Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps

T. C. J. Turlings, J. H. Tumlinson,* W. J. Lewis

Abstract

Corn seedlings release large amounts of terpenoid volatiles after they have been fed upon by caterpillars. Artificially damaged seedlings do not release these volatiles in significant amounts unless oral secretions from the caterpillars are applied to the damaged sites. Undamaged leaves, whether or not they are treated with oral secretions, do not release detectable amounts of the terpenoids. Females of the parasitic wasp Cotesia marginiventris (Cresson) learn to take advantage of those plant-produced volatiles to locate hosts when exposed to these volatiles in association with hosts or host by-products. The terpenoids may be produced in defense against herbivores but may also serve a secondary function in attracting the natural enemies of these herbivores.

MOST studies on the significance of herbivore-induced production of secondary metabolites in plants focus on the direct ecological interactions between plants and the herbivores that feed on them (1-3). Only a few investigators (4-6) have suggested active interactions between herbivore-damaged plants and the third trophic level of insect parasitoids and predators. There are many examples of these insects being attracted to plant odors (7), but only recently have studies indicated an active involvement of plants (5, 6). Dicke and co-workers presented the first convincing evidence for an active release of volatiles by herbivore-infested plants that attract natural enemies of the herbivorous attackers (6). As yet, no herbivore-specific factor that induces characteristic changes in plants, used by foraging entomophagous insects, has been pinpointed.
It is common that parasitic wasps learn to respond to specific odors that are associated with their hosts (8). The often observed flexibility in these responses has been attributed to the variability in space and time of reliable cues that may best guide the wasps to available hosts (9). Their ability to learn should allow parasitoids to distinguish among odors of plants with different types of damage, thus enabling them to focus on plants damaged by potential hosts. Chemical responses evoked in plants by herbivorous hosts may therefore play an important role in host-habitat location by parasitoids. We report that herbivore-inflicted injury induces plants to release volatile terpenoids. The plant response is greatly enhanced by

[^0]the oral secretions of caterpillars and is exploited by the parasitic wasp C. marginiventris, which uses the terpenoids as cues to locate hosts.

In flight tunnel trials, females of the parasitoid C. marginiventris are attracted to the odors emanating from a complex of host larvae feeding on com (Zea mays L., var. "Ioana sweet com") seedlings (10). Of the three main components of a complete planthost complex, the damaged plants, and not the host larvac or their feces, are the main source of the volatiles that attract the parasitoid (10).

Volatiles from a complete plant-host complex consisting of beet armyworm larvac (BAW), Spodoptera exigua (Hübner), that were feeding on corn seedlings inside an allglass collection system (1i) were collected in traps containing Super Q adsorbent (12). Gas chromatographic analyses of methylene chloride washes of the traps revealed the consistent presence of eleven compounds
(Fig. 1). The first four most volatile compounds were identified as leafy aldehydes, an alcohol, and an acetate, commonly found in the leaves of many plants (13). The remaining compounds were, except for indole, all terpenoids.
All the identified compounds are released by the caterpillar-damaged seedlings and not by the caterpillars themselves nor by something in their feces or other by-products (14). Additional volatile collections, howevcr , revealed that the larger terpenoids, particularly α-trans-bergamotene, (E) - β-farnesene, and (E)-nerolidol, were only released by leaves that had been damaged by caterpillars for several hours. Plants subjected to caterpillar damage for 2 hours released the larger terpenoids only in minute amounts immediately afterward. The following day, however, large amounts of these compounds could be detected (Fig. 2).

Fast growing plants like corn invest much of their energy in growth and little in de-

Fig. 1. A chromatographic profile of the volatiles collected from a complex of BAW caterpillars feeding on com seedlings. The identified compounds are 1, (Z)-3-hexenal; 2, (E)-2-hexenal; 3, (Z)-3-hexen-1-ol; 4, (Z)-3-hexen-1-yl acctate; 5 , linalool; $6,(3 E)-4,8$-di-methyl-1,3,7-boonatriene; 7, indole; 8 , α-traus-bergamoxenc; 9 , (E - β-farnesenc; 10, (E)-nerolidol; and 11, (3E,7E)-4,8, 12 -trimethyl-1,3,7,11tridecatetracne. For this particular collection, 15 early third instar caterpillars were allowed to feed on three 2 -week-old grecnhousegrown corn seedlings. After 14 bours of feeding, the seedlings together with the caterpillars were
 transferred into the collection apparatus (11). Volatiles were collected for 2 hours in traps containing 25 mg of Super Q adsorbent (12). The traps were then extracted with 200μ of methylene chloride and an intemal standard (IS) in 50μ l of methylene chloride (n-nonyl-acetate, $20 \mathrm{ng} / \mu \mathrm{l}$) was added. Of the extract $2.5 \mu \mathrm{l}$ was injected onto a Quadrex methyl silicone column (50 m by 0.25 mm inside diameter, $0.25 \mu \mathrm{~m}$ film) inside a Varian model 3700 gas chromatograph. Temperature program: $50^{\circ} \mathrm{C}$, rate $5^{\circ} \mathrm{C}$ min to $180^{\circ} \mathrm{C}$. Compounds were identified by mass spectroscopy and, where necessary, by NMR spectroscopy. Their identities were confirmed with synthetic versions of the candidate compounds (14).

