
In: Data & Knowledge Engineering22 (1997) 233-259. 1

Exploiting Abstraction Relationships’ Semantics for

Transaction Synchronization in KBMSs

Fernando de Ferreira Rezendeand Theo Härder

Department of Computer Science - University of Kaiserslautern
P.O.Box 3049 - 67653 Kaiserslautern - Germany

Phone: ++49 (0631) 205 3274/4031 - Fax: ++49 (0631) 205 3558
E-Mail: {rezende/haerder}@informatik.uni-kl.de

Abstract - Currently, knowledge sharing is turning out to be a crucial point to be supported

by Knowledge Base Management Systems (KBMSs). We propose an approach for transaction

synchronization in KBMSs - LARS (Locks using Abstraction Relationships’ Semantics). We

show how we obtain serializability of transactions thereby providing different locking

granules. The main benefit of our technique is the high degree of potential concurrency, which

is obtained by means of a logical partitioning of the knowledge base (KB) grounded in the

abstraction relationships, and the provision of many lock types to be used on the basis of each

partition. By this way, we capture the abstraction relationships’ semantics contained in a KB

graph for transaction synchronization purposes and enable the exploitation of the inherent

parallelism in a knowledge representation approach.

Keywords - Transaction synchronization, concurrency control, locking, knowledge base

management systems, object-oriented database systems.

1. Introduction

In recent years, the use of KBMSs is becoming more and more widespread and,

accordingly, the demand for ever-larger KBs higher and higher. Nowadays, the main

challenge of the KBMS research is to try the successful adaptation of such systems to real-

life production environments [49]. In this scope, concurrency control (CC) techniques for

KBMSs play a crucial role, because they are among the most important means for

allowing large, multi-user KBs to become a reality [55, 10].

In this paper, we present our approach for transaction synchronization in KBMSs.

The main goal we have in mind is the provision of serializability [24] for ACID [28] trans-

actions. Among the most important classes of CC algorithms arelocking, timestamps, and

serialization graphs [5]. In particular, the class of locking-based algorithms has shown its

practicality and performance. Additionally, locking-based algorithms have special

solutions for graph structures, the abstractions for KBs that appear to be the most

appealing [11]. Thus, we have chosen to develop our technique based on locking.

2 In: Data & Knowledge Engineering22 (1997) 233-259.

With respect to locking, we could consider several approaches -predicate locks

[17], the two-phase locking (2PL) protocol [17], the multigranularity locking (MGL)

protocol [24], etc. In particular, we are more interested in granular locks, because they

provide transactions the possibility of choosing, among different locking granules, the

most appropriate one to accomplish their tasks. In addition, the notion of implicit locks

significantly minimizes the number of locks to be set by transactions. These are some of

the reasons which lead us to use the power and elegance of granular locks also in the

KBMS environment.

This paper is organized as follows. After providing short discussions on some

particular issues in KBMSs (Sect. 2), we present an overview of MGL and point out the

main problems of its pure appliance in the KBMS environment (Sect. 3). Then, we

introduce our approach for transaction synchronization in KBMSs (Sect. 4). Thereafter,

we discuss related work (Sect. 5) and finally conclude the paper (Sect. 6).

2. Particular KBMS Issues

2.1 Knowledge Bases

Perhaps due to the existence of several journals, conferences, communities, etc.

concerned withknowledge-based systems,there are so many definitions characterizing

the meaning ofknowledge andknowledge bases. Putting aside a discussion on the philo-

sophical meaning of these concepts and without trying to speculate what a KBMS might

be and in what way it may differ from conventional Database Management Systems

(DBMSs), we refer here to a specific definition given by Levesque and Brachman [37],

which is widely accepted in the knowledge representation community:

“A knowledge base has explicit structures representing the knowledge of the
system which determine the actions of the system. ... It is not the use of a
certain programming language or a data-structuring facility that makes a
system knowledge-based.”

This definition views a KB as a system with explicit structures representing the

knowledge. This is exactly the most important characteristic of such a system for our

purposes. Any data model which explicitly represents the knowledge and, therefore,

explicitly encodes the knowledge and the semantic structure of an application domain

may use the results we present in this paper. Such an explicit representation of knowledge

is found not only in knowledge-based systems, but also in several, especially object-

oriented, data models. Even many conventional relational database (DB) systems can

In: Data & Knowledge Engineering22 (1997) 233-259. 3

satisfy this requirement. The essential feature is that they can be visualized as Directed

Acyclic Graphs (DAGs), as explained in the following. Therefore, unless otherwise noted,

we use in this paper the termsdatabases andknowledge bases interchangeably meaning

that the results of our work are general and applicable to a broad class of applications.

2.2 The Abstraction Concepts

KBMSs manage complex and structured objects and different types of abstraction

relationships. In fact, abstractions turned out to be fundamental tools for knowledge

organization. An important aspect of KBMSs is that objects can play different roles at the

same time - the object-centered representation [42]. Consequently, the KB features can be

visualized as a superposition of the abstraction hierarchies (in fact DAGs) of generali-

zation and classification, association, as well as aggregation, building altogether the so-

calledKB graph. It is beyond the scope of this paper to begin a detailed discussion about

the abstraction concepts. The interested reader is referred to [42, 43]. In order to illustrate

one such a KB graph, in Fig. 1 we provide an example of a restaurant KB. Notice that the

purpose of this scenario is merely to illustrate our solution for knowledge sharing, rather

than schema design issues. This scenario will serve as a running example along this paper.

Figure 1: A restaurant knowledge base.

