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Abstract

Nanosecond-level clock synchronization can be an en-

abler of a new spectrum of timing- and delay-critical

applications in data centers. However, the popular

clock synchronization algorithm, NTP, can only achieve

millisecond-level accuracy. Current solutions for achiev-

ing a synchronization accuracy of 10s-100s of nanosec-

onds require specially designed hardware throughout

the network for combatting random network delays and

component noise or to exploit clock synchronization in-

herent in Ethernet standards for the PHY.

In this paper, we present HUYGENS, a software clock

synchronization system that uses a synchronization net-

work and leverages three key ideas. First, coded probes

identify and reject impure probe data—data captured by

probes which suffer queuing delays, random jitter, and

NIC timestamp noise. Next, HUYGENS processes the pu-

rified data with Support Vector Machines, a widely-used

and powerful classifier, to accurately estimate one-way

propagation times and achieve clock synchronization to

within 100 nanoseconds. Finally, HUYGENS exploits a

natural network effect—the idea that a group of pair-wise

synchronized clocks must be transitively synchronized—

to detect and correct synchronization errors even further.

Through evaluation of two hardware testbeds, we

quantify the imprecision of existing clock synchroniza-

tion across server-pairs, and the effect of temperature on

clock speeds. We find the discrepancy between clock fre-

quencies is typically 5-10µs/sec, but it can be as much

as 30µs/sec. We show that HUYGENS achieves synchro-

nization to within a few 10s of nanoseconds under vary-

ing loads, with a negligible overhead upon link band-

width due to probes. Because HUYGENS is implemented

in software running on standard hardware, it can be read-

ily deployed in current data centers.

1 Introduction

Synchronizing clocks in a distributed system has been

a long-standing important problem. Accurate clocks

enable applications to operate on a common time axis

across the different nodes, which, in turn, enables key

functions like consistency, event ordering, causality and

the scheduling of tasks and resources with precise tim-

ing. An early paper by Lamport [13] frames the question

of ordering events in distributed systems and proposes a

solution known for obtaining partial orders using “vir-

tual clocks,” and Liskov [16] describes many fundamen-

tal uses of synchronized clocks in distributed systems.

Our work is motivated by several compelling new

applications and the possibility of obtaining very fine-

grained clock sychronization at an accuracy and cost

that is much less than provided by current solutions.

For example, in finance and e-commerce, clock syn-

chronization is crucial for determining transaction or-

der: a trading platform needs to match bids and offers

in the order in which they were placed, even if they en-

tered the trading platform from different gateways. In

distributed databases, accurate clock synchronization al-

lows a database to enforce external consistency [8] and

improves the throughput and latency of the database. In

software-defined networks, the ability to schedule tasks

with precise timing would enforce an ordering of for-

warding rule updates so that routing loops can be avoided

[18]. In network congestion control, the ability to send

traffic during time slots assigned by a central arbiter

helps achieve high bandwidth and near-zero queueing

delays [28]. Indeed, precisely synchronized clocks can

help to revise the “clockless” assumption underlying the

design of distributed systems and change the way such

systems are built.

Consider distributed databases as an example. Span-

ner [8] provides external consistency1 at a global scale

1A database is said to be externally consistent if it can ensure for

each transaction A that commits before another transaction B starts, A

is serialized before B.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation    81



using clocks synchronized to within T units of time,

typically a few milliseconds. In order to achieve ex-

ternal consistency, a write-transaction in Spanner has

to wait out the clock uncertainty period, T , before re-

leasing locks on the relevant records and committing.

Spanner can afford this wait time because T is com-

parable to the delay of the two-phase-commit protocol

across globally distributed data centers. However, for

databases used by real-time, single data center applica-

tions, the millisecond-level clock uncertainty would fun-

damentally limit the database’s write latency, throughput

and performance. Thus, if a low latency database, for

example, RAMCloud [24], were to provide external con-

sistency by relying on clock synchronization, it would be

critical for T to be in the order of 10s of nanoseconds so

as not degrade the performance.

This relationship between clock synchronization and

database consistency can been seen in CockroachDB[1],

an open source scalable database. In CockroachDB, un-

certainty about clocks in the system can cause perfor-

mance degradation with read requests having to be re-

tried. That is, a read issued by server A with timestamp

t for a record at server B will be successful if the last

update of the record at B has a timestamp s, where s ≤ t

or s > t +T . Else, clock uncertainty necessitates that A

retry the read with timestamp s. For example, in an ex-

perimental CockroachDB cluster of 32 servers we read

128 records, each updated every 25 ms. We found that

as the clock uncertainty T was reduced from 1 ms to 10

us and then to 100 ns, the retry rate fell from 99.30% to

4.74% and to 0.08% in an experiment with 10,000 reads

for each value of T .

Thus, while it is very desirable to have accurately syn-

chronized clocks in distributed systems, the following

reasons make it hard to achieve in practice. First, transac-

tion and network speeds have shortened inter-event times

to a degree which severely exposes clock synchroniza-

tion inaccuracies. The most commonly used clocks have

a quartz crystal oscillator, whose resonant frequency is

accurate to a few parts per million at its ideal operat-

ing temperature of 25-28◦C [34]. When the tempera-

ture at a clock varies (in either direction), the resonant

frequency decreases quadratically with the temperature

(see [34] for details). Thus, a quartz clock may drift

from true time at the rate of 6-10 microseconds/sec. But

the one-way delay (OWD), defined as the raw propaga-

tion (zero-queuing) time between sender and receiver,

in high-performance data centers is under 10 µs. So,

if the clocks at the sender and receiver are not fre-

quently and finely synchronized, packet timestamps are

rendered meaningless! Second, “path noise” has made

the nanosecond-level estimation of the OWD, a criti-

cal step in synchronizing clocks, exceedingly difficult.

Whereas large queuing delays can be determined and re-

moved from the OWD calculation, path noise—due to

small fluctuations in switching times, path asymmetries

(e.g., due to cables of different length) and clock times-

tamp noise, which is in the order of 10s–100s of ns is not

easy to estimate and remove from the OWD.

The most commonly used methods of estimating the

OWD are the Network Time Protocol (NTP) [21], the

Precision Time Protocol (PTP) [4], Pulse Per Second

(PPS) [25]—a GPS-based system, and the recently pro-

posed Data center Time Protocol (DTP) [14]. We re-

view these methods is more detail later; for now, we note

that they are either cheap and easy to deploy but per-

form poorly (NTP) or provide clock synchronization to

an accuracy of 10s–100s of nanoseconds in data center

settings but require hardware upgrades (PTP, DTP and

PPS) which impose significant capital and operational

costs that scale with the size of the network.

