∈P

(gr)i ji j −
1
4


i∈Q
j∈P

(gr) j ii j . (42)

For EV2 in Eq. (36), the p and q indices may be restricted
using locality approximations, and then resulting atomic and
pair fragment energies may be written as

EV2
P = −

5
4


i∈P
j∈P


p∈[P]
q∈[P]

g
pq
i j r i jpq +

1
4


i∈P
j∈P


p∈[P]
q∈[P]

g
pq
i j r j i

pq, (43)

EV2
PQ = −

5
4


i∈P
j∈Q


p∈[P]∪[Q]
q∈[P]∪[Q]

g
pq
i j r i jpq +

1
4


i∈P
j∈Q


p∈[P]∪[Q]
q∈[P]∪[Q]

g
pq
i j r j i

pq

− 5
4


i∈Q
j∈P


p∈[P]∪[Q]
q∈[P]∪[Q]

g
pq
i j r i jpq +

1
4


i∈Q
j∈P


p∈[P]∪[Q]
q∈[P]∪[Q]

g
pq
i j r j i

pq,

(44)

where we have defined [P] as the union of the occupied [P]
and virtual space [P], [P] = [P] ∪ [P]. By applying similar

locality arguments to the energy contribution in Eq. (37), the
atomic fragment and pair fragment energies can be written as

EV3
P = −

5
4


i∈P
j∈P


a′∈[P]′
m∈[P]

gma′
i j r i j

ma′ +
1
4


i∈P
j∈P


a′∈[P]′
m∈[P]

gma′
i j r j i

ma′,

(45)

EV3
PQ = −

5
4


i∈P
j∈Q


m∈[P]∪[Q]
a′∈[P∪Q]′

gma′
i j r i j

ma′

+
1
4


i∈P
j∈Q


m∈[P]∪[Q]
a′∈[P∪Q]′

gma′
i j r j i

ma′

− 5
4


i∈Q
j∈P


m∈[P]∪[Q]
a′∈[P∪Q]′

gma′
i j r i j

ma′

+
1
4


i∈Q
j∈P


m∈[P]∪[Q]
a′∈[P∪Q]′

gma′
i j r j i

ma′, (46)

where [P]′ denotes the CABSMO space (see Fig. 2) and
[P ∪Q]′ = [P]′ ∪ [Q]′. The same arguments can be applied
to the V4 term, where the atomic and pair fragment energies
become

EV4
P = −

5
4


i∈P
j∈P


a′∈[P]′
m∈[P]

ga
′m

i j r i j
a′m +

1
4


i∈P
j∈P


a′∈[P]′
m∈[P]

ga
′m

i j r j i

a′m,

(47)

EV4
PQ = −

5
4


i∈P
j∈Q


m∈[P]∪[Q]
a′∈[P∪Q]′

ga
′m

i j r i j
a′m

+
1
4


i∈P
j∈Q


m∈[P]∪[Q]
a′∈[P∪Q]′

ga
′m

i j r j i

a′m

− 5
4


i∈Q
j∈P


m∈[P]∪[Q]
a′∈[P∪Q]′

ga
′m

i j r i j
a′m

+
1
4


i∈Q
j∈P


m∈[P]∪[Q]
a′∈[P∪Q]′

ga
′m

i j r j i

a′m. (48)

The remaining terms in Eq. (5) may also be expressed using
the DEC partitioning scheme (see Appendix), and the total
F12 contribution can therefore be partitioned as in Eq. (21),

EF12 =

P

EF12
P +


P<Q

EF12
PQ. (49)

In our implementation the f12 function is the exponential
function in Eq. (20), which decays faster with the inter-
electronic distance than the Coulomb operator.35 Because
of this, the pair energy contributions for F12 will decay
faster with pair distance than the standard MP2 pair-energies
(inverse sixth power). This can be used to screen away pair
fragments with small energy contributions without affecting
the precision of the calculation. Analogous to the DEC-MP2
model, the total number of fragments can therefore be reduced
so that the DEC-MP2-F12 model scales linearly with system
size for large systems. We will return to this in Section IV C.

In summary, it is possible to calculate the F12 contribution
in terms of a linear-scaling number of independent fragment
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calculations in the same way as for the RIMP2 contribution,
cf. Eqs. (21) and (49). Since the fragment calculations
are independent, the DEC-RIMP2-F12 scheme becomes
massively parallel. However, the price to pay for a massively
parallel and linear-scaling algorithm is a significant repetitive
overhead (large pre-factor), because many of the same
integrals and amplitudes are required for the different
fragment calculations. As a rule of thumb (see Ref. 63),
if the conventional calculation can be carried out within a
reasonable time for a given molecular system, then the DEC
scheme usually requires more computational resources than
the conventional calculation. For this reason the purpose
of the DEC scheme is not to compete with conventional
implementations, but rather to enable calculations of
molecular systems that are too large to be treated by a
conventional implementation. In this paper we perform an
error analysis of the DEC-RIMP2-F12 scheme for systems
where a conventional calculation can be carried out to justify
the validity of the DEC-RIMP2-F12 approximations, while
large-scale calculations will be presented elsewhere.