In order to restrict the KB to a rooted and connected graph, we have added the

objectsglobal, the only root of the whole graph,sets, the root of the association graph,

turtle-soupbouillabaissegreek-saladsalade-nicoisefish-plateshrimp-cocktailsteak-au-poivreveau-au-vin

soups salads cold-dishes
mousse cream

crepe-suzettemousse-au-chocolat

appetizers main-coursesdessertssunday-menu

dishesmenus

bordeauxcote-du-rhoneschwarzekatzliebfraumilch

pernod champagnecointreau chantre

aperitifs liquors

beverages foods

offers

classes aggregatessets

wine-origins

french-winesrhine-wines
wines

c

ss

e

sc

sc sc

sc sc

sc

sc
sc

sc sc

sc
sc

sc
scsc

c
c

p

pp
pp

ss ss

e

ee

sc
ss

i i
i

i i
i

ii
i

i
i

i

i

p
p

p

i

i iiii

sc: subclass-of i: instance-of ss: subset-of e: element-of p: part-ofNotation: c: subcomponent-of

global

c

i

4 In: Data & Knowledge Engineering22 (1997) 233-259.

classes, the root of the classification/generalization graph, and finallyaggregates, the root

of the aggregation graph. We provide such objects in order to have an adequate

environment for the appliance of our protocol. In addition, we assume that all objects (or

schemas) are directly or indirectly related toglobal. When a schema is neither a class/

instance, nor a set/element, nor a component/part, it is connected as a direct instance of

global. In turn, all classes/instances, sets/elements, and components/parts are directly or

indirectly related to the predefined schemasclasses, sets, andaggregates, respectively.

Moreover, we assume that the KB graph automatically stays in this form (rooted and

connected) as changes undergo over time.1

2.3 Expressiveness of KB Languages

The expressiveness of the KB languages is generally greater than that usually

provided by traditional systems, e.g., relational languages. In knowledge languages, the

query formulation can make use of the different abstraction relationships and the complex

structure of the objects. Operations, usually set-oriented, on these structures may refer to

ancestors as well as subordinate objects to derive or modify KB information. Hence, an

influencing factor in the query evaluation mechanisms of KBMSs is the representation of

the edges in KB graphs. In general, the edges in KBs may be represented either in a unidi-

rectional way (one link, top-down) or in a bidirectional way (two links, top-down and

bottom-up), depending on the implementation characteristics of each system in particular.

Representing the edges by unidirectional links has the advantage of less maintenance

overhead, since maintaining one link up-to-date is less expensive than two links, of

course. However, with a unidirectional representation of edges many significant queries

may not be answered (at least at the same costs when bidirectional links are provided).

Furthermore, questions involving the inheritance of attributes may be made much more

difficult. All in all, the costs for maintaining them up-to-date are paid off when evaluating

the queries much more efficiently.

In this paper, we assume that the edges in a KB graph are bidirectionally repre-

sented. Like the KBMSs’ query evaluation components, we use the power of bidirectional

links also in LARS. However, it is convenient to notice here that such bidirectional links

are used in LARS just in the representation of the abstraction concepts, andnot in the

access paths (indices like B*-trees). This will become clear in the later sections.

1. This representation and behavior are very similar to the ones used by KRISYS [43] to represent KBs.

In: Data & Knowledge Engineering22 (1997) 233-259. 5

2.4 Behavioral Aspects of Objects

The behavioral aspect of objects can be expressed by the methods, rules, demons2,

etc. commonly provided by KBMSs. In the last few years, there have been considerable

efforts in order to approach the limits of concurrency by exploiting the semantics of

objects and their operations (methods) when synchronizing transactions [20, 9, 35, 19, 23,

40, 2, 59, 48, 18, 58, 52, 13, 26]. The main idea behind these approaches is to break the

serializability of transactions, allowing non-serializable schedules to be produced, as long

as they preserve the consistency and are acceptable to the system users.

When we started analyzing the challenging issue of knowledge sharing, we investi-

gated the details of such approaches thoroughly. Nevertheless, we came to the conclusion

that we should not exploit the methods’ semantics to allow for non-serializable schedules

due to several reasons. Essentially, mainly due to schema evolution, complications on

recovery, and direct accesses to objects which bypass the object encapsulations. Thus, in

our technique, methods are not treated separately; data references in the body of methods

are synchronized as ordinary read and write operations.

3. The Multigranularity Locking Protocol

The basic idea of MGL [24] comes from the choice of different lockable units to be

locked by the system in order to ensure consistency and to provide isolation. Its main

benefit is that it allows lockable units of different granularities to coexist in the same

system. Moreover, this protocol created the notion ofimplicit locks, stating that by putting

a lock on a granule, all its descendants become implicitly locked, without the necessity of

setting further locks. Lastly, this protocol introduced the so-calledintention locks, in order

to prevent locks on the ancestors of a node which might implicitly lock it in an incom-

patible mode. Basically, the lock modes of MGL are: IS (Intention Share), IX (Intention

eXclusive), S (Share), SIX (Share Intention eXclusive), and X (eXclusive). These are then

applied to the nodes in a lock graph - a hierarchy or a DAG (Fig. 2) [24].

MGL is designed for a single organization hierarchy, extended to DAGs in case of

index structures. Particularly in the case of DAGs, MGL requires that, before requesting

an X mode access to a node, all superiors of the node must be covered with IX (or greater)

locks [22, 24]. One question arises: How may transactions know which are the superiors

of a node? The data model, to which MGL may be applied, provides a strict separation

2. Demons are procedures to be attached to attributes of objects that are automatically activated when
these attributes are accessed. In the DB terminology, this notion is similar totriggers.