Fig. 2. Chromatographic profiles of collected volatiles from three com seedlings damaged by BAW caterpillars over 2 hours. The volatiles were collected either just after damage took place (fresh damage) or 16 hours later on the following day (old damage). The collection procedure was the same as described in the legend to Fig. 1. No BAW larvae were present during the collections. Note that compounds 1 through 3 were not detected; these compounds only show up in signiificant amounts when the caterpillars are actively damaging the plants (14). Peak numbers correspond with the numbers and compounds given with Fig. 1. Each intemal standard (noctane and n-nonyl acetate) represents $1 \mu \mathrm{~g}$.
fense. When under herbivore attack, however, their flexible defense expressions will allow a fast induced production of carbonbased defensive chemicals (3). We suspect that the terpenoids released by corn seedlings serve in a direct defense against herbivores. In addition, their volatility and high turnover rate should make them reliable indicators of the presence of hosts for parasitoids. They would be even more reliable if the induced response is specific for damage inflicted by herbivores. This was tested.
Ten third instar BAW caterpillars were allowed to feed on three corn seedlings for 2 hours (late afternoon). During the same period, six other seedlings were damaged artificially with a razor blade, whereby the damage done by the caterpillars was roughly mimicked. Three of the artificially damaged corn seedlings, as well as three undamaged seedlings, were treated with the regurgitated gut contents of other corn-fed BAW caterpillars (15). The following morning, volatiles were collected from all four treatment groups for 2 hours. Striking differences in terpenoid and indole release were found among the collections when analyzed by gas chromatography (Fig. 3). Again, leaves with larval damage released the compounds in relatively large amounts. Seedlings that only underwent artificial damage released far less. The artificially damaged seedlings that were treated with caterpillar regurgitant released the most dominant compounds and in amounts similar to those found for the larval-damaged seedlings. The control seedlings, undamaged and treated with regurgi-
tant, released virtually no detectable amounts of volatiles.

Other seedlings that were subjected to these treatments were tested for attractiveness to experienced (16) C. marginiventris females in a flight tunnel (17). In two-choice tests, the insects strongly preferred the leaves with larval damage over leaves with just artificial damage (Fig, 4). The artificially damaged leaves that had been treated with caterpillar regurgitant were clearly preferred over the leaves with only artificial damage. When given the choice between leaves with larval damage and artificially damaged leaves treated with regurgitant, the females showed no preference (Fig. 4C). Fewer females flew to undamaged leaves treated with regurgitant than to artificially damaged leaves (Fig. 4D). This is in agreement with the observation that artificial damage alone does result in the release of some terpenoids (Fig. 3) and shows that the regurgitant by itself did not elicit attraction. The results strongly indicate that the observed plant response is greatly enhanced by the feeding of BAW caterpillars. It involves not only damage, but requires a factor in the regurgitant (most likely in the saliva) of the caterpillars as well. Whether this factor involves enzymes, microorganisms, or something else has yet to be determined.

We also found that volatiles collected from BAW larvae feeding on corn were attractive to the parasitoid when applied on a piecce of paper (14). An equivalent synthetic blend containing all 11 compounds was attractive as well (14). Response depended on an insect's experience: females that had experienced BAW caterpillars feeding on corn (16) responded more to a natural blend than to a synthetic blend. Females that had experienced only a synthetic blend responded equally well to the synthetic and natural blend (14).
It is clear that experience plays a major role in the behavior of the parasitoids (16), and the preference for the terpenoid-releasing plants may have been learned during the preflight experience. Again, this demonstrates the highly flexible host-searching behavior exhibited by these insects that allows

Fig. 3. Chromatographic profiles of com seedlings with natural caterpillar damage, or with various artificial treatments. The day before collections took place, the seedlings were either darnaged by BAW caterpillars for 2 hours (caterpillar damage), artificially damaged with a razor blade during the same period (artificial damage), artificially damaged and treated with caterpillar regurgitant (15) (artificial damage + regurgitant), or keft undamaged but treated with regurgitant (15) (no damage + regurgitant). The collection procedure was the same as described in the legend to Fig. 1. Peak numbers correspond to the numbers and compounds given in Fig. 1 .
them to learn odors closely associated with their hosts.