C. Density fitting

We use density fitting50 (DF) to reduce the computational
cost and memory storage for all integrals that enter in Eqs. (21)
and (49). The gabi j integral entering the standard DEC-RIMP2
calculations is thus determined in the following manner:

gr spq ≈

α

Cα
prC

α
qs,

Cα
pr =


β

(φpφr |r−1
12 |φβ)(U−1/2)βα,

Uβα = (φβ |r−1
12 |φα),

(50)

where φα and φβ are part of the density fitting basis. The
DEC-RIMP2-F12 method also involves the following types
of integrals:

(r2)r spq ≈

α

Dα
prDα

qs,

Dα
pr =


β

(φpφr | f 2
12|φβ)(W−1/2)βα,

Wβα = (φβ | f 2
12|φα),

(51)

rr spq ≈

α

Fα
prFα

qs,

Fα
pr =


β

(φpφr | f12|φβ)(Z−1/2)βα,

Zβα = (φβ | f12|φα),

(52)

(gr)r spq ≈

α

Gα
prG

α
qs,

Gα
pr =


β

(φpφr |r−1
12 f12|φβ)(Y−1/2)βα,

Yβα = (φβ |r−1
12 f12|φα).

(53)

However, one of the integrals is treated differently using
robust fitting,51,72 since the numerical evaluation of the integral
matrix associated with the (∇ f12)2 operator with f12 expanded
in Gaussians is not guaranteed to be positive definite

(T)r spq ≈

α

Cα
pr(φα |(∇1 f12)2|φqφs)

+

α

(φpφr |(∇1 f12)2|φα)Cα
qs

−

α

Cα
pr(φα |(∇1 f12)2|φβ)Cβ

qs. (54)

In the calculation for the atomic fragment P, the density fitting
orbitals φα and φβ are restricted to atomic sites in the {P}AO
space.63

IV. RESULTS

In this section we investigate the performance of the
DEC-RIMP2-F12 method. Computational details are given in
Section IV A, and the errors of the correlation energy are
analysed in Section IV B, while Section IV C is devoted to an
analysis of the decay of pair fragment energies.

A. Computational details

For the proof of concept calculations we have chosen the
following set of test molecules (see Fig. 3):

• System A: A conjugated hydrocarbon, dodecahexaene
(C12H14).

• System B: A semi-linear, saturated fatty acid, lauric
acid (C12H24O2).

• System C: An α-helix structure with three glycine
residues (C6N3O4H11).

• System D: A cluster of 12 water molecules ((H2O)12).

These molecules are not only large enough to see the effects
of the DEC approximations (the fragments do not include the
whole molecule) but also small enough that the full molecular
reference calculations can be carried out. We note that the test
set contains a single-bonded carbon chain (B), a conjugated
system (A), as well as more three-dimensional systems (C,D)

FIG. 3. Test set of molecules. (a) System A. (b) System B. (c) System C. (d) System D.
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to ensure that systems of different chemical nature are tested.
The molecular geometries are given in the supplementary
material in Ref. 73.

We have performed two sets of calculations on each
system, denoted DZ and TZ. The one referred to as DZ
is performed with a cc-pVDZ-F12 basis68,74 for the regular
AO basis and cc-pVDZ-F12_OPTRI68,74 for the CABSAO,
with γ = 0.9 in Eq. (20) as recommended in Ref. 68. For
the auxiliary basis set, we have constructed a basis denoted
aug-cc-pwCVTZ-RI, which is build as the union of three
basis sets: cc-pVTZ-RI,68,74 aug-cc-pVTZ-RI diffuse,75

and cc-pwCVTZ-RI tight.76 The TZ calculations use the
following combinations: cc-pVTZ-F1268,74 for the regular
AO basis, cc-pVTZ-F12_OPTRI68,74 for the CABSAO with
γ = 1,68 and aug-cc-pwCVQZ-RI for the auxiliary basis
set. These are standard basis combinations recommended
in the literature, which ensure that the remaining basis set
incompleteness errors decrease in the sequence orbital basis
set error > CABS error > density fitting error (see Ref. 43).
The reasoning behind this is that the importance of the size of
the basis sets for the computational efficiency decreases in this
sequence. All calculations used the frozen core approximation
and were carried out using a local version of the quantum
chemistry program LSD.26,77

B. Correlation energy

We have performed DEC-RIMP2-F12 calculations
and investigated the RIMP2 and F12 correlation energy
contributions for different FOTs and compared the results
with a conventional calculation. We give the RIMP2, F12, and

RIMP2-F12 energies of the DEC calculations (ERIMP2,EF12,
and ERIMP2-F12) as well as the absolute errors compared to
a conventional calculation (∆ERIMP2,∆EF12, and ∆ERIMP2-F12)
for different FOTs for the DZ and TZ calculations in Tables II
and III, respectively. It is illustrative to plot also the relative
RIMP2 and RIMP2-F12 errors, ∆Erel

RIMP2 and ∆Erel
RIMP2-F12,

defined as

∆Erel
RIMP2 =

���
EDEC-RIMP2(FOT) − Eref

RIMP2

Eref
RIMP2

���, (55)

∆Erel
RIMP2-F12 =

���
EDEC-RIMP2-F12(FOT) − Eref

RIMP2-F12

Eref
RIMP2-F12

���, (56)

where the “ref” superscript denotes the energy of the
conventional reference calculation. The results are given in
Figs. 4 and 5.