6 In: Data & Knowledge Engineering22 (1997) 233-259.

between data and meta-data, a separate DB catalog. Hence, transactions may access, e.g.,

the DB catalog, and learn that (using Fig. 2) arecord is always contained in afile and

pointed to by anindex, in turn, afile and the respectiveindex are contained in anarea, and

at last anarea is contained in adatabase.

Figure 2: A lock graph for granular locks.

However, in the data (knowledge) models provided by KBMSs, the object concept

is completely symmetric, such that this separation data/meta-data (like, for example, in

the relational model) no longer exists. The superiors of a node (an object in the KB graph)

may be arbitrarily chosen, accordingly to the semantics of the application being modeled.

More importantly, this information may be dynamically changed as a KB undergoes

changes over time. Exemplifying, by means of the classification DAG of Fig. 3, how

could a transaction know which are the superiors of any class, sayclassk? A transaction,

obeying MGL, does need such information in order to lock a class in X mode. This infor-

mation is not statically available in KBMSs, as in usual DB catalogs. In addition, how

could a transaction be sure that by putting an X lock on a class, no one of its subclasses

would be accessed in a conflicting mode by another transaction? Using Fig. 3, a trans-

action putting an X lock onclassk and IX on all its superiors (...,classi, ...) would have no

guarantee that another transaction would not accessclassn by similarly putting an X lock

on classj and IX on all its superiors (...,classi, ...). Therefore, transactions obeying MGL

may get into troubles with implicitly locked objects, as long as they implicitly lock those

objects in conflicting modes via different paths of the graph.

Figure 3: A classification DAG.

Summarizing, if there would be juststrict abstraction hierarchies in KBMSs, MGL

would be adaptable and could work without problems. However, whenoverlapping,

database

files indices

records

areas

classi

classj classk

classl classm

classn

In: Data & Knowledge Engineering22 (1997) 233-259. 7

multi-abstraction hierarchies are possible, MGL fails due to the implicit locks on objects

with multiple direct parents, because those objects might be implicitly locked in incom-

patible modes by different transactions using different paths along a single kind of

hierarchy or different paths using different hierarchies. Finally, the richness of the KB

structure makes the synchronization substantially more complicated in KBMSs.

Another problem of directly applying MGL in the KBMS environment is the non-

use of the semantically rich structure represented by KB graphs. To put it another way,

using MGL, when a shared/exclusive lock on a node is granted to a transaction, all descen-

dants of this node are implicitly locked in the same mode, independently of the

relationship the descendants have to the ancestor. However, if such an object is, at the

same time, a set (component), all its subsets (subcomponents) and elements (parts)

become also implicitly locked. This needlessly restricts the access to those objects by

other transactions. Therefore, with such a behavior, many objects may be locked unnec-

essarily, because it is not possible to precisely specify which kind of descendants should

be implicitly locked, and thus the overall concurrency may be affected negatively.

4. The LARS Protocol

4.1 The Main Goals

Before presenting the LARS - Locks using Abstraction Relationships’ Semantics -

protocol, this section lists the main goals we aimed for in our work.

• Different Granules of Lock

In KBMSs, accesses normally refer to different granules of objects. Hence, we strive
for providing different granules of locking based on objects and for making use of
implicit locks in order to improve the overall performance, in particular the lock
manager’s one.

• Multiple Abstraction Relationships to Objects

The objects in a KB build a complex and dynamic graph structure, where multiple paths
to objects at any time are possible. This characteristic imposes an extra task for us, since
we have aimed for using implicit locks, because an object with multiple parents may be
accessed via a path that does not have any lock on it.

• Semantics of the Relationships between Objects

The relationships between objects in KBs are based on the abstraction concepts. In turn,
each abstraction concept has a particular and special semantics. We target at using the
abstraction relationships’ semantics in order to improve the concurrency.

8 In: Data & Knowledge Engineering22 (1997) 233-259.

4.2 The Basic Idea

The key feature of KBs is the presence of several semantic relationships. The basic

idea which originates LARS is based on this feature: The KBs can be partitioned into

several graphs, according to the semantics of those several relationships. Thus, we create

three different logical partitions from the whole KB graph. These are called theclassifi-

cation (which includes also generalization),association, andaggregation graphs. Finally,

we apply granular locks to each graph. By this way, we provide users with the possibility

of looking at a KB and abstracting from it just the partition to be worked out. On one hand,

we acquire a minimization of the number of locks in comparison with, for example, a

conventional approach with shared and exclusive lock modes, where every touched object

must be locked. On the other hand, we define more precisely the granule of lock to be

accessed by a transaction, allowing it to lock just the objects it really needs to access.

4.3 The Lock Modes

Following these logical partitions, we have created three distinct sets of lock types.

Hence, similar to MGL, we have abasic set of lock modes, named: IR (Intention Read),

IW (Intention Write), R (Read), RIW (Read Intention Write), and W (Write). However,

we have this basic set to each logical partition - classification (recognized by a subscript

c (c) following the lock mode), association (s), and aggregation (a) graphs. We named

those locks as pertaining respectively to the sets ofC_type, S_type, andA_type locks (in

general, we call themtyped locks). Table 1 presents, in a compact form, their semantics.

Table 1: Typed locks’ semantics.

IRc|s|a gives intention shared access to the requested object and allows the requester to explicitly
lock both directsubclasses| subsets| subcomponents of this object in Rc|s|a or IRc|s|a mode
and directinstances| elements| parts in Rc|s|a mode.

IW c|s|a gives intention exclusive access to the requested object and allows the requester to explicitly
lock both directsubclasses| subsets| subcomponents of this object in Wc|s|a, RIWc|s|a, Rc|s|a,
IWc|s|a or IRc|s|a mode and directinstances| elements| parts in Wc|s|a or Rc|s|a mode.