The algorithm we propose here, HUYGENS, achieves

clock synchronization to an accuracy of 10s of nanosec-

onds at scale, and works with current generation network

interface cards (NICs) and switches in data centers with-

out the need for any additional hardware. A crucial fea-

ture of HUYGENS is that it processes the transmit (Tx)

and receive (Rx) timestamps of probe packets exchanged

by a pair of clocks in bulk: over a 2 second interval

and simultaneously from multiple servers. This contrasts

with PTP, PPS and DTP which look at the Tx and Rx

timestamps of a single probe–ack pair individually (i.e.,

4 timestamps at a time). By processing the timestamps

in bulk, HUYGENS is able to fully exploit the power of

inference techniques like Support Vector Machines and

estimate both the “instantaneous time offset” between a

pair of clocks and their “relative frequency offset”. These

estimates enable HUYGENS to be not bound by rounding

errors arising from clock periods.

Contributions of the paper. The goal of our work is

to precisely synchronize clocks in data centers, thereby

making “timestamping guarantees” available to divers

applications as a fundamental primitive alongside band-

width, latency, privacy and security guarantees. We have

chosen to synchronize clocks (e.g. the PTP Hardware

Clocks, or PHCs [2]) in the NICs attached to servers. By

accurately synchronizing NIC clocks, we obtain glob-

ally accurate timestamps for data, protocol messages and

other transactions between different servers. NIC-to-

NIC probes encounter the minimum amount of noise

in the path propagation time as compared to server-to-

server probes which also suffer highly variable stack la-

tencies. Our main contributions are:

(1) A comprehensive and large-scale study of clock dis-

crepancies in real-world networks. The major findings

are: (i) pairwise clock rates can differ by as much as

30µs/sec; (ii) clock frequencies vary at time scales of

minutes due to temperature effects, but are fairly constant
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over 2–4 second intervals; and (iii) a quantification of the

effect of queueing delays, path noise and path asymme-

try on clock synchronization.

(2) The HUYGENS algorithm and its real-time extension

HUYGENS-R, which can respectively be used by appli-

cations for aligning timestamps offline or for real-time

clock synchronization.

(3) A NetFPGA-based verification in a 128-server, 2-

stage Clos data center network shows that HUYGENS and

HUYGENS-R achieve less than 12–15ns average error

and under 30–45ns 99th percentile error at 40% network

load. At 90% load, the numbers increase to 16–23ns and

45–58ns, respectively.

(4) We propose a lightweight implementation of HUY-

GENS that runs “in-place” with the probe data. In a 40

Gbps data center testbed, HUYGENS only takes around

0.05% of the link bandwidth and less than 0.44% of a

server’s CPU time.

2 Literature survey

As mentioned in the Introduction, all methods of deter-

mining clock offsets involve estimating the OWD. In or-

der to estimate the OWD between clocks A and B, A

sends a probe packet to B containing the transmission

time of the probe. The OWD can either be estimated di-

rectly by determining the time spent by the probe at each

element en route from A to B (e.g., as in PTP), or by

estimating the RTT (where B sends a probe back to A).

In the latter case, assuming the OWD is equal in both

directions, halving the estimated RTT gives the OWD.

Using the estimate of the OWD and the probe’s transmit

time, B can work out the time at A and synchronize with

it. We survey the four methods mentioned previously for

estimating the OWD between a pair of clocks.

NTP. NTP [21] is a widely-used clock synchronization

protocol. It estimates the offset between two clocks by

considering multiple probe-echo pairs, picking the three

with the smallest RTTs, and taking half their average to

get the OWD. It achieves an accuracy of tens of millisec-

onds [23] to 10s of microseconds [26], depending on the

network type (e.g., wide-area vs data center).

NTP uses simple methods to process the probe data,

hence it only achieves a coarse-grained clock synchro-

nization. HUYGENS does stronger processing of the

same probe data to extract a much more refined estimate

of the offset between a pair of clocks. It then uses the

network effect to obtain a further 3x reduction in the es-

timation error.

PTP. PTP [4] uses hardware timestamps to counter stack

delays. It uses “transparent” switches which are able to

record the ingress and egress time of a packet to accu-

rately obtain packet dwell times at switches. With more

extensive hardware support at switches and a dedicated

network for carrying PTP packets the White Rabbit sys-

tem [22] can achieve sub-nanosecond precision. How-

ever, the accuracy in a conventional fully “PTP-enabled

network” ranges from a few tens to hundreds of nanosec-

onds [32]. If the network is not fully PTP-enabled, syn-

chronization accuracy can degrade by 1000x even when

the two clocks are only a few hops apart [32]. Detailed

tests conducted in [14] show that PTP performs poorly

under high load, corroborating similar findings in [32].

DTP. The DTP protocol [14] sidesteps the issue of esti-

mating time-varying queue sizes, stack times, and most

noise variables by making a clever observation: The

IEEE 802.3 Ethernet standards provide a natural clock

synchronization mechanism between the transmitter and

receiver PHYs at either end of a wire. Therefore, DTP

can achieve a very fine-grained clock synchronization

without increasing network traffic and its performance is

not load-dependent. It is limited by the clock-granularity

of the standard: for a 10Gbps network link the granular-

ity is 6.4ns, and since four timestamps are involved in

calculating OWD, a single hop synchronization accuracy

of 25.6ns can be achieved. DTP requires special extra

hardware at every PHY in the data center, necessitating a

fully “DTP-enabled network” for its deployment.

PPS. PPS obtains accurate (atomic) time using a GPS re-

ceiver antenna mounted on the roof of the data center. It

brings this signal to a multi-terminal distribution box us-

ing cables with precisely measured lengths. The multi-

terminal box amplifies and relays the clock over cables

(also with precisely known lengths) to NICs which are

capable of receiving PPS signals. This makes PPS pro-

hibitively expensive to deploy at scale, most installations

have a designated “stratum 1” zone with just a few (typ-

ically tens of) servers that have access to PPS.

In summary, current methods of synchronizing clocks

in a data center are either not accurate enough or require

hardware modifications to almost every element of a data

center, making them very expensive to deploy.

3 Our approach

The HUYGENS algorithm exploits some key aspects of

modern data centers2 and uses novel estimation algo-

rithms and signal processing techniques. We look at

these in turn.

Data center features. Most data centers employ a sym-

metric, multi-level, fat-tree switching fabric [30, 29]. By

symmetry we mean that the number of hops between any

pair of servers, A and B, is the same in both directions.