The general trend in Tables II and III is that both the
RIMP2 error ∆ERIMP2 and the F12 error ∆EF12 are decreasing
systematically with the FOT. But more important, the total
RIMP2-F12 error∆ERIMP2-F12 is about 1-2 orders of magnitude
smaller than the RIMP2 error ∆ERIMP2 for both the DZ
and TZ calculations. This behavior is clearly illustrated in
Figs. 4 and 5, although a few deviations from this general
trend is observed, for example, for the DZ calculation for
system C with FOT = 10−2 a.u., the RIMP2-F12 error is
artificially low due to a fortuitous error cancellation of the
∆ERIMP2 and ∆EF12 errors. The numerical results in Tables II
and III (or Figs. 4 and 5) are in line with the general
considerations of Section II A which are summarized in
Fig. 1. In a DEC calculation, the F12 contribution corrects
both for the basis set incompleteness of the computational

TABLE II. DZ results for the test systems in Fig. 3. The DEC RIMP2, F12, and RIMP2-F12 energies (ERIMP2,
EF12, and ERIMP2-F12) as well as the corresponding errors compared to a conventional calculation (∆ERIMP2,
∆EF12, and ∆ERIMP2-F12) are presented. All energies are given in a.u.

System FOT ERIMP2 EF12 ERIMP2-F12 ∆ERIMP2 ∆EF12 ∆ERIMP2-F12

A 10−2 −1.6185 −0.5021 −2.1207 1.65 × 10−1 −1.73 × 10−1 −7.67 × 10−3

10−3 −1.7658 −0.3508 −2.1167 1.80 × 10−2 −2.16 × 10−2 −3.65 × 10−3

10−4 −1.7822 −0.3307 −2.1129 1.60 × 10−3 −1.47 × 10−3 1.32 × 10−4

10−5 −1.7836 −0.3293 −2.1130 1.57 × 10−4 −1.26 × 10−4 3.09 × 10−5

Ref −1.7838 −0.3292 −2.1130

B 10−2 −2.1751 −0.6361 −2.8112 1.82 × 10−1 −1.73 × 10−1 8.95 × 10−3

10−3 −2.3386 −0.4800 −2.8187 1.83 × 10−2 −1.68 × 10−2 1.48 × 10−3

10−4 −2.3548 −0.4650 −2.8199 2.13 × 10−3 −1.81 × 10−3 3.12 × 10−4

10−5 −2.3568 −0.4634 −2.8202 2.02 × 10−4 −1.84 × 10−4 1.80 × 10−5

Ref −2.3570 −0.4632 −2.8202

C 10−2 −2.2238 −0.6135 −2.8373 1.28 × 10−1 −1.26 × 10−1 2.29 × 10−3

10−3 −2.3326 −0.5107 −2.8433 1.91 × 10−2 −2.28 × 10−2 −3.65 × 10−3

10−4 −2.3501 −0.4894 −2.8396 1.60 × 10−3 −1.54 × 10−3 6.68 × 10−5

10−5 −2.3516 −0.4880 −2.8396 1.61 × 10−4 −1.28 × 10−4 3.27 × 10−5

Ref −2.3517 −0.4879 −2.8396

D 10−2 −2.9040 −0.7328 −3.6368 5.84 × 10−2 −6.28 × 10−2 −4.46 × 10−3

10−3 −2.9491 −0.6799 −3.6290 1.32 × 10−2 −9.89 × 10−3 3.36 × 10−3

10−4 −2.9608 −0.6712 −3.6319 1.54 × 10−3 −1.14 × 10−3 3.97 × 10−4

10−5 −2.9622 −0.6701 −3.6323 1.26 × 10−4 −1.02 × 10−4 2.43 × 10−5

Ref −2.9623 −0.6700 −3.6323



204112-8 Wang et al. J. Chem. Phys. 144, 204112 (2016)

TABLE III. TZ results for the test systems in Fig. 3. The DEC RIMP2, F12, and RIMP2-F12 energies (ERIMP2,
EF12, and ERIMP2-F12) as well as the corresponding errors compared to a conventional calculation (∆ERIMP2,
∆EF12, and ∆ERIMP2-F12). All energies are given in a.u.