Rc|s|a gives shared access to the requested object and implicitly to all direct and indirectsubclasses
| subsets| subcomponents andinstances| elements| parts of this object.

RIW c|s|a gives shared and intention exclusive access to the requested object (i.e., implicitly locks all
direct and indirectsubclasses| subsets| subcomponents andinstances| elements| parts of
this object in shared mode and allows the requester to explicitly lock both directsubclasses|
subsets| subcomponents in Wc|s|a, RIWc|s|a, Rc|s|a or IWc|s|a mode and directinstances|
elements| parts in Wc|s|a or Rc|s|a mode).

Wc|s|a gives exclusive access to the requested object and implicitly to all direct and indirect
subclasses| subsets| subcomponents andinstances| elements| parts of this object.

In: Data & Knowledge Engineering22 (1997) 233-259. 9

4.4 The Lock Compatibilities

Two lock requests for the same object by two different transactions are said to be

compatible if they can be granted concurrently [22]. With respect to the compatibility of

the above mentioned lock types, we have two distinct situations to cope with. These are

discussed in the following.

Compatibility of Locks of Identical Types

First, if the locks requested and granted give respect to the same set of objects (either

C_type vs. C_type, or S_type vs. S_type, or A_type vs. A_type), then the compatibility

matrix to be followed is the same of MGL known from the literature [24, 22] (Table 2).

Compatibility of Locks of Distinct Types

The second situation with respect to the compatibility of the typed locks is the one

where both are of different types (either C_type vs. {S_type or A_type}, or S_type vs.

{C_type or A_type}, or A_type vs. {C_type or S_type}). In this case, the compatibility of

the lock modes is not the same as above, because we are dealing with distinct sets of

objects. Let us try to build such a compatibility matrix. To do that, we need to compare

pairs of lock modes in order to find out whether conflicts may happen or not when both

are granted simultaneously.

Let us use as a general example an extreme case, IW and W lock modes of different

types being requested on a same object, saymenus (see Fig. 1). Suppose we have a

physical representation ofmenus like the one sketched in Fig. 4. As can be seen, all

relationships are bidirectionally represented. Let us consider them top-down, like the way

the transactions are going to request locks. Suppose a transaction, say T1, comes from

aggregates and wants to write3 the objectmenus and all its parts, namelydesserts,

3. In the scope of this paper, we use the term‘to write an object’ as meaning an update operation in an
existing object. For insert and delete operations (see Sect. 4.7), we explicitly use the terms‘to insert an
object’ and‘to delete an object’, respectively.

Table 2: Compatibility matrix for locks of identical types.

IR IW R RIW W

IR ✓ ✓ ✓ ✓

IW ✓ ✓

R ✓ ✓

RIW ✓

W

Granted Mode [c | s | a]

[c | s | a]

Requested
Mode

10 In: Data & Knowledge Engineering22 (1997) 233-259.

appetizers, andmain-courses. T1 must require then, in addition to an IWa onaggregates,

a Wa onmenus. Suppose no other transaction is actuating onmenus in the moment, so that

this lock may be immediately granted to T1. Once granted, T1 is able to write the object

menus and all its parts, accordingly to the semantics of Wa. Considering only the object

menus in Fig. 4, we can say that T1 is able to write the fields of menus from 9 until end.

The fields 1-8 may neither be accessed nor traversed by T1 with its current lock, just

because the semantics of a Wa does not comprise the objects pointed by those fields (see

Table 1). In other words, T1 may write no descendants ofmenus, but only its parts. Let us

go ahead with another transaction, say T2. Suppose T2 comes from the objectfoods to

menus. In addition, suppose T2 sets an IWc on foods and tries to set an IWc onmenus, in

order to set, further, a Wc on sunday-menu, an instance ofmenus. If we analyze the

semantics of IWc, we notice that this lock represents an intention to write subclasses and

instances of an object. In our example, it represents an intention to write the object

sunday-menu. Using Fig. 4, we may notice that T2 wants to traverse only the fields 1-4 of

menus, the ones pointing to its subclasses and instances. Therefore, although T1 has a Wa

on menus, the lock manager may grant this IWc to T2, because both transactions are

accessing different fields ofmenus, and so they may not stay in conflict with one another.4

Therefore, when applied to distinct sets of objects, IW and W lock modes are compatible.

Figure 4: Physical representation of the objectmenus.

4. Notice that if T2 would require a Wc onmenus, it would conflict with T1, because T2 would be able to
write not only the fields 1-4, but also the ones after 12, i.e., the object data ofmenus.

<object data>object-id: menus 8: /7: /6: /5: /4: /3:2:1: /

object-id: sunday-menu ...4:...

object-id: foods ...1: object-id: aggregates ...9:...

object-id: desserts ...12:...

object-id: appetizers ...12:...

object-id: main-courses ...12:...

1: has-subclasses
2: subclass-of
3: has-instances
4: instance-of

5: has-subsets
6: subset-of
7: has-elements
8: element-of

9: has-subcomponents
10: subcomponent-of
11: has-parts
12: part-of

12: /11:10:9: /

Notation:
generalization/classification aggregationassociation

In: Data & Knowledge Engineering22 (1997) 233-259.

Our discussion has shown that conflicting lock modes applied to requests of the

same abstraction hierarchy may become compatible when issued for different hierarchies,

e.g., IWc and Wa. Table 3 shows the compatibility for typed locks of distinct types. In

general, there are no conflicts between locks in different hierarchies if one of them is an

intention lock. Only non-intention locks of different hierarchies conflict like ordinary R

and W locks. The reason is simply that an intention lock in hierarchyh only ‘protects’

paths along hierarchyh. An R or W lock in another hierarchyg only implicitly locks

objects reachable by hierarchyg. In the absence of multiple relationships to objects, one

talks about disjoint sets of objects. Objects belonging to different hierarchies are imple-

mented such that distinct parts of an object implement different hierarchies. Other object

data can be accessed independently of the hierarchy that has been used to locate the object.