We do not require the paths to involve identically the

2Even though this paper is focused on clock synchronization in data

centers, we believe the principles extend to wide area networks, possi-

bly with a loss in synchronization accuracy.
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Figure 1: Coded probes

same switches in both directions.3 Symmetry essentially

equalizes the OWD between a pair of NICs in each direc-

tion, except for a small amount of “path noise” (quanti-

fied in Section 4). Furthermore, these propagation times

are small, well-bounded by 25–30µs. Abundant bisec-

tion bandwidth and multiple paths between any pair of

servers ensure that, even under 40-90% load, there is a

reasonably good chance probes can traverse a network

without encountering queueing delays. Finally, there are

many servers (and NICs), making it possible to synchro-

nize them in concert.

Algorithms and techniques. HUYGENS sets up a syn-

chronization network of probes between servers; each

server probes 10–20 others, regardless of the total num-

ber of servers in the network.

Coded probes. Naturally, probes which encounter no

queueing delays and no noise on the path convey the

most accurate OWDs. To automatically identify such

probes, we introduce coded probes: a pair of probe pack-

ets going from server i to j with a small inter-probe

transmission time spacing of s. If the spacing between

the probe-pair when they are received at server j is very

close to s, we deem them as “pure” and keep them both.

Else, they are impure and we reject them. In Figure 1 the

first two possibilities on the receiver side show impure

probes and the third shows pure probes. Coded probes

are very effective in weeding out bad probe data and they

improve synchronization accuracy by a factor of 4 or 5.4

Support Vector Machines. The filtered probe data is pro-

cessed by an SVM [9], a powerful and widely-used clas-

sifier in supervised learning. SVMs provide much more

accurate estimates of propagation times between a pair

of NICs than possible by the simpler processing meth-

ods employed by NTP and PTP. In Section 4 we shall

see that “path noise” is small in magnitude and patho-

logical in the sense that it has “negative-delay” compo-

nents. Thus, simple techniques such as estimating the

3In Section 4 we show that a real-world 40 Gbps network has highly

symmetric paths, for symmetry as defined here.
4The idea of using a pair of closely-spaced packets to determine the

available bandwidth on a path was introduced in [12], see also [10].

Whereas that use case needs the separation between probes to increase

in order to determine available bandwidth, we require no separation.

min-RTT or linear regression to process the probe data

do not work. They can filter out large delays but cannot

cope with small-magnitude path noise and are adversely

affected by the negative-delay components which artifi-

cally shrink the OWD. The combination of coded probes

and SVMs copes well with these problems.

Network effect.5 Even though a data center network in-

creases the path noise between clocks A and B because

of multiple hops, it can simultaneously increase the sig-

nal by providing other clocks and new, potentially non-

overlapping, paths for A and B to synchronize with them.

Therefore, it is better—more accurate and scalable—to

synchronize many clocks simultaneously than a pair of

them at a time, as explained below. A significant by-

product of using the network effect is that it is particu-

larly good at detecting and correcting path asymmetries.

A B
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Figure 2: The Network Effect. How more clocks can help

identify and reduce synchronization errors

Consider Figure 2. In (a), after pair-wise synchroniza-

tion, clocks A and B believe that B is ahead of A by

20 units of time (A
20−→B). However, the truth (shown in

green) is that B is ahead of A by only 10 units of time.

A and B can never discover this error by themselves.

In (b), a third clock C has undergone pairwise synchro-

nization with A and B, and the resulting pairwise offsets

are shown on the directed edges. Going around the loop

A→B→C→A, we see that there is a loop offset surplus

of 10 units! This immediately tells all three clocks there

are errors in the pairwise synchronization. The bottom of

Figure 2 (b) shows two possible corrections to the pair-

wise estimates to remove the loop surplus. Of these two

choices, the HUYGENS algorithm will pick the one on the

right, A
16.7−→B

−18.3−→C
1.6−→A. This is the minimum-norm so-

lution and evenly distributes the loop surplus of 10 onto

the 3 edges. Of course, if a fourth clock, D, joins the net-

work, the two loop surpluses, equal to 10 and 30, are re-

distributed according to the minimum-norm solution by

5Synchronization must be reflexive, symmetric and transitive; net-

work effect is a deliberate exploitation of the transitivity property.
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HUYGENS and this ends up correcting the discrepancy

on edge A→B to its correct value of 10 units.

In general, the minimum-norm solution does not com-

pletely correct synchronization errors, nor does it evenly

distribute loop surpluses. Its effect is to significantly pull

in outlier errors (see Section 5).

The network effect is related to co-operative clock

synchronization algorithms in the wireless literature [31,

15, 17, 19]. In the wireless setting, synchronization is

viewed from the point of view of achieving consensus;

that is, nodes try to achieve a global consensus on time

by combining local information, and they use ”gossip al-

gorithms” to do so. Thus, a node exchanges informa-

tion on time with neighboring nodes and this informa-

tion gradually flows to the whole network with time syn-

chronization as the outcome. This approach is appropri-

ate in ad hoc wireless networks where nodes only know

their neighbors. However, convergence times can be long

and it can be hard to guarantee synchronization accuracy.

Like [31], HUYGENS uses the network effect to directly

verify and impose the transitivity property required of

synchronization. In the wired setting in which HUY-

GENS operates, far away nodes are connected via the syn-

chronization network, typically over a data center fabric.

Thus, the probes have to contend with potentially severe

network congestion, but the synchronization network can

be chosen and not be restricted by network connectivity

as in the ad hoc wireless case. The synchronization algo-

rithm can be central and hence very fast (one-shot matrix

multiplication—see Section 5) and yield provable syn-

chronization error reduction guarantees.

4 Clocks in the real-world

In this section we use two testbeds and empirically study

the degree to which pairs of clocks differ and drift with

respect to one another, the effect of temperature in alter-

ing clock frequencies, and a characterization of queueing

delays and path noise affecting the accurate measurement

of the end-to-end propagation time of probes.

Testbed T-40. This is a 3-stage Clos network, all links

running at 40Gbps. T-40 has 20 racks each with a top-

of-the-rack (TOR) switch, and a total of 237 servers with

roughly 12 servers per rack. There are 32 switches at

spine layer 1. Each TOR switch is connected to 8 of these

switches while each spine layer 1 switch is connected to

5 TOR switches. Thus, there is a 3:2 (12:8) oversub-

scription at the TOR switches. Each spine layer 1 switch

is connected to 8 spine layer 2 switches and vice versa

(there are 32 spine layer 2 switches). T-40 represents a

state-of-the-art data center.