System FOT ERIMP2 EF12 ERIMP2-F12 ∆ERIMP2 ∆EF12 ∆ERIMP2-F12

A 10−2 −1.8489 −0.2746 −2.1236 1.28 × 10−1 −1.26 × 10−1 2.02 × 10−3

10−3 −1.9597 −0.1676 −2.1273 1.69 × 10−2 −1.87 × 10−2 −1.76 × 10−3

10−4 −1.9752 −0.1501 −2.1254 1.40 × 10−3 −1.21 × 10−3 1.93 × 10−4

10−5 −1.9764 −0.1491 −2.1256 1.49 × 10−4 −1.26 × 10−4 2.26 × 10−5

Ref −1.9766 −0.1489 −2.1256

B 10−2 −2.4548 −0.3661 −2.8208 1.71 × 10−1 −1.54 × 10−1 1.75 × 10−2

10−3 −2.6051 −0.2299 −2.8350 2.10 × 10−2 −1.76 × 10−2 3.38 × 10−3

10−4 −2.6241 −0.2137 −2.8379 1.97 × 10−3 −1.46 × 10−3 5.17 × 10−4

10−5 −2.6259 −0.2124 −2.8383 1.88 × 10−4 −1.47 × 10−4 4.14 × 10−5

Ref −2.6261 −0.2123 −2.8384

C 10−2 −2.4974 −0.3509 −2.8482 1.41 × 10−1 −1.30 × 10−1 1.11 × 10−2

10−3 −2.6196 −0.2426 −2.8622 1.90 × 10−2 −2.18 × 10−2 −2.86 × 10−3

10−4 −2.6368 −0.2222 −2.8591 1.71 × 10−3 −1.43 × 10−3 2.83 × 10−4

10−5 −2.6384 −0.2209 −2.8593 1.57 × 10−4 −1.21 × 10−4 3.54 × 10−5

Ref −2.6385 −0.2208 −2.8593

D 10−2 −3.2845 −0.3721 −3.6566 6.76 × 10−2 −5.96 × 10−2 7.98 × 10−3

10−3 −3.3374 −0.3230 −3.6605 1.47 × 10−2 −1.05 × 10−2 4.12 × 10−3

10−4 −3.3508 −0.3134 −3.6642 1.32 × 10−3 −9.03 × 10−4 4.13 × 10−4

10−5 −3.3519 −0.3126 −3.6646 1.40 × 10−4 −1.02 × 10−4 3.78 × 10−5

Ref −3.3521 −0.3125 −3.6646

FIG. 4. Relative error plots for the four systems in Fig. 3 for the DZ calculations, see Eqs. (55) and (56).
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FIG. 5. Relative error plots for the four systems in Fig. 3 for the TZ calculations, see Eqs. (55) and (56).

basis and for the domain error introduced by truncating the
local MO spaces of the individual fragment calculations, and
the DEC-RIMP2-F12 errors are therefore much smaller than
the DEC-RIMP2 errors. This is illustrated by the fact that
|EF12| in Tables II and III increases with increasing FOT
in order to correct for the larger domain error associated
with the RIMP2 contribution. It is quite remarkable that the
F12 correction lowers the relative error by about an order
of magnitude. This implies that, when the F12 correction is
applied in a DEC-RIMP2 calculation, a good accuracy can be
obtained using a relatively sloppy FOT value.

We note that Werner and coworkers also found that the
F12 correction considerably reduces the error due to truncated
PAO domains in the context of their local MP2 (LMP2)
method.59,61,62 For PNO-based MP2-F12 and CCSD[F12]
Schmitz et al. observed a considerably faster decay of
the truncation error with the number of PNOs than in
the non-F12 methods, but this effect was not present in
the PNO implementations for the perturbative correction
CCSD(2)F12.

52 In the future publication we will investigate
how the CCSD(2)F12 correction performs in combination
with the DEC scheme. Finally, we also note that Pavošević
et al. observed that the F12 correction did not reduce the
PNO truncation error in their PNO-based MP2-F12 and
CCSD-F12 methods,55 where the PNOs are not expanded
in terms of domains of PAOs for each pair of occupied
orbitals, in contrast to PNO-LMP2-F12 scheme of Werner
and coworkers.61,62

C. Pair fragment analysis

In Section IV C 1 we investigate the behaviour of DEC-
RIMP2-F12 pair fragment energies with respect to the pair
distance, and in Section IV C 2 we analyze how the F12
correction is distributed among atomic and pair fragments.
For this study we have chosen to use palmitic acid (C16H34O2,
the molecular geometry is given in the supplementary material
in Ref. 73) using the DZ basis set and γ = 0.9 as described in
Section IV A. We consider the special case where all fragments
use the full virtual space, but the general conclusions are valid
for any choices of FOT.

1. DEC-RIMP2-F12 pair fragment energies

The DEC-RIMP2-F12 pair energies EPQ + EF12
PQ are

plotted in Fig. 6, and the immediate observation is that
they decay rapidly with pair distance RPQ. For large distances
the pair energies represent dispersion effects, which decay
as R−6

PQ
, as previously shown for MP2 pair energies.28,29 In

principle, the number of pair fragments scales quadratically
with the system size. However, the rapid decay of pair
energies in Fig. 6 implies that we can avoid performing
calculations for distant pairs without affecting the precision
of the final DEC-RIMP2-F12 energy, for example, using a
simple distance cutoff. If distant pairs are neglected, the
DEC-RIMP2-F12 algorithm becomes linear-scaling. A more
sophisticated strategy for screening away negligible pair
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FIG. 6. A loglog plot of the RIMP2-F12 pair fragment energies EPQ+E
F12
PQ

as a function of pair distances RPQ. The calculation has been carried out on
palmitic acid with a DZ basis and γ = 0.9 as described in Section IV A.

fragment contributions will be discussed in a forthcoming
paper.

2. Conceptual analysis of F12 pair fragment energies

In Fig. 7 we have separated the DEC-RIMP2-F12 pair
energies in Fig. 6 into RIMP2 (blue circles) and F12 (red
diamonds) contributions. Furthermore, the atomic fragment
energies have also been included (RPQ = 0). It is seen
that the F12 contribution decays faster than the RIMP2
contribution for larger pair distances. The faster decay of
the F12 pair contributions reflects that distant pairs primarily
describe dispersion effects which are already well described
by the DEC-RIMP2/cc-pVDZ-F12 pair fragment energies.

FIG. 7. A semilog plot of the pair fragment energies for RIMP2 (blue
circle), F12 (red diamond), and the difference between RIMP2/cc-pVQZ
and RIMP2/cc-pVDZ-F12 calculations (QZ-DZ, green square) as a function
of pair distances RPQ. The calculations were carried out on palmitic acid
where we have included the full virtual space for all fragments. The atomic
fragment energies are plotted at RPQ = 0. We note that the data points for
two of the atomic sites have been removed, because the QZ-DZ data points
were ill-defined due to a difference in the occupied orbital assignment for the
cc-pVDZ-F12 and cc-pVQZ basis sets.