This is the only chance for conflicts and is covered by R/W and W/W conflicts. Multiple

abstraction relationships to objects are discussed in the next section. In Table 3, the boxes

marked with darker shadows are where our technique offers more concurrency, all of that

due to the consideration given to the semantics of the edges in a KB graph.

4.5 Accessing Implicitly Locked Objects

In Sect. 3 and Sect. 4.1, we have briefly discussed that multiple abstraction relation-

ships to an object may lead to problems with the implicit locks. As a matter of fact, an

interference arises whenever an object with multiple parents is implicitly locked via one

of them. From now on, we call these objects with multiple parentsbastards, in contrast to

purebreds, objects with only one parent.

To illustrate this problem, let us refer to Fig. 5. There, both transactions T1 and T2

required an IWc lock onbeverages and were granted because they are compatible. There-

after, T1 followed the path toaperitifs and locked it in Wc mode. Then, it received an

exclusive lock onaperitifs and implicitly on its instances (pernod, champagne, and

cointreau). Following another path, T2 lockedliquors in Wc mode and implicitly received

exclusive locks on its instances too (cointreau andchantre). T1 and T2 may get into

Table 3: Compatibility matrix for locks of distinct types.

IR IW R RIW W

IR ✓ ✓ ✓ ✓ ✓

IW ✓ ✓ ✓ ✓ ✓

R ✓ ✓ ✓ ✓

RIW ✓ ✓ ✓ ✓

W ✓ ✓

[s or a | c or a | c or s]
Requested Mode

Granted Mode [c | s | a]

12 In: Data & Knowledge Engineering22 (1997) 233-259.

troubles with one another. The problem is that none of them knows a priori which are the

instances of those objects due to the dynamism of the KB graph; hence, both requested a

lock on a node in the hope that its descendants were locked as a whole implicitly.

Figure 5: The problem with implicit locks in a graph structure.

In order to find out conflicts with implicitly locked objects, we may access all

ancestors or descendants of an object. For this purpose, we use the bidirectional represen-

tation of links in KB graphs (c.f. Sect. 2.3). We could follow basically five approaches.

Lock All Referenced Objects

The first and most simple approach is to explicitly lock all referenced objects. In the

example of Fig. 5, if either T1 or T2 locks all objects explicitly, the interference in

cointreau is detected. This practically vanishes the semantics of implicit locks, but it

solves the problem.5 Nevertheless, this method leads to a large overhead, since many

locks are required.

Search for Conflicts

The second approach is, before accessing any implicitly locked bastard, to climb up

the structure in order to search for possible conflicts. In this case, a conflict is detected if

such a bastard is already implicitly locked by any other ancestor in a conflicting mode. In

the above example (Fig. 5), T1 needs to upward traverse the other path coming in

cointreau in order to look for conflicts. In this particular case, it soon realizes a conflict in

liquors. This alternative requires less locks to be held than the first one, because it does

not consider explicit locks on all referenced objects and still makes use of implicit locks,

but it also leads to some substantial drawbacks. Of course, it is very expensive if an object

has several parents, which in turn have several parents, and so on. In such a case, a trans-

action needs to traverse very long paths in order to find out possible conflicts. After all, it

may happen that there is no conflict at all.

5. This alternative is followed by ORION [30] for its class lattices (see Sect. 5.2).

pernod champagnecointreau chantre

aperitifs liquors

beverages

scsc

i i i i i

sc: subclass-of i: instance-ofNotation:

write-locked byT1

write-locked by T2

T2 : IWcT1 : IWc

T2 : WcT1 : Wc

implicitly locked in conflicting modes

In: Data & Knowledge Engineering22 (1997) 233-259.

Analysis of All Descendants

The third approach is, before setting any explicit lock on an object, to analyze all

descendants of this object and to explicitly set locks on the bastards.6 So, any conflict is

immediately avoided, because the objects where potential conflicts may happen, are

already explicitly locked. In the current example (Fig. 5), as soon as transaction T1 sets a

Wc lock onaperitifs, it also needs to set the same lock oncointreau, the only bastard

descendant ofaperitifs. When following the same proceeding, T2 detects the conflict and

must then wait until T1 terminates. In this alternative, the lock manager, always before

granting an explicit lock, needs to downward traverse all paths affected by this explicit

lock and to set an explicit lock on all bastard descendants.

Lazy Evaluation Strategy

The fourth approach is to add to the previous one a kind oflazy evaluation strategy

for lock conflict resolution. In this approach, a transaction may request and be granted an

explicit lock without further analysis. However, before effectively accessing an implicitly

locked bastard, it must verify whether this object is already locked in a conflicting mode.

If so, it must wait until this lock is released. If not, it sets an explicit lock on this object,

signalling that it has accessed it. This lock acts like a tag in the bastard indicating that it

has been already accessed via another parent of it.

The main difference of this alternative to the previous one is that a transaction needs

to explicitly lock only those bastard descendants which it actually accesses, leaving the

others for the concurrent access by other transactions. In the current example (Fig. 5), the

Wc lock onaperitifs by T1 is immediately granted. T1 can accesspernod andchampagne

without problems, but if, and only if, it accessescointreau, it then needs to set an explicit

lock on this object. On the other side, T2 performs a similar proceeding, and it only needs

to set an extra lock if it wants to accesscointreau. In this case, if the lock by T1 is already

released, for example because T1 has already committed, T2 can receive the lock, but if

T1 still holds the lock, T2 must wait. In this approach, only the bastard descendants effec-

tively accessed need to be explicitly locked. Those which are not accessed are not locked.