Testbed T-1. T-1 is a 2-stage Clos network with all links

running at 1Gbps. It consists of 8 racks, each rack has a

1Gbps TOR switch and 16 logical servers. The 16 logi-

cal servers are built out of 4 Jetway network appliances

(JNA) [11], 4 logical servers per JNA, as explained be-

low. Each TOR switch has 16 downlinks and 8 uplinks,

each uplink connecting it to one of 8 logically distinct

spine switches. Thus, there is a 2:1 oversubscription at

the TOR switches. The 8 logically distinct spine switches

are built from 4 48-port 1Gbps physical switches using

VLAN configurations [33]. T-1 respresents a low-end

commodity data center.

For reasons of economy—in monetary, space and heat

dissipation terms—we use JNAs to build servers in T-1.

Each JNA has a 4-core Intel Celeron J1900 CPU, 8GB

RAM, 250GB of disk storage, and ten 1Gbps Ethernet

ports. Each Ethernet port has an Intel I211 NIC. The

logical servers in a single JNA share the CPU, the RAM

and the PCIe buses. Even though there can be 10 logical

servers per JNA (one per NIC), to avoid overwhelming

the CPU we build 4 logical servers per JNA. Each logical

server is built inside a Docker container [20], giving them

complete independence of operation. The servers imple-

ment a probing/responding application as well as various

workload traffic generation applications. The different

capabilities of T-40 and T-1 necessitated different prob-

ing and timestamping mechanisms, as explained below.

Probing. Recall that a probe is actually a pair of packets,

called coded probes. We use 64-byte UDP packets for

probing. Each server probes K other randomly chosen

servers once every T seconds. Probing is bidirectional:

servers which are probed send back probes every T sec-

onds. In T-40, K = 20 and T = 500µs, and in T-1, K = 10

and T = 4ms.

Timestamping. The receive timestamps in T-40 and T-

1 are recorded upon the receipt of the probes. In T-40,

the transmit timestamp is equal to the time the probe’s

TX completion descriptor is written back into the host

memory. The write-back time is often nearly equal to

the transmission time, but, occasionally, it can be a few

10s or 100s of nanoseconds after the probe transmit

time. This gives rise to a “negative-delay” timestamp

noise; i.e., noise which can lead to probe propagation

times strictly smaller than the absolute minimum possi-

ble. In T-1, the JNA’s architecture makes the write-back

approach perform much worse. Instead, the Intel I211

NIC in the JNA places the transmit start time of a probe

in its payload and forwards it to the receiving NIC, where

it is extracted.6

𝑇𝑋# 𝑅𝑋%

𝑡𝑥%𝑟𝑥#

𝑡 𝑟

Server	A Server	B

Figure 3: Signaling between clocks.

6This feature is not supported by the NICs in T-40.
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Signaling. Consider Figure 3. Let T and R be the abso-

lute times at which a probe was transmitted at NIC A and

received at NIC B. Let T XA and RXB be the correspond-

ing transmit and receive timestamps taken by the NICs.

Define ∆A = T XA −T and ∆B = RXB −R. Since R > T ,

we get RXB−∆B > T XA−∆A. Rearranging terms, we get

∆B −∆A < RXB −T XA. (1)

From a probe (or echo) in the reverse direction, we get

txB − rxA < ∆B −∆A < RXB −T XA. (2)

Thus, each probe gives either an upper bound or a

lower bound on the discrepancy between two clocks de-

pending on its direction; the tightest bounds come from

probes encountering zero queueing delay and negligible

noise. The discrepancy is time-varying due to different

clock frequencies.

Figure 4: Bounds on the discrepancy between clocks in T-40

4.1 Clock frequencies across servers

Figure 4 shows upper and lower bounds on ∆B−∆A in T-

40 plotted against the time at NIC clock A: each blue dot

is an upper bound and each green dot is a lower bound.

The following observations can be made:

1. The set of blue points delineating the “least upper

bound” of the data points lie on a straight line over short

timescales, 2 seconds in this case. This line is parallel

to the straight line on which the green dots delineating

the “greatest lower bound” lie. We refer to the region

between the lines as the “forbidden zone.” There are

a number of blue dots and green dots in the forbidden

zone. These are due to the “negative-delay” NIC times-

tamp noise mentioned previously. It is crucial to filter

out these points.

2. Since the dots on the lines bounding the forbidden

zone capture the smallest one-way propagation time of a

probe (equal only to wire and switching times), the spac-

ing between them (roughly equal to 1700 ns in Figure

4) is the smallest RTT between the two NICs. Assum-

ing symmetric paths in both directions, half of the spac-

ing will equal the smallest one-way propagation time

(roughly 850 ns).

3. The upper and lower bound lines have a non-zero

slope and intercept. The slope in Figure 4 is close to

−1.6µs/sec and it measures the “drift” in the frequencies

of the clocks at A and B. That is, when clock A measures

out one second of time, clock B would have measured out

1− (1.6× 10−6) second. The average of the two inter-

cepts is the offset between the two clocks: when clock

A’s time is 0, clock B’s time is roughly −93.3µs.

Remark. The slope captures the discrepancy in the clock

frequencies and represents the intrinsic pull away from

synchronism between the two clocks. When the clocks

are completely synchronized, the slope and the average

of the two intercepts should both be 0.

(a) 1-hop in T-40 (b) 3-hop in T-40 (c) 5-hop in T-40

(d) 1-hop in T-1 (e) 3-hop in T-1 (f) 3-hop in T-1

Figure 5: Examples of clock drifts

Figure 5 shows more examples of relative clock drifts

in T-40 and T-1. Figures 6 (a) and (b) show the his-

tograms of the drifts between pairs of clocks in T-40 and

T-1, respectively. The number of pairs considered in each

testbed and a numerical quantification of the data in Fig-

ure 6 is in Table 1. While most pair-wise clock drifts

are around 6-10µs/sec, the maximum can get as high as

30µs/sec.
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(b) T-1

Figure 6: Distribution of the relative frequency difference be-

tween pairs of clocks

Variation in clock frequencies due to temperature

When considering longer timescales, in the order of min-

utes, one can sometimes observe nonlinearities in the up-

per and lower bound curves, see Figure 7. This is due
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Testbed #Servers #Clock St.dev. Max abs.

pairs of slope of slope

(drift) (drift)

T-40 237 4740 4.5µs/sec 32.1µs/sec

T-1 128 1280 5.7µs/sec 16.5µs/sec

Table 1: Summary statistics of clock drift rates

to temperature changes which affect the resonance fre-

quency of the clocks. The temperature can change when

a NIC sends a lot of data or otherwise dissipates a lot

of power. The temperature of a NIC varies slowly with

time. Therefore, even though there is nonlinearity in the

order of minutes or longer, at timescales of 2-4 seconds

the upper and lower bound curves are essentially linear.

