Exploiting a Natural Conformational Switch to Engineer an Interleukin-2 Superkine

Aron M. Levin^{1,*}, Darren L. Bates^{2,*}, Aaron M. Ring^{2,*}, Carsten Krieg^{3,4,*}, Jack T. Lin⁵, Leon Su⁵, Miro E. Raeber^{3,4}, Gregory R. Bowman⁶, Paul Novick⁶, Vijay S. Pande⁶, Holbrook E. Kohrt⁷, C. Garrison Fathman⁵, Onur Boyman^{3,4,†}, and K. Christopher Garcia^{1,2,†}

¹Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.

²Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

³Laboratory of Applied Immunobiology, University of Zurich, Zurich, CH-8006, Switzerland.

⁴Allergy Unit, Department of Dermatology, University Hospital Zurich, Zurich, CH-8091, Switzerland.

⁵Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305, USA.

⁶Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

⁷Department of Internal Medicine, Divisions of Hematology and Oncology, Stanford University, Stanford, CA 94304, USA.

[†]To whom correspondence should be addressed. E-mail: <u>kcgarcia@stanford.edu</u> (K.C.G.) or <u>onur.boyman@uzh.ch</u> (O.B.)

*These authors contributed equally to this work.

Abstract

The immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells ¹⁻³. Considerable effort has been invested using IL-2 as a therapeutic agentfor a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic. On activated T cells, IL-2 signals through a quaternary "high affinity" receptor complex consisting of IL-2, IL-2Ra (termed CD25), IL-2R β , and γ_c^{4-8} . Naïve T cells express only a low density of IL-2R β and γ_c , and are therefore relatively insensitive to IL-2, but acquire sensitivity after CD25 expression, which captures the cytokine and presents it to IL-2R β , and then y_c. Here, using in vitro evolution, we eliminated IL-2's functional requirement for CD25 expession by engineering an IL-2"superkine" (termed super-2) with increased binding affinity for IL-2R^β. Crystal structures of super-2 in free and receptor-bound forms showed that the evolved mutations are principally in the core of the cytokine, and not participating in direct IL-2R^β contacts. Rather, molecular dynamics simulations indicated that the evolved mutations in super-2 locked a fexible helix in the cytokine's IL-2R β binding site into a position similar to a conformation seen when IL2 is bound to CD25. The evolved mutations in super-2 also recapitulated the functional role of CD25 by enabling potent phosphorylation of STAT5 and vigorous proliferation T cells irrespective of CD25 expression. Compared to IL-2, super-2 induced superior expansion of cytotoxi€ cells, leading to improved anti-tumor responses in vivo. Importantly, super-2 elicited proportionally lesexpansion of T regulatory cells and reduced pulmonary edema, the principal dose-limiting adverseffects of IL-2 in the clinic. Collectively, we show that invitro evolution has captured a natural structurantechanism that enhances IL-2 potency and regulates target cell specificity, which has implications for immunotherapy.