Hence, implicitly locked bastards not touched via some parent may be accessed via

another one. For these reasons, this is the best alternative to solve the problem with

implicit locks in graph structures, and therefore we are going to follow it in LARS.

6. This alternative was pointed out by Garza and Kim [21] for the class lattices in ORION [30], imple-
mented for test purposes, but discarded.

14 In: Data & Knowledge Engineering22 (1997) 233-259.

Semantic Optimizations

As a last point for discussion, we briefly mention a fifth approach, which represents

an improvement in the previous one, by means of the addition of some semantic optimi-

zations. For example, if we state that when all possible paths to an implicitly locked

bastard are already explicitly locked by a transaction, this transaction does not need to set

an explicit lock on this bastard when accessing it. In fact, all paths reaching this bastard

should be already covered by this transaction with explicit locks on its parents, and

therefore the potential conflicts would be already detected. This proceeding may be cheap

in some special cases, but in general it is too difficult to be realized and too expensive.

4.6 The Locking Rules

Having presented the general guidelines of LARS, we are finally able to expose its

locking rules (Table 4). Before explaining these rules, it is convenient to notice that: First,

transactions are allowed to directly set locks in the root object in any mode. Second,

LARS always producesstrict executions [5], i.e., it requires the locks of a transaction to

be released only at its termination (commit or abort). Third, as we have assumed in Sect.

2.2, the KB graph is (single) rooted and connected, and it automatically stays is this form

as changes undergo over time. Thus, even in a constantly changing graph, there will

always be at least one path from the object to the root. In turn, which specific path should

be locked does not matter for LARS, it must be one, but anyone (we return to this point in

a moment). (Of course, the abstraction relationship being used for locking must be

considered.)

Table 4: Locking rules.

1 Before requesting an IRc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks.

2 Before requesting an IWc|s|a lock on an object, the requester must cover a path from the object to the
root with IWc|s|a or RIWc|s|a locks.

3 Before requesting an Rc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set an Rc|s|a lock on it.

4 Before requesting an RIWc|s|a lock on an object, the requester must cover a path from the object to
the root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set either a) an Rc|s|a lock on it, if it is a leaf object, or b) an RIWc|s|a
lock on it, if it is a non-leaf object.

5 Before requesting a Wc|s|a lock on an object, the requester must cover a path from the object to the
root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set a Wc|s|a lock on it.

In: Data & Knowledge Engineering22 (1997) 233-259.

The first rule states that an IR lock (from the C_type, S_type, or A_type) on a non-

root object must be preceded by either IR or IW locks (from respectively the C_type,

S_type, or A_type) on at least one parent of this object, and so recursively until the root

object is reached. The second rule has a similar meaning, but for the IW locks, requiring

that they must be preceded by IW or RIW locks on at least one path from that object to

the root object. The third rule states, first of all, that an R lock on a non-root object must

be covered by IR or IW locks on at least one path from this object to the root object. There-

after, it requires that a transaction must explicitly lock the bastard descendants.7 This is

implemented by LARS’ lazy evaluation strategy, thereby avoiding conflicts with

implicitly locked objects. The fourth and fifth rules have a similar meaning, but for RIW

and W locks, respectively.

We now provide a complete example (Fig. 6) using again our restaurant KB (Fig.

1). Suppose T1 wants to read the objectturtle-soup as a part of the objectsunday-menu.

To do that it must follow rules 1 and 3 for requesting, respectively, IRa locks on the

parents ofturtle-soup, and an Ra lock on it. On the other side, T2 wants to write the object

appetizers together with its subclasses and instances. In turn, it must follow rules 2 and 5

for requesting IWc locks on the ancestors ofappetizers and a Wc lock on it, respectively.

However, when trying to access the objectcold-dishes, T2 realizes that this object is a

bastard and, as stated by the rule 5, it requests a Wc lock on this object and is granted

because this object was free. The same may happen for the objectturtle-soup as long as

T2 tries to access it. When trying this, either T2 must wait, if the Ra lock on this object is

still held by T1, or it may be granted, if T1 has already terminated.

An important point of explicitly locking bastard descendants, besides guaranteeing

serializability, is the slackness of the original requirement of MGL of covering all paths

from the node to the root, and as a consequence all ancestors, with intentions before

granting an exclusive lock [24]. This is a serious limitation when an object has several

ancestors and is likely to be used via many of them. In such situations, it is very inefficient

to set intention locks on all the parents [29] and as a consequence on all paths to the root.

LARS limits the overhead of the whole process of setting write locks and still provides,

to a limited extent, a minimization of the number of locks to be set by transactions,

through the use of implicit locks.

7. There may be situations where a descendant may have two edges pointing to the same ancestor. For
example, when an object is at the same time instance and element of the same object. In such situations,
the object is considered to be a bastard, no matter whether the parents are the same object.

16 In: Data & Knowledge Engineering22 (1997) 233-259.

Figure 6: Avoiding conflicts with implicitly locked objects.

4.7 Coping with Insert and Delete Operations

Thus far, we have considered a KB as a fixed set of objects, which can be accessed

by reads and writes. Most real KBs can dynamically grow and shrink. Therefore, in

addition to reads and writes, we must support operations to insert new relationships and

objects as well as to delete existing relationships and objects. Before passing on to the

explanation of the rules, we need to make some considerations in the way these operations

are performed. We have assumed (Sect. 2.2) that a KB is represented by a rooted and

connected graph and, additionally, that when an object does not participate in the defined

abstraction relationships, it is treated as being an instance of the predefined rootglobal.