Many herbivores have developed variable levels of resistance to plant-produced chemicals, making those chemicals less effective in direct defense. Attraction of the natural enemies of herbivores, however, may result in an additional advantage to the plants, thereby maintaining selection pressures that favor the production of these chemicals in the observed high quantities. Cost-benefit anal-

Fig. 4. Responses during two-choice flight tunnel tests (17) by experienced Cotesias marginiventris females to com seedlings thar underwent various treatments. A day after the leaves were treated, females had the opportunity to choose berween the odors released by seedlings with (A) artificial damage (Art) or caterpillar damage (Cat); (B) artificial damage (Art) or artificial damage treated with regurgitant (Art + Reg); (C) caterpillar damage (Cat) or artificial damage treated with regurgitant (Art + Reg); (D) artificial damage (Art) or no damage treated with regurgitant (Reg). On five different days eight females were tested to each combination $(n=40)$. The open bars represent the females that did not fly to the odor sources. Total numbers are given with each bar. Asterisks indicate statistically significant preferences for a particular odor (χ^{2} test, $P<0.05$).

yses concerning plant defensive strategies should consider how plants can safeguard themselves against severe herbivore injury by attracting predators or parasitoids (18). The terpenoids are reliable cues for the parasitoids because they are closely associated with herbivore damage and they are released even during the frequent pauses in eating by the caterpillars (Fig. 2). We do not yet know whether the induced reaction is limited to the damaged sites, or whether it is systemic as has been shown in other studies (19, 20).

Our results indicate an active release of chemicals by plants that is exploited by hostsearching parasitoids. It is likely that the terpenoids and indole are involved in other types of interactions as well. They may, for example, act as oviposition deterrents for herbivorous insects searching for sites to deposit their eggs or function in communication between plants (20,21). More knowledge about the injury-dependent production of airbome semiochemicals by plants may point to new possibilities for biological control of pest insects.

REFERENCES AND NOTES

1. D. F. Rhoodes in Herviowes, Their Jutenations wivk Secoulary Pout Mrabaluts, G. Rosenthal and D. Janzen, Eds. (Academic Press, New York, 1979). pe. 4-54
2. M. Kogan and J. Paxton in Plane Resistonce as Lesects, P. A Hedin, Ed. (American Chemical Socicty, Washington, DC, 1983), p. 153.
3. P. D. Coley, J. P. Bryant, F. S. Chapin III, Science 230,895 (1985).
4. P. W. Prece ed al, Aumr. Res. Enol. Syr. 11, 41 (1980); P. W. Price, in Intenciates of Plaw Revistive and Passinnids and Predusers of hosects, D, J. Bocthel and R. D. Ekenbary, Eds. (Wiky, New York, 1986). pp. 11-20.
5. H. Nadel and J. J. M. van Alphen, Eriomal. Exp Apsl. 45, 181 (1987).
6. M. Dicke and M. W. Sabelis, Neth. J. Zool. 38, 148 (1988); M. Dicke at al., J. Chem. End 16, 381 (1990).
7. D. A. Noedlund, W. J. Lems, M. A. Altieri, in Nowl Alpecs of fuex-PIent hurcatises, P. Barbosa and D. K. Letourneau, Eds. (Wilcy, New York, 1988), Pp 65-90; D. W. Whitman, in Biodyially Amiev Nata${ }^{\text {rif }}$ Produts: Porewid Lise is Apriadsore, H. G. Cutler, Ed. (Amerkan Chemical Socicty, Washington, DC, 1988), pp. 386-396
8. J. J. M. van Alphen and L. E. M. Vct, in lnsed Paranitits, I. K. Waage and D. I. Grearhead, Eds. (Academic Press, London, 1986), pp. 23-61; W. J. Levis and J. H. Tumlinson, Natuer 331, 257 (1988); L. E. M. Ver and A. W. Groenewold, J. Chew. Ecol , in press.
9. D. R. Papuy and R. J. Prokopy, Amm. Rov, Emand. 34, 315 (1989); L. E. M. Vet, W. J. Lewis, D. R. Papaj, J. C. van Lenteren. J. Gseet Bekar. 3, 471 (1990); W. J. Lewis, L. E. M. Vet, J. H. Tumlinson, J. C. van Lenteren, D. R. Papa, Envirw. Ewhwod. 19,1113 (1990).
10. T. C. J. Turlings, J. H. Tumlinson, F. J. Eller, W. J. Lewis, Embud. Exp. Appl, in press
11. The glass collection chambers, similar to those descriked by J. H. Croes 11. Ciow. Exal. 6, 781 (1980)], consisted of ruo parts. Purified, humidifiod air entered the first part through a $4-\mathrm{cm}-$ long 0.25 -inch outer dameter inkt, which connected anto a wader section (6 cm long, 3 cm inner diamster) that contained a ghass frit. After passing through the frit the air entered the second part < 15 cm long; 3 cm inner diameter) which conrained the odor source. The second part tapered into a $4-\mathrm{cm}$ long, 0.25 -inch outer diameter, outlet. Both parts lad fitting ball joints that were clamped together. Super Q (12) traps were connected to the outiet with brass 5 wagclock fittings containing teflion ferules. Air passed through the chambers at a rate of $300 \mathrm{ml} / \mathrm{mm}$. The air was pushed in at the inkt side and pulled at the corter, such that the pressure inside the system was slightly higher than outside. See T C. J. Turlings a al. (14) for details.
12. Super Q, 80/100 (Cat. No, 2735) (Alltech Associstes Inc., Deerfield, IL).
13. J. H. Visser, S. van Seraten, H. Maarse, J. Chew. Eial. 5, 13 (1979)
14. T. C. J. Turlings a al., in preparation.
15. The leaves were treated by grabloing a caterpillar with a pair of forceps, pinching the head region with another pair until regurgitation was indiced. The regurgitant was then immediancly rubbed over a site on a seedling that had just previously been damaged.