Mathematically, this is related to the fact that the f12 function
decays faster with inter-electronic distance than the Coulomb
operator r−1

12 , see the discussion in Section III B.
To get a better understanding of how the F12 correction is

distributed among the fragments, it is instructive to calculate
a basis set correction to the DEC-RIMP2/cc-pVDZ-F12
energy in an alternative manner. For this purpose we have
calculated the absolute energy difference between the DEC-
RIMP2/cc-pVQZ and DEC-RIMP2/cc-pVDZ-F12 fragment
energies, which we will refer to as QZ-DZ (green squares
in Fig. 7). The F12 and QZ-DZ results in Fig. 7 thus
provide two different types of basis set corrections to the
DEC-RIMP2/cc-pVDZ-F12 fragment energies. The F12 and
QZ-DZ pair energy corrections have a similar distance
decay and the atomic fragment energies are also of similar
magnitude. The distribution of the F12 energy correction
among the atomic and pair fragments is thus similar to
the distribution obtained by increasing the cardinal number,
and in this sense F12 corrects “uniformly” for the basis set
error.

V. CONCLUSION AND OUTLOOK

We have introduced the DEC-RIMP2-F12 method by
augmenting the DEC-RIMP2 method with an F12 correction.
The new method inherits both the linear-scaling and the
massively parallel attributes from the parent method. In
addition, the DEC-RIMP2-F12 method has error control
defined by one threshold (FOT), and both the RIMP2 and
F12 errors have been shown to decrease systematically with
the FOT. Most importantly, the F12 contribution recovers
some of the domain error from the DEC-RIMP2 calculation
in addition to the basis set correction, and numerical results
have shown that (for a given FOT) the error of the correlation
energy is decreased by roughly one order of magnitude when
the F12 correction is applied. The present work should
be seen as the first step of a development where the F12
correction is introduced into the DEC framework for more
advanced correlation methods. For example, we are currently
augmenting the DEC-CCSD method with an F12 correction.
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APPENDIX: WORKING EQUATIONS

In this appendix we present the working equations for
the F12 contributions of the DEC-RIMP2-F12 method. The
notation for the orbital indices is given in Table I, and the
local orbital spaces for an atomic fragment P are illustrated
schematically in Fig. 2 (right).

The F12 contribution is written in terms of atomic and pair
fragment energy contributions in Eq. (49). The F12 atomic
fragment energy EF12

P and F12 pair fragment energy EF12
PQ

consist of four contributions (each of which can be further
decomposed) which we will denote the V , C, X and B terms,
see Eqs. (5)–(9)

EF12
P = EV

P + EC
P + EX

P + EB
P , (A1)

EF12
PQ = EV

PQ + EC
PQ + EX

PQ + EB
PQ. (A2)

1. The V terms

The expressions for the four V -terms are given in the
main text in Eqs. (41)–(48).

2. The C terms

The C-term in Eq. (7) may be written in terms of three
contributions

EC1 =
5
4
ga
′b

i j f aa′t
i j

ab
− 1

4
ga
′b

ji f aa′t
i j

ab
, (A3)

EC2 =
5
4
gaa

′
i j f ba′t

i j

ab
− 1

4
gaa

′
j i f ba′t

i j

ab
, (A4)

EC3 =
7

32
Cab
i j δt i j

ab
+

1
32

Cab
ji δt i j

ab
. (A5)

Locality arguments similar to the ones already introduced
for the V -terms in Section III B can be used to restrict
the summations to a local region near the occupied orbitals
resulting in the following atomic fragment contributions:

EC1
P =

5
4


i∈P
j∈P


a∈[P]
b∈[P]


a′∈[P]′

ga
′b

i j f aa′t
i j

ab

− 1
4


i∈P
j∈P


a∈[P]
b∈[P]


a′∈[P]′

ga
′b

ji f aa′t
i j

ab
, (A6)

EC2
P =

5
4


i∈P
j∈P


a∈[P]
b∈[P]


a′∈[P]′

gaa
′

i j f ba′t
i j

ab

− 1
4


i∈P
j∈P


a∈[P]
b∈[P]


a′∈[P]′

gaa
′

j i f ba′t
i j

ab
, (A7)

EC3
P =

7
32


i∈P
j∈P


a∈[P]
b∈[P]

Cab
i j δt i j

ab
+

1
32


i∈P
j∈P


a∈[P]
b∈[P]

Cab
ji δt i j

ab
,

(A8)

and the pair fragment energy contributions

EC1
PQ =

5
4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

ga
′b

i j f aa′t
i j

ab
− 1

4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

ga
′b

ji f aa′t
i j

ab

+
5
4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

ga
′b

i j f aa′t
i j

ab
− 1

4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

ga
′b

ji f aa′t
i j

ab
, (A9)

EC2
PQ =

5
4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P]′

gaa
′

i j f ba′t
i j

ab
− 1

4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

gaa
′

j i f ba′t
i j

ab

+
5
4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P]′

gaa
′

i j f ba′t
i j

ab
− 1

4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]


a′∈[P∪Q]′

gaa
′

j i f ba′t
i j

ab
, (A10)

EC3
PQ =

5
4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]

gaa
′

i j f ba′t
i j

ab
− 1

4


i∈P
j∈Q


a∈[P]∪[Q]
b∈[P]∪[Q]

gaa
′

j i f ba′t
i j

ab
+

5
4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]

gaa
′

i j f ba′t
i j

ab
− 1

4


i∈Q
j∈P


a∈[P]∪[Q]
b∈[P]∪[Q]

gaa
′

j i f ba′t
i j

ab
.