Further, we have assumed that the abstraction relationships between the objects are repre-

sented in a bidirectional way (Sect. 2.3). All of that has some consequences in the way

insert and delete operations should be performed. In the following, we discuss inserts and

deletes in detail. In particular, these operations may be arbitrarily complex, and we are

interested in finding out the primitive operations by means of which any other complex

operation may be realized as a composition of those. The essence of our idea is: There are

four operations - insert node, insert edge, delete node, and delete edge; node operations

are always accompanied by one edge operation; to operate on a node, it must be locked,

and to operate on an edge, its end points must be locked.

Inserting an Object

Since the KB graph is connected, the insertion of an object must be handled as an

operation composed of two steps: The creation of the object itself and its connection to

another existing object.8 In turn, since two objects are involved in this operation, one

dishes

foods

offers

classesaggregates
c

sc

sc

sc

sc

c

scsc: subclass-of

i: instance-of

p: part-of

Notation:

c: subcomponent-of

T2 : IWc

T2 : IWc

T2 : IWc

T2 : IWc

T2 : IWc

T2 : Wc

T1 : IRa

turtle-soupbouillabaissegreek-saladsalade-nicoisefish-plateshrimp-cocktail

soups salads cold-dishes

appetizers
scscsc

i iii
i

i

sunday-menu

p
T2 : Wc

T1 : IRa

T1 : IRa

T1 : Ra

write-locked byT2

read-locked byT1

predefined schemas

signs other paths

global

In: Data & Knowledge Engineering22 (1997) 233-259.

could ask: Which is the object being inserted, the superior or the inferior object? The way

LARS represents the KB graph (as a single-rooted graph) answers this question. It must

be the inferior object, otherwise one would create another root in the graph when inserting

an object as a superior. Hence, LARS considers the object being inserted as the inferior.

Notice that this is not a restriction, but the establishment of a primitive case. If one states

that an object O being inserted must be the superior, LARS can handle it as two opera-

tions. First, the insertion of O and its connection to a superior object (at least to the corre-

sponding predefined object, and hence O is handled as an inferior), followed by the

connection of O to the inferior object (coped with by the objects’ connection rule).

Another important point in the insertion of an object gives respect to the roles of the

superior object in the current KB state. We use the restaurant KB (Fig. 1) in order to

explain this point. Suppose we are designing our KB and that we have not yet defined the

parts of the objectmousse-au-chocolat. Hence,mousse-au-chocolat currently is just an

instance ofdesserts and therefore takes no part in the aggregation graph. When inserting

any part ofmousse-au-chocolat, one should acquire a lock of the A_type on it, since the

aggregation concept is being applied. However, it is impossible to acquire an A_type lock

on mousse-au-chocolat, because it is not yet in the aggregation graph, and therefore one

cannot navigate from the predefined objectaggregates to it. Nevertheless, since the aggre-

gation graph is rooted ataggregates, this operation must be accompanied by the

connection ofmousse-au-chocolat toaggregates anyway. Hence, LARS treats such cases

as first of all the connection of the superior object to the corresponding graph, followed

by the insertion of the inferior object. In our example, LARS would connectmousse-au-

chocolat to aggregates and thereafter insert any part of it. By this way, we have that the

superior object is already connected to the corresponding graph when an inferior of it is

being inserted. Particularly, we need this to synchronize the type of the locks to be

requested in both objects.

At last, another important aspect is how many relationships (connections) are

specified in the insertion of an object. For example, one can state that the object being

inserted is an instance of a class and an element of a set (likebordeaux in our restaurant

KB). In such a case, LARS decomposes such an operation and handles it as an insertion

followed by as many connections as necessary (and so handled by the objects’ connection

rule). Hence, by the insertion of an object we are connecting it to a single superior object.

8. At least the predefined objects (global, classes, sets, andaggregates) will be present in the KB graph.

18 In: Data & Knowledge Engineering22 (1997) 233-259.

Finally, rule 6 in Table 5 presents the lock requests necessary to insert an object. It

states that before inserting an object, its parent (the superior object) must be held in at least

IW mode (and so recursively until the root object is reached). The type of such an IW is

dictated by the abstraction relationship being inserted. Fig. 7 provides an example of the

appliance of this rule. Suppose transaction T1 wants to insert the objectcote-de-provence

as an instance ofwines. To accomplish this task, T1 must request an IWc on wines, the

parent ofcote-de-provence. In turn, this IWc must be covered by IWc on the parents of

wines until the rootglobal. Just after holding those locks, T1 is then able to insert the

objectcote-de-provence. As soon ascote-de-provence is inserted, T1 is granted a Wc on

this object and holds it until it terminates.

Figure 7: Locks for the insertion of an object.

Deleting an Object

We will profit from the above discussions about the insertion of an object and

summarize our considerations about deleting an object. There may be several steps

involved in this operation (the deletion of the object itself and several disconnections,

depending on the current KB state). The primitive case comprehends the deletion of an

inferior object and its disconnection from a superior object. Like above, the other more

complex cases may be built upon this simple case, so that they may be composed of this

primitive case and as many disconnections as necessary (thus handled by the objects’

disconnection rule). Rule 7 in Table 5 deals with deletion of objects, similarly to inser-

tions, with the extra requirement that the object itself (the inferior) must be held in W

mode. Notice that such a W lock implies IW locks on a parent, on a parent of the parent,

and so forth until the root is reached. Finally, the type of such W and IW locks is dictated

by the abstraction relationship in question.

sc
global

cote-de-provence

Notation:

T1 : IWc

object inserted byT1

predefined schemas
T1 : IWc

T1 : IWc

T1 : IWc

beverages

offers

classes

wines

sc

sc

sc

i

sc: subclass-of

i: instance-of

T1 : IWc

T1 holds Wcafter insertion➔

In: Data & Knowledge Engineering22 (1997) 233-259.