All artificially damsaged sites on three of the seedlings were treated this way. As a cootrol equal amounts of regurgitant were rubbed over the leaves of three seedlings that did not recene any type of damage.
16. Before relcase in the tunnel (17) cach test insect was given a 20 -s concact experience wath a plant host compler of BAW caterpillars on corn. Experience on host-infened kwes dramatically increases the subse quent responses by C. nuggiviventis females so hostrelated odors in offactonsetric bioassays [T. C. I Turlings, J. H. Tumlinson, W. J. Lewis, L. E. M Vet. 1. Jeser Bedav. 2, 217 (1988); T. C. J Turlinge, J. W. A. Scbecperaker, L. E. M. Vet, J. H Tumlinson, W. J. Lewis, J. Chow. Eod. 16, 1577 (1990)]
17. Responses of indridual C. margivivonatis females to oklors were toted in a Plexighas flight tumnel. Dimensions of the tumnel were 60 cm by 60 cm in cross section and 2.4 m long. Air was palked through the tunnel at $0.15 \mathrm{~m} / \mathrm{sec}$ and was echausted through a $30-\mathrm{cm}$ flecible pipe with a fan. More details on the tunnel are given by F. J. Fller, J. H. Tumlinson, and W. J. Lcwis [Enwow. Estowl. 17, 745 (1988)]. Seedlings used as odor sources were placed 20 cm apart and 30 cm from the runnel floor appeoximately 80 cm upwind from the insect rekase point. After the females were experianced (16), they were reIcased into the tunnel from a glass funnel (10). Their responses and choices were recorded. If a female, after three trials, had not flown all the way oo a source the flight was considered incomplete.
18. M. W. Sabelis and M. C. M. de Jong, Oikes 53, 247 (1988); M. Dicke and M. W. Sabelis, in Vambun in Grsumb Ratr and Productivity of Hipher Mants, H Lambers, M. L. Cambridge, H. Konings, T. L. Pons, Ekk (SPB Academic, The Haguc, 1989). pp 341-358.
19. T. R. Green and C. A. Ryan, Stiave 175, 776 (1972); D. Bowles, Native 343, 314 (1990).
20. M. Dicke, M. W. Sabelis, J. Takabayashi,). Bruin, M. A. Posthumus, J. Clow. Eow. 16, 3091 (1990).
21. I. T. Baldwin and J. C. Schulta, Soince 221, 277 (1983); D. F. Rhoades, Romer Ady. Pignohiaw. 19 195 (1985); H. J. Zeringue, Prytodemistry 26, 1357 (1987).
22. Wc thank L. E. M. Vet, H. T. Alborn, M. Dicke, E A. Bernays, H. J. Brockmann, F. L. Petert, and P. J. Landolt for critically reading and commenting on the onginal manuscript. T. J. Rossignol provided technical assistance. Synchetic a-mati-bergamotenc was gencrously provided by D. B. Mcthaine. Supported in part by a grane from the Intermational Division of the USDA, OICD, and a Fulloright grane provided by the USIA.

[^0]: T. C. I. Turlings and J. H. Tumlinson, Insect Attractants Bchavior and Rasax Biokogy Research Lalooratory, Agriculrural Researth Scrvice, US. Department of Agrieul ture, Gainesvile, FL. 32604.
 W. J. Lewis, Insect Biology and Population Management Research Laboratory, Agricultural Rescarch Servioc, U.S. Department of Agriculture, Tifton, GA 31793-
 0748. 0748
 *To whom correspondence should be addressed.