We shall approximate the nonlinear curves by piecewise

linear functions over 2-4 seconds.

(a) T-40 (b) T-1

Figure 7: Nonlinear drifts in clock frequencies

4.2 Queueing delays and path noise

1. Queueing delay. This is the total queueing delay on

the path and can be 100s of microseconds to a few mil-

liseconds, depending on the load. However, we shall see

that even at 90% loads there are enough points with zero

queueing delay (hence, on the boundary of the forbidden

zone) to accurately synchronize clocks.

2. Path noise. We distinguish two types of path noise.

Switching noise. Even under 0 load, a probe’s switch-

traversal time can be jittered due to random delays from

passing through multiple clock domains, input arbitra-

tion, or other hardware implementation reasons specific

to the switch (e.g., store-and-forward versus cut-through

switching). “Dark matter packets” are another source of

switch noise. These are protocol packets (e.g., spanning

tree protocol (STP) [5], SNMP [3], link-layer discovery

protocol (LLDP) [6]) not emitted by the end-hosts, hence

invisible to them. When probes queue behind them at

switches, small and random switching delays are added.

NIC timestamp noise. This is the discrepancy between

the timestamp reported by the NIC and the true time

that the probe was transmitted or received. This can be

caused by faulty hardware, or the way timestamping is

implemented in the NIC. As described in Section 4, the

latter can cause negative-delay, giving rise to points in

the forbidden zone.

Empirically, path noise larger than 50ns degrades per-

formance in T-40. In T-1 that number is 2µs. Packet

transmission times in switches, in the PHYs, etc, are 40

times longer on T-1 than T-40, and this corresponds with

an increase in noise magnitude.

4.3 Path symmetry

T-40 is a fat-tree network with 1, 3 and 5 hops between

server pairs. By investigating the statistics of the RTTs

between servers at different hop distances, we can test

the veracity of our path symmetry assumption. Recall

that path symmetry means that servers separated by a cer-

tain number of hops have more or less the same OWD,

regardless of the particular paths taken in the forward

and reverse direction to go between them.

1 hop 3 hops 5 hops

# server-pairs 390 1779 6867

Ave. ZD-RTT 1570 ns 4881 ns 7130 ns

Min. ZD-RTT 1512 ns 4569 ns 6740 ns

Max. ZD-RTT 1650 ns 4993 ns 7253 ns

Table 2: Zero-delay-RTTs (ZD-RTTs) in T-40

In Table 2, we consider the zero-delay-RTT (ZD-RTT)

between server pairs at different hops from one another.

The forward and reverse routes between a pair of servers

in T-40 are arbitrary and not identical. Nevertheless, we

see from the minimum, average and maximum values of

the ZD-RTT that it is tightly clustered around the mean.

Since this was taken over a large number of server-pairs,

we see empirical evidence supporting path symmetry.

If asymmetry exists in a network, it will degrade the

overall synchronization accuracy by half the difference

in the forward and reverse path delays. Fortunately, the

network effect can be used to identify asymmetric paths

and potentially replace them with symmetric paths (or

paths that are less asymmetric).

5 The Huygens Algorithm

The Huygens algorithm synchronizes clocks in a net-

work every 2 seconds in a “progressive-batch-delayed”

fashion. Probe data gathered over the interval [0, 2) sec-

onds will be processed during the interval [2, 4) seconds

(hence batch and delayed). The algorithm completes the

processing before 4 seconds and corrections can be ap-

plied to the timestamps at 1 sec, the midpoint of the in-

terval [0, 2) seconds. Then we consider probe data in the

interval [2, 4) seconds, and so on. By joining the times at

the midpoints of all the intervals with straight lines, we

obtain the corrections at all times. Thus, the corrected

time is available as of a few seconds before the present
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time (hence progressive).7

Coded probes. Presented informally previously, coded

probes are a pair of packets, P1 and P2, with transmit

timestamps t1 and t2 and receive timestamps r1 and r2,

respectively. A coded probe is “pure” if r2 > r1 and

|(r2 − r1)− (t2 − t1)| < ε , where ε > 0 is a prescribed

guard band. Else, it is “impure”. The timestamps of both

of the pure probes are retained, and those of both impure

probes are discarded. If either P1 and P2 is dropped, we

discard the coded pair.

Support Vector Machines. SVMs are a widely used and

powerful tool for linear and nonlinear classification in su-

pervised learning settings [9]. A linear SVM is supplied

with a collection of points (xi, li) for 1 ≤ i ≤ N, where

xi is a point in R
2 and li is a binary label such as “upper

bound point” or “lower bound point”. It classifies points

of like label, separating them with a hyperplane of maxi-

mal margin; that is, a hyperplane which is at a maximum

distance from the closest point of either label in the data.

When used in our context, the SVM is given the up-

per and lower bound points derived from the probe data

between clocks A and B over a 2-second interval. If the

data is clean, i.e., if there are no points in the forbidden

zone (defined in Section 4.1) and there are enough points

with noise- and delay-free propagation time in both prob-

ing directions, the SVM will return a straight line with

slope αAB and intercept βAB.

We use soft-margin SVMs which can tolerate points

in the forbidden zone and other noise and delays. How-

ever, the performance of the SVM is sensitive to these

artifacts, and especially to points in the forbidden zone.

Therefore, even if the SVM returns a line in the noisy

case, it will not be an accurate estimate of the discrep-

ancy ∆B −∆A. For this reason we first treat the data with

the coded probe filter and extract pure probes to which

we apply the SVM. For example, in Figure 8 (a) the

SVM processes all probe data between a pair of clocks

in T-40 and it is clear that its estimation of the upper and

lower bound lines (the support vectors) are inaccurate. In

(b) we see the significant improvement from using coded

probes to filter out bad probe data.

(a) All coded probes (b) “Pure” coded probes

Figure 8: Effectiveness of coded probes. In T-40, coded

probes reduce synchronization error by 4-5x.

7In Section 8 we obtain a real-time extension of the HUYGENS.

5.1 Network Effect

Suppose there are n clocks, C1, ...,Cn, connected through

a data center fabric. WLOG let C1 be the “reference”

clock with which all clocks will be synchronized. At

time 0 a probe mesh is set up between the n clocks,

each one probing K others. This is done using messages

between the nodes and results in the “probing graph,”

G = (V,E). The “owner” of edge (i, j) is the node who

initiated the probing, ties broken at random. Once the

probe mesh has been set up, we construct the Refer-

ence Spanning Tree (RST) on G with C1 as the root in

a breadth-first fashion.