(A11)

3. The X terms

The X-term in Eq. (8)35 consist of four contributions

EX1 =
7

32

(r2)iki j f j

k
+ (r2)k ji j f ik


+

1
32

(r2)kii j f j

k
+ (r2) jki j f ik


, (A12)

EX2 = − 7
32


r pq
i j r ikpq f j

k
+ r pq

i j rk jpq f ik

− 1

32


r pq
i j rkipq f j

k
+ r pq

i j r jk
pq f ik


, (A13)
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EX3 = − 7
32


rma′
i j r ikma′ f

j

k
+ rma′

i j rk j
ma′ f

i
k


− 1

32


rma′
i j rkima′ f

j

k
+ rma′

i j r jk

ma′ f
i
k


, (A14)

EX4 = − 7
32


ra
′m

i j r ika′m f j

k
+ ra

′m
i j rk j

a′m f ik

− 1

32


ra
′m

i j rkia′m f j

k
+ ra

′m
i j r jk

a′m f ik

. (A15)

By applying locality arguments the atomic fragment contributions become

EX1
P =


i∈P
j∈P


k ∈[P]

( 7
32

(r2)iki j f j

k
+ (r2)k ji j f ik


+

1
32

(r2)kii j f j

k
+ (r2) jki j f ik

 )
, (A16)

EX2
P = −


i∈P
j∈P
k∈[P]


p∈[P]
q∈[P]

( 7
32


r pq
i j r ikpq f j

k
+ r pq

i j rk jpq f ik

+

1
32


r pq
i j rkipq f j

k
+ r pq

i j r jk
pq f ik

 )
, (A17)

EX3
P = −


i∈P
j∈P
k∈[P]


m∈[P]
a′∈[P]′

( 7
32


rma′
i j r ikma′ f

j

k
+ rma′

i j rk j
ma′ f

i
k


+

1
32


rma′
i j rkima′ f

j

k
+ rma′

i j r jk

ma′ f
i
k

 )
, (A18)

EX4
P = −


i∈P
j∈P
k∈[P]


m∈[P]
a′∈[P]′

( 7
32


ra
′m

i j r ika′m f j

k
+ ra

′m
i j rk j

a′m f ik

+

1
32


ra
′m

i j rkia′m f j

k
+ ra

′m
i j r jk

a′m f ik
 )
, (A19)

and the pair fragment contributions are given by

EX1
PQ =


i∈P
j∈Q

k∈[P]∪[Q]

( 7
32

(r2)iki j f j

k
+ (r2)k ji j f ik


+

1
32

(r2)kii j f j

k
+ (r2) jki j f ik

 )

+

i∈P
j∈Q

k∈[P]∪[Q]

( 7
32

(r2)iki j f j

k
+ (r2)k ji j f ik


+

1
32

(r2)kii j f j

k
+ (r2) jki j f ik

 )
, (A20)

EX2
PQ = −


i∈P
j∈Q

k∈[P]∪[Q]


p∈[P]∪[Q]
q∈[P]∪[Q]

( 7
32


r pq
i j r ikpq f j

k
+ r pq

i j rk jpq f ik

− 1

32


r pq
i j rkipq f j

k
+ r pq

i j r jk
pq f ik

 )

−

i∈Q
j∈P

k∈[P]∪[Q]


p∈[P]∪[Q]
q∈[P]∪[Q]

( 7
32


r pq
i j r ikpq f j

k
+ r pq

i j rk jpq f ik

− 1

32


r pq
i j rkipq f j

k
+ r pq

i j r jk
pq f ik

 )
, (A21)

EX3
PQ = −


i∈P
j∈Q

k∈[P]∪[Q]


m∈[P]∪[Q]
a′∈[P∪Q]′

( 7
32


rma′
i j r ikma′ f

j

k
+ rma′

i j rk j
ma′ f

i
k


+

1
32


rma′
i j rkima′ f

j

k
+ rma′

i j r jk

ma′ f
i
k

 )

−

i∈Q
j∈P

k∈[P]∪[Q]


m∈[P]∪[Q]
a′∈[P∪Q]′

( 7
32


rma′
i j r ikma′ f

j

k
+ rma′

i j rk j
ma′ f

i
k


+

1
32


rma′
i j rkima′ f

j

k
+ rma′

i j r jk

ma′ f
i
k

 )
, (A22)

EX4
PQ = −


i∈P
j∈Q

k∈[P]∪[Q]


m∈[P]∪[Q]
a′∈[P∪Q]′

( 7
32


ra
′m

i j r ika′m f j

k
+ ra

′m
i j rk j

a′m f ik

+

1
32


ra
′m

i j rkia′m f j

k
+ ra

′m
i j r jk

a′m f ik
 )

−

i∈Q
j∈P

k∈[P]∪[Q]


m∈[P]∪[Q]
a′∈[P∪Q]′

( 7
32


ra
′m

i j r ika′m f j

k
+ ra

′m
i j rk j

a′m f ik

+

1
32


ra
′m

i j rkia′m f j

k
+ ra

′m
i j r jk

a′m f ik
 )
. (A23)
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4. The B terms

The nine B-terms originating from Eq. (9) can be found
in Ref. 64 as

EB1 =
7

32
T i j
i j −

1
32

T j i
i j , (A24)

EB2 =
7

32
(r2)µ′′ji j (hJ)iµ′′ +

1
32

(r2)µ′′jj i (hJ)iµ′′, (A25)

EB3 =
7

32
(r2)iµ′′i j (hJ) j

µ′′ +
1
32

(r2) jµ′′ii (hJ) j
µ′′, (A26)

EB4 = rρ′′µ′′

i j Kν′′
µ′′r

i j

ρ′′ν′′ + rρ′′µ′′

j i Kν′′
µ′′r

j i

ρ′′ν′′, (A27)