Connecting Objects

Like before, also here two objects are affected by this operation, namely a superior

and an inferior object, and the current state of both objects with respect to other objects in

the KB may be arbitrary. The main difference here is that the inferior object may be either

a bastard or a purebred. Rule 8 in Table 5 copes with the connection of objects. It states

that in order to connect objects, the inferior object must be held inany W mode and the

superior object in at least IW mode (this one according to the abstraction relationship

being applied). In Fig. 8, which complements the last example (Fig. 7), it becomes clear

why any exclusive typed lock may be requested in this case. Suppose that T1 wants to

connect the recently created objectcote-de-provence as an element offrench-wines.

Following rule 8, T1 must request a W lock on this object, normally a Ws, since it is

applying the association concept. However, this object takes no part in the association

graph yet, what makes impossible the acquirement of a Ws on it (before the connection,

there is no path fromsets to it). Sincecote-de-provence is an instance ofwines, T1

requires a Wc on this object and is granted because it in fact already holds such a lock due

to the proceedings of the last example (if this were not the case, it should cover a path to

the root with IWc locks). Thereafter, T1 must require an IWs on french-wines, the new

parent of it, and recursively on the ancestors. Finally, after holding all the required locks,

T1 connects both objects. Therefore, in the particular case of connecting objects, a trans-

action is allowed to acquire a W lock of any type in the inferior object. In general, such a

W lock will in fact be of the C_type, because normally an object first receives its structure

by means of the inheritance mechanism of the classification concept, and thereafter it is

connected to other objects using the association or aggregation concepts. As can be seen,

the connection of objects is a bit more complicated operation, because the transaction does

not know a priori which are the roles of both objects in the current KB state.

Figure 8: Locks for the insertion of an edge.

sets

wine-origins

french-wines

ss

e

ss

global

ss

Notation:
T1 : IWs

predefined schemas

T1 : IWs

T1 : IWs

T1 : IWs

ss: subset-of

e: element-of

T1 : IWc

T1 : IWc

T1 : IWc

T1 : IWc

beverages

offers

classes

wines

sc

sc

sc

i

sc: subclass-of

i: instance-of

T1 : IWc

sc

T1 : Wc

new edge inserted byT1 ➔

cote-de-provence

20 In: Data & Knowledge Engineering22 (1997) 233-259.

Disconnecting Objects

Profiting from all discussions so far, we shortly present the disconnection of objects.

We shall only mention that we do not allow the disconnection of purebreds, because if we

disconnect a purebred (deleting its only edge, then), we are either disconnecting the KB

graph or creating a new root of it. Hence, in the disconnection of a purebred, the trans-

action must choose between either deleting the object (and thus handled by the objects’

deletion rule), or connecting it firstly to another superior object (and hence handled by the

objects’ connection rule). Therefore, when disconnecting objects, the inferior object must

always be a bastard object. Rule 9 in Table 5 presents the objects’ disconnection rule. It

is a simple case because the transaction does know the current roles of both objects, and

by this way the path it must traverse for requesting locks. It must request a W lock on the

inferior object, an IW lock on the superior, accordingly to the abstraction concept in

question, and finally recursively cover a path to the root with IW locks.

4.8 The Phantom Problem

Granular locks provide physical locks and being so we have problems with the so-

called phantoms in LARS. The most reasonable solution we found to this problem is to

delegate to the transactions the decision about tolerating or not phantoms. If a transaction

decides to avoid phantoms at all, it must then request exclusive typed locks (i.e., either Wc

or Ws or Wa) on the object in the next higher level of the graph it is currently working on

(what is foreseen by the locking rules). Taking this measure accordingly, no phantoms

may happen because other transactions are unable to access any inferior of such an object,

or to create a new inferior, or to delete an existing inferior (all of that with respect to the

working graph, of course). Hence, no phantom appears.

Table 5: Locking rules for insert and delete operations.

6 Before inserting an object in the classification | association | aggregation graph, the requester must
acquire an IWc|s|a, RIWc|s|a or Wc|s|a lock on the superior object. After the insertion, the requester is
granted a Wc|s|a lock on the object.

7 Before deleting an object from the classification | association | aggregation graph, the requester must
acquire a Wc|s|a lock on it and an IWc|s|a, RIWc|s|a or Wc|s|a lock on the superior object.

8 Before connecting objects using the classification | association | aggregation concept, the requester
must acquire either a Wc or a Ws or a Wa lock on the inferior object and an IWc|s|a, RIWc|s|a or Wc|s|a
lock on the superior object.

9 Before disconnecting objects using the classification | association | aggregation concept, the
requester must acquire a Wc|s|a lock on the inferior object and an IWc|s|a, RIWc|s|a or Wc|s|a lock on
the superior object.

In: Data & Knowledge Engineering22 (1997) 233-259.

4.9 Correctness Concerns

Definition 1: A directed acyclic graph (DAG), G, is a finite set of nodesN and a set
of arcsA (a subset of N× N). N represents all objects in the KB, whereas A all
abstraction relationships between these objects.

Definition 2: The classification graph, Gc, is a subgraph of G, containing the set of
nodes Nc and the set of arcs Ac. Nc contains the nodes representing the (super-) classes
and instances of N. In turn, Ac contains the arcs representing the generalization and
classification abstraction relationships of A.

Definition 3: The association graph, Gs, is a subgraph of G, containing the set of
nodes Ns and the set of arcs As. Ns contains the nodes representing the (super-) sets
and elements of N. In turn