In every 2-second interval, we synchronize Ci to C1

at the midpoint of the interval.8 The midpoints of ad-

jacent intervals are then connected with straight lines to

obtain a piecewise linear synchronization of Ci with C1.

Accordingly, consider the interval [2 j,2( j+1)) seconds

for some j ≥ 0. For ease of notation, denote 2 j by L,

2( j+1) by R, and the midpoint 2 j+1 by M.

Iteration

1. Coded probes and SVMs. Timestamp data collected

during [L,R) is processed using the coded probes filter

and bad probes are discarded. For each edge (i, j) ∈ G,

where i is the owner of the edge, the filtered data is pro-

cessed by an SVM to yield the slope, αi j, and the inter-

cept, βi j of the hyperplane determined by the SVM. Let

(~α,~β ) be the vectors of the αi, j and βi, j for (i, j) ∈ G.

The equations

α ji =
−αi j

1+αi j

and β ji =
−βi j

1+αi j

(3)

relate the slopes and intercepts in one direction of (i, j)
to the other.

2. Preliminary estimates at time M. Use the RST and

the (~α,~β ) to obtain the preliminary, group-synchronized

time at clock Ci with respect to the reference clock’s time

of M1 sec. This is done as follows. First consider Ci to

be a neighbor of C1 on the RST. Then,

MP
i = M1 +α1iM1 +β1i.

Proceed inductively down the tree to obtain MP
j at each

clock C j when C1 equals M1.

3. Obtain ∆
P
i j

△
= αi jM

P
i +βi j for every i and j, with the

convention MP
1 = M1. Gather the ∆

P
i j into a vector ∆

P,

the “preliminary pair-wise clock discrepancy vector.”

4. Network effect: loop correction. Apply loop correc-

tion to ∆
P to determine the degree of inconsistency in

the pair-wise clock estimates, and obtain ∆
F , the “final

pair-wise clock discrepancy vector.”

∆
F =

[

I −AT
(

AAT
)−1

A
]

∆
P,where the (4)

“loop-composition matrix”, A, is defined below.

5. Obtain the final estimates MF
i at Ci when the time at

8For concreteness, time instances are taken with reference to C1.
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C1 equals M1. For a neighbor Ci of C1 on the RST:

MF
i = M1 +∆

F
1i.

Proceed inductively down the RST to obtain MF
j at each

clock C j when C1 equals M1.

End Iteration

Elaboration of Steps 2–4

Steps 2 and 3. In Step 2 preliminary midpoint times are

obtained using only the probe data on the edges of the

RST. These midpoint estimates are used in Step 3 to get

preliminary discrepancies, ∆
P, between the clock-pairs

across all edges of the probing graph, G.

Step 4. Using equation (4), loop-wise correction is ap-

plied to ∆
P to obtain the final pair-wise clock discrepancy

vector, ∆
F . Given G = (V,E), the matrix A is obtained

as follows. The number of columns of A equals |E|, each

column corresponds with a directed edge (i → j) ∈ E.

Each row of A represents a loop of G, traversed in a

particular direction. For example, suppose loop L is tra-

versed along edges (i → j), ( j → k), (k → l) and (l → i).
Then, the row in A corresponding to loop L will be a 1

at columns corresponding to edges (i → j), ( j → k) and

(k → l), a −1 corresponding to column (i → l), and 0

elsewhere. The number of rows of A equals the largest

set of linearly independent loops (represented in the row-

vector form described) in G.

Derivation of equation (4). The quantity A∆
P gives the

total surplus in the preliminary pair-wise clock discrep-

ancy in each loop of A. For example, for loop L defined

above, this would equal:

∆
P
i j +∆

P
jk +∆

P
kl −∆

P
il

△
= yL.

Let Y = A∆
P represent the vector of loop-wise surpluses.

In order to apply the loop-wise correction, we look

for a vector N which also solves Y = AN and posit

the correction to be ∆
F = ∆

P − N. Now, A has full

row rank, since the loops are all linearly independent.

Further, since the number of linearly independent loops

in G equals |E| − |V |+ 1 which is less than |E|, the

equation Y = AN is under-determined and has multiple

solutions. We look for the minimum-norm solution since

this is most likely the best explanation of the errors in

the loop-wise surpluses.9 Since the pseudo-inverse,

N = AT (AAT )−1Y = AT (AAT )−1A∆
P, is well-known to

be the minimum-norm solution [27], we get

∆
F = ∆

P −N = [I −AT (AAT )−1A]∆P,

which is equation (4).10

9It is most likely that the loop-wise surpluses are due to a lot of

small errors on the edges rather than a few large ones.
10Under a Gaussian assumption on the noise in the discrepancy vec-

tor ∆
P, we’ve shown that the standard deviation of the noise in ∆

F is a

factor 1√
K

of the noise in ∆
P. Numerically, this means a reduction of

the errors by 68.4% and 77.6% when K = 10 and 20, respectively. Due

to a shortage of space, we omit the proof here.

Remark. The minimum-norm solution gives the opti-

mal (Maximum Likelihood) estimate of edge errors if

they were distributed as independent and identically dis-

tributed (IID) Gaussians before applying the network ef-

fect. Even when edge errors are not IID Gaussians,

the minimum-norm solution ensures that the edge er-

rors after the network effect are closer to Gaussian with

a much smaller variance ( 1√
K

of the pre-network-effect

variance). Most importantly, this is true whether the ini-

tial edge errors occured due to significant path asymme-

tries (which can be large and systematic) or due to path

noise (which is typically small and nearly zero mean).

Figure 9 illustrates the point. In a network of 256

nodes, each probing 10 other nodes, we see the network

effect reduces the standard deviation of edge errors (af-

ter coded probes and SVMs) in two cases: (a) the edge

errors are typically small but some times can be as large

as 100 ns, and (b) distribted uniformly between -100 ns

and 100 ns. In both cases the errors after appying the

minimum-norm solution are clustered around 0 in a bell-

shaped distribution.
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(a) Network effect eliminates large edge errors
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(b) Network effect compresses uniformly distributed edge

errors

Figure 9: Examples of network effect: N=256, K = 10, collec-

tive results across 10000 runs

6 Implementation and Evaluation

The probing phase of HUYGENS is obviously distributed:

it must occur along the edges of G. Many of the other

basic operations can also by implemented distributedly

at the sensing nodes, hence significantly reducing data

movement overheads. Or, they can be implemented on

a dedicated computing system separate from the sensing

system. We describe the distributed implementation.