EB5 = −
(
r pm
i j f ν

′′
µ′′r

i j

ν′′m + r pm
ji f ν

′′
µ′′r

j i

ν′′m

)
, (A28)

EB6 = −
(
r pa
i j f qpr i jqa + r pa

ji f qpr j i
qa

)
, (A29)

EB7 =
(
ra
′m

i j f nmr i j
a′n + ra

′m
ji f nmr j i

a′n

)
, (A30)

EB8 = −2
(
ra
′m

i j f µ′′
m r i j

a′µ′′ + ra
′m

ji f µ′′
m r j i

a′µ′′

)
, (A31)

EB9 = −2
(
r pa
i j f a

′
a r i j

a′a + r pa
ji f a

′
p r j i

a′a

)
. (A32)

The notation (hJ) ji denotes the core Hamiltonian and the
Coulomb term of the Fock matrix

(hJ) ji = ⟨φi |ĥ + Ĵ |φ j⟩ = ⟨φi |ĥ|φ j⟩ +

m

2g jm
im , (A33)

while Kν′′
µ′′ denotes the exchange term of the Fock matrix

Kν′′
µ′′ = −


m

gmν′′
µ′′m. (A34)

The intermediate T i j
i j entering the first term may be rewritten

as

T i j
i j = ⟨φiφ j |[[ f12,T̂1], f12]|φiφ j⟩
= ⟨φiφ j |[[ f12,T̂2], f12]|φiφ j⟩
= ⟨φiφ j |(∇1 f12)2|φiφ j⟩, (A35)

where T̂k is the kinetic energy operator for electron k. By
applying similar locality approximations as for the V,C, and

X-terms, the B-terms may be written as

EB1
P =

7
32


i∈P
j∈P

T i j
i j +

1
32


i∈P
j∈P

T j i
i j , (A36)

EB1
PQ =

7
32


i∈P
j∈Q

T i j
i j +

1
32


i∈P
j∈Q

T j i
i j +

7
32


i∈Q
j∈P

T i j
i j +

1
32


i∈Q
j∈P

T j i
i j ,

(A37)

EB2
P =

7
32


i∈P
j∈P


µ′′∈{P}′′

(r2)µ′′ji j (hJ)iµ′′

+
1
32


i∈P
j∈P


µ′′∈{P}′′

(r2)µ′′jj i (hJ)iµ′′, (A38)

EB2
PQ =

7
32


i∈P
j∈Q


µ′′∈{P∪Q}′′

(r2)µ′′ji j (hJ)iµ′′

+
1
32


i∈P
j∈Q


µ′′∈{P∪Q}′′

(r2)µ′′jj i (hJ)iµ′′

+
7
32


i∈Q
j∈P


µ′′∈{P∪Q}′′

(r2)µ′′ji j (hJ)iµ′′

+
1
32


i∈Q
j∈P


µ′′∈{P∪Q}′′

(r2)µ′′jj i (hJ)iµ′′, (A39)

EB3
P =

7
32


i∈P
j∈P


µ′′∈{P}′′

(r2)iµ′′i j (hJ) j
µ′′

+
1

32


i∈P
j∈P


µ′′∈{P}′′

(r2) jµ′′ii (hJ) j
µ′′, (A40)

EB3
PQ =

7
32


i∈P
j∈Q


µ′′∈{P∪Q}′′

(r2)iµ′′i j (hJ) j
µ′′ +

1
32


i∈P
j∈Q


µ′′∈{P∪Q}′′

(r2) jµ′′ii (hJ) j
µ′′

+
7

32


i∈Q
j∈P


µ′′∈{P∪Q}′′

(r2)iµ′′i j (hJ) j
µ′′ +

1
32


i∈Q
j∈P


µ′′∈{P∪Q}′′

(r2) jµ′′ii (hJ) j
µ′′, (A41)

EB4
P =

7
32


i∈P
j∈P


µ′′,ν′′, ρ′′∈{P}′′


rρ′′µ′′

i j Kν′′
µ′′r

i j

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

i j

ν′′ρ′′



+
1

32


i∈P
j∈P


µ′′,ν′′, ρ′′∈{P}′′


rρ′′µ′′

i j Kν′′
µ′′r

j i

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

j i

ν′′ρ′′


, (A42)

EB4
PQ =

7
32


i∈P
j∈Q


µ′′,ν′′, ρ′′
∈{P∪Q}′′


rρ′′µ′′

i j Kν′′
µ′′r

i j

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

1
ν′′ρ′′i j


+

1
32


i∈P
j∈Q


µ′′,ν′′, ρ′′
∈{P∪Q}′′


rρ′′µ′′

i j Kν′′
µ′′r

j i

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

j i

ν′′ρ′′



+
7
32


i∈Q
j∈P


µ′′,ν′′, ρ′′
∈{P∪Q}′′


rρ′′µ′′

i j Kν′′
µ′′r

i j

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

i j

ν′′ρ′′


+

1
32


i∈Q
j∈P


µ′′,ν′′, ρ′′
∈{P∪Q}′′


rρ′′µ′′

i j Kν′′
µ′′r

j i

ρ′′ν′′ + rµ′′ρ′′

i j Kν′′
µ′′r

j i

ν′′ρ′′


, (A43)
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EB5
P = −

7
32


i∈P
j∈P


µ′′,ν′′∈{P}′′

m∈[P]


rµ′′m
i j Fν′′

µ′′r
i j

ν′′m + rµ′′m
ji Fν′′

µ′′r
j i

ν′′m


− 1

32


i∈P
j∈P


µ′′,ν′′∈{P}′′

m∈[P]


rµ′′m
i j Fν′′

µ′′r
i j

ν′′m + rµ′′m
ji Fν′′

µ′′r
j i

ν′′m


, (A44)