6.1 A lightweight, scalable implementation

We implement HUYGENS as an “in-place” distributed

system, making it lightweight and scalable. There are
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three main components—the master, the slaves and the

sensors. A global master node initiates the probing phase

and runs loop-wise correction (Steps 2–5). There is a

sensor and a slave node at each server for conducting

probing, data collection, coded probe filtering and run-

ning SVMs. The sensor sends the probes and collects

timestamps, the slave runs all the computations. This

implementation eliminates overheads due to data trans-

fer and makes HUYGENS scalable because each sensor–

slave combination only needs to send the α- and β -

values to the master node and not the probe data.

Probing bandwidth and CPU overhead. Probing at the

rates we have implemented (see Probing in Section 4),

HUYGENS takes 0.05% of the bandwidth at each node in

T-40 and 0.25% of the bandwidth at each node in T-1.

The fact that HUYGENS takes a much smaller percent-

age of the bandwidth in T-40 than in T-1 is due to an

important property: it sends roughly the same number of

probes per unit time regardless of the line rate.

The CPU overhead imposed by HUYGENS is negligi-

ble. On an 2.8 GHz Intel i5 (5575R) CPU, using only one

core and running SVM for 2 seconds probe data from one

edge takes less than 7ms. Therefore, the in-place dis-

tributed implementation would take less than 0.44% of

CPU time in a modern 32-core server even when K = 20.

6.2 Evaluation

We run experiments on T-1 to evaluate: (i) the accuracy

of HUYGENS using NetFPGAs, (ii) the efficacy of the

network effect, and (iii) HUYGENS’ performance under

very high network load.

Network load. We use the traffic generator in [7]: each

server requests files simultaneously from a random num-

ber (30% 1, 50% 2 and 20% 4) of other servers, called

the “fanout” of the request. The gap between adjacent re-

quests are independent exponentials with load-dependent

rate. The file sizes are distributed according to a heavy-

tailed distribution in the range [10KB, 30MB] with an

average file size of 2.4MB. This traffic pattern can mimic

a combination of single flow file transfers (fanout = 1)

and RPC style incast traffic (fanout > 1).

Evaluation Methodology

NetFPGA-CML boards provide two natural ways to ver-

ify HUYGENS’ accuracy in synchronizing clocks:

(i) Single FPGA. Each NetFPGA has four 1GE ports

connected to a common clock. We take two of these

ports, say P1 and P2, and make them independent servers

by attaching a separate Docker container to each. P1 and

P2 then become two additional servers in the 128-server

T-1 testbed. Using HUYGENS we obtain the “discrep-

ancy” in the clocks at P1 and P2, whereas the ground truth

is that there is 0 discrepancy since P1 and P2 have the

same clock.

Remark. To make it more difficult for HUYGENS to

synchronize P1 and P2, we do not allow them to directly

probe each other. They are at least 2 or 3 hops away on

the RST.

(ii) Different FPGAs. This time P1 and P2 are ports on

different FPGAs, with clocks C1 and C2, say. They can be

synchronized using HUYGENS on the T-1 testbed. They

can also be synchronized using a direct channel by con-

necting the GPIO pins on the two NetFPGAs using cop-

per jumper wires. The direct channel provides us with an

essentially noise- and delay-free, short RTT11 signaling

method between C1 and C2. The pin-to-pin signals are

sent and echoed between the NetFPGAs every 10ms. We

process the TX and RX timestamps of the pin-to-pin sig-

nals using a linear regression and obtain the discrepancy

between C1 and C2 using the direct channel.

In both (i) and (ii), the HUYGENS probe data is pro-

cessed using the algorithm described in Section 5. We

take C1 (the clock at P1) as the root of the RST. C2 is

then another node on the RST and HUYGENS gives a

preliminary and a final estimate of its midpoint in a 2

second probing interval with respect to C1’s midpoint (as

described in Steps 2–5). This is compared to the ground

truth or direct channel discrepancy between C1 and C2.

Even though (i) gives us a ground truth comparison, we

use (ii) because it gives a sense of the degree of syn-

chonization possible between two different clocks that

are connected directly.

7 Verification

We consider a 10-minute experiment.12 For the single

FPGA comparison, we obtain HUYGENS’ preliminary

and final estimates of the midpoint times at C2 in succes-

sive 2-second intervals with respect to C1. We compare

these estimates with the ground truth discrepancy, which

is 0. There are 300 2-second intervals in total; we report

the average and the 99th percentile discrepancies. In the

case of different FPGAs, we compare the estimates from

HUYGENS with the estimate from the direct channel. Ta-

ble 3 contains the results.

Single NetFPGA Different NetFPGAs

Prelim Final Prelim Final

(net effect) (net effect)

Mean of
41.4 11.2 47.8 13.4

abs. error (ns)

99th percentile
91.0 22.0 92.1 30.2

of abs. error (ns)

Table 3: HUYGENS synchronization accuracy: 16-hour exper-

iment in T-1 at 40% load with K = 10

We see that the network effect (loop-wise correc-

tion) is quite powerful, yielding a 3-4x improvement in

11The RTT between the FPGAs is 8 clock cycles (64ns) or smaller.
12Section 8 presents results from a 16 hour run.
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the accuracy of clock synchronization. The most com-

pelling demonstration is the single FPGA comparison in

which the ground truth is unambiguously 0. The dif-

ferent FPGA comparison shows HUYGENS with loop

correction obtains the same performance as an almost

error-free, direct connection between the two clocks even

though in HUYGENS the clocks are connected through a

network of intermediaries.

Figure 10 shows a 2 minute sample trajectory of the

errors as well as the distribution of the errors over 10

minutes in the same FPGA comparison.

0 20 40 60 80 100 120

Time (sec)

−40

−20

0

20

40

E
rr

o
r

(n
s
)

Error

(a) A 2 min zoom-in

−40 −20 0 20 40

Error (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f
s
a
m

p
lin

g
p
o
in

ts

(b) Distribution of errors

Figure 10: HUYGENS vs ground truth for 2 ports on the same

NetFPGA: 16-hour experiment at 40% load with K = 10

7.1 The network effect

We consider the benefit of the network effect by increas-

ing K from 2 to 12. Under an assumed theoretical model,

it was stated in Section 5 that this would reduce the stan-

dard deviation of the clock synchronization error by a

factor 1√
K

. Figure 11 quantifies the benefit of the net-

work effect for the mean of the absolute error and the

99th percentile errors as K gets larger.
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Figure 11: Mean and 99th percentile synchronization error in

T-1 as K varies with 40% load

7.2 Performance under high load

Figure 12 shows the accuracy of HUYGENS under dif-

ferent network loads. As can be seen, even at 90% load

HUYGENS is still able to synchronize clocks with 99th

percentile error smaller than 60 nanoseconds. HUYGENS

is robust to very high network load for the following

reasons: (i) It applies intensive statistical procedures on

each 2 seconds of probe data; the 2 second interval hap-

pens to be long enough that, even at very high load, a

small number of probes go though empty queues, allow-

ing HUYGENS to obtain accurate estimates. (ii) HUY-

GENS takes advantage of the redundant connectivity in

the network: even if one probing pair is blocked due to

congestion, the two clocks in this probing pair will still

quite likely be able to reach other clocks and synchronize

with them. (iii) Loop-wise correction is able to identify

and compensate probing pairs which are badly affected

by high load. We couldn’t load T-1 at more than 90% be-

cause the switches in T-1 have shallow buffers and drop

large numbers of packets, leading to excessive TCP time-

outs.
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Figure 12: HUYGENS error at different loads in T-1, K = 10.

7.3 Comparision with NTP

Since NTP is a widely-used algorithm and does not re-

quire specialized hardware, it is worth comparing it to

HUYGENS on T-1. For fairness, we let NTP use the

same hardware timestamps as HUYGENS, although al-

most all real-world implementations of NTP use CPU

timestamps.

Load Method Single NetFPGA Different NetFPGAs

Mean of 99th percen- Mean of 99th percen-

abs. error tile of abs. abs. error tile of abs.

(ns) error (ns) (ns) error (ns)

0% HUYGENS 10.2 18.5 11.3 19.5

NTP 177.7 558.8 207.8 643.6

40% HUYGENS 11.2 22.0 13.4 30.2

NTP 77975.2 347638.4 93394.0 538329.9

80% HUYGENS 14.3 32.7 16.4 38.4

NTP 211011.7 778070.4 194353.5 688229.1

Table 4: A comparison of HUYGENS and NTP.

Table 4 shows that, even with hardware timestamps,

NTP’s error is 4 orders of magnitude larger than HUY-

GENS’s under medium to high network loads. Note that

although some implementations of NTP use a DAG-like

graph to synchronize a clock with clocks which are up-

stream on the DAG, this operation is local when com-

pared to the more global loop-wise correction step in the

network effect.

8 Real-time Huygens

We now extend HUYGENS to get a real-time version,

HUYGENS-R. Underlying this extension is the empiri-
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cal observation in Section 4 that clock frequencies are

slowly varying. Therefore, a linear extrapolation of the

estimates of HUYGENS over a few seconds will yield a

reasonably accurate real-time clock synchronization al-

gorithm.

The extension is best described using Figure 13. Con-

sider clocks C1 and Ci. Let Ik be the time interval

[2(k− 1),2k). Step 5 of the HUYGENS algorithm yields

the final offset of the midpoint of each Ik at Ci from the

midpoint of the same interval at C1. For example, T2 +3

is the time at Ci when the time at C1 is 3 seconds; in gen-

eral, Tk +(2k−1) is the time at Ci when the time at C1 is

2k−1 seconds. By connecting the Tk with straight lines,

we get the HUYGENS offsets between Ci and C1 at all

times.

The green points, Ol , are the offsets between clocks

Ci and C1 for the real-time version. They are obtained as

shown in the figure: Ol lies on the line from Tl to Tl+1

when the time at C1 equals 2l+6. Thus, O1 is on the line

from T1 to T2 when C1’s time equals 8, etc. Connect the

successive points Ol and Ol+1 using straight lines to ob-

tain the green curve. This curve gives the HUYGENS-R

offsets between clocks Ci and C1 at all times after 8 sec-

onds. Since HUYGENS-R is an extrapolation of HUY-

GENS, it is not defined until some time after HUYGENS

has been operational. As defined above, the earliest time

at which HUYGENS-R can provide synchronized clocks

is when C1’s time equals 8 seconds.
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Figure 13: From HUYGENS to HUYGENS-R

Figure 14 quantifies the accuracy of HUYGENS-R us-

ing a single NetFPGA. In part (a) of the figure we see that

while HUYGENS-R’s errors are worse than HUYGENS’

errors, they are not much worse. Part (b) of the figure

gives a distribution of the errors. Under 40% load, the av-

erage value and the 99th percentile of the absolute error

are 14.1ns and 43.5ns for HUYGENS-R, slightly larger

than the corresponding numbers of 11.0ns and 22.7ns

for HUYGENS. These numbers increase to 22.1ns and

55.0ns respectively, versus 14.3ns and 32.7ns for HUY-

GENS under 80% network load.

Deployment. Even though HUYGENS and HUYGENS-R

work effectively at 90% load, the desire for “high avail-
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Figure 14: HUYGENS-R vs HUYGENS: 16-hour experiment

at 40% load with K = 10

ability” in practice may require the use of a dedicated

IEEE 802.1 QoS priority for the probes. This not only

isolates probe traffic (thereby ensuring that HUYGENS

and HUYGENS-R run at all loads), but by giving probe

traffic the highest priority, we can also reduce the effect

of queueing delays.

9 Conclusion

In this paper, we investigated the practicality of deploy-

ing accurate timestamping as a primitive service in data

center networks, in support of a number of higher-level

services such as consistency in replicated databases and

congestion control. We set out to achieve synchroniza-

tion accuracy at the granularity of tens of nanoseconds

for all servers in a data center with low overhead among

a number of dimensions, including host CPU, network

bandwidth, and deployment complexity. When com-

pared with existing approaches to clock synchroniza-

tion, we aimed to support currently functioning data cen-

ter deployments with no specialized hardware, except

NICs that support hardware timestamping (e.g., PHC).

With these goals, we introduced HUYGENS, a probe-

based, end-to-end clock synchronization algorithm. By

using coded probes, Support Vector Machines and the

network effect, HUYGENS achieves an accuracy of 10s

of nanoseconds even at high network load. HUYGENS

can scale to the whole data center since each server

only needs to probe a constant number (10–20) of other

servers and the resulting data can be processed in-place.

In particular, the parameters and the 2-second update

times HUYGENS uses remain the same regardless of the

number of servers. In a 40 Gbps data center testbed

HUYGENS only consumes around 0.05% of the servers

bandwidth and less than 0.44% of its CPU time. Since it

only requires hardware timestamping capability which is

widely-available in modern NICs, HUYGENS is ready for

deployment in current data centers. We are currently ex-

ploring the performance of HUYGENS in wide area set-

tings and are seeing promising results.
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