EB5
PQ = −

7
32


i∈P
j∈Q


µ′′,ν′′∈{P∪Q}′′

m∈[P]∪[Q]


rµ′′m
i j Fν′′

µ′′r
i j

ν′′m + rµ′′m
ji Fν′′

µ′′r
j i

ν′′m


− 1

32


i∈P
j∈Q


µ′′,ν′′∈{P∪Q}′′

m∈[P]∪[Q]


rµ′′m
i j Fν′′

µ′′r
j i

ν′′m + rµ′′m
ji Fν′′

µ′′r
i j

ν′′m



− 7
32


i∈Q
j∈P


µ′′,ν′′∈{P∪Q}′′

m∈[P]∪[Q]


rµ′′m
i j Fν′′

µ′′r
i j

ν′′m + rµ′′m
ji Fν′′

µ′′r
j i

ν′′m


− 1

32


i∈Q
j∈P


µ′′,ν′′∈{P∪Q}′′

m∈[P]∪[Q]


rµ′′m
i j Fν′′

µ′′r
j i

ν′′m + rµ′′m
ji Fν′′

µ′′r
i j

ν′′m


, (A45)

EB6
P = −

7
32


i∈P
j∈P


p,q∈[P]
a∈[P]


r pa
i j Fq

p r i jqa + r pa
ji Fq

p r j i
qa


− 1

32


i∈P
j∈P


p,q∈[P]
a∈[P]


r pa
i j Fq

p r j i
qa + r pa

ji Fq
p r i jqa


, (A46)

EB6
PQ = −

7
32


i∈P
j∈Q


p,q∈[P∪Q]
a∈[P]∪[Q]


r pa
i j Fq

p r i jqa + r pa
ji Fq

p r j i
qa


− 1

32


i∈P
j∈Q


p,q∈[P]∪[Q]
a∈[P]∪[Q]


r pa
i j Fq

p r j i
qa + r pa

ji Fq
p r i jqa



− 7
32


i∈Q
j∈P


p,q∈[P∪Q]
a∈[P]∪[Q]


r pa
i j Fq

p r i jqa + r pa
ji Fq

p r j i
qa


− 1

32


i∈Q
j∈P


p,q∈[P]∪[Q]
a∈[P]∪[Q]


r pa
i j Fq

p r j i
qa + r pa

ji Fq
p r i jqa


, (A47)

EB7
P =

7
32


i∈P
j∈P


m,n∈[P]
p′∈[P]′


r p′m
i j Fn

mr i j
p′n + r p′m

ji Fn
mr j i

p′n


+

1
32


i∈P
j∈P


m,n∈[P]
p′∈[P]′


r p′m
i j Fn

mr j i

p′n + r p′m
ji Fn

mr i j
p′n


, (A48)

EB7
PQ =

7
32


i∈P
j∈Q


m,n∈[P]∪[Q]
p′∈[P∪Q]′


r p′m
i j Fn

mr i j
p′n + r p′m

ji Fn
mr j i

p′n


+

1
32


i∈P
j∈Q


m,n∈[P]∪[Q]
p′∈[P∪Q]′


r p′m
i j Fn

mr j i

p′n + r p′m
ji Fn

mr i j
p′n



+
7

32


i∈Q
j∈P


m,n∈[P]∪[Q]
p′∈[P∪Q]′


r p′m
i j Fn

mr i j
p′n + r p′m

ji Fn
mr j i

p′n


+

1
32


i∈Q
j∈P


m,n∈[P]∪[Q]
p′∈[P∪Q]′


r p′m
i j Fn

mr j i

p′n + r p′m
ji Fn

mr i j
p′n


, (A49)

EB8
P = −

7
32


i∈P
j∈P


p′∈[P]′
µ′′∈{P}′′
m∈[P]

2

r p′m
i j Fµ′′

m r i j
p′µ′′ + r p′m

ji Fµ′′
m r j i

p′µ′′


− 1

32


i∈P
j∈P


p′∈[P]′
µ′′∈{P}′′
m∈[P]

2

r p′m
i j Fµ′′

m r j i

p′µ′′ + r p′m
ji Fµ′′

m r i j
p′µ′′


, (A50)

EB8
PQ = −

7
32


i∈P
j∈Q


p′∈[P∪Q]′
µ′′∈{P∪Q}′′
m∈[P]∪[Q]

2

r p′m
i j Fµ′′

m r i j
p′µ′′ + r p′m

ji Fµ′′
m r j i

p′µ′′


− 1

32


i∈P
j∈Q


p′∈[P∪Q]′
µ′′∈{P∪Q}′′
m∈[P]∪[Q]

2

r p′m
i j Fµ′′

m r j i

p′µ′′ + r p′m
ji Fµ′′

m r i j
p′µ′′



− 7
32


i∈Q
j∈P


p′∈[P∪Q]′
µ′′∈{P∪Q}′′
m∈[P]∪[Q]

2

r p′m
i j Fµ′′

m r i j
p′µ′′ + r p′m

ji Fµ′′
m r j i

p′µ′′


− 1

32


i∈Q
j∈P


p′∈[P∪Q]′
µ′′∈{P∪Q}′′
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, (A51)

EB9
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, (A52)
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2
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2

r pa
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, (A53)

where {P}′′ ≡ {P}CABSAO+ and {P ∪Q}′′ ≡ {P}′′ ∪ {Q}′′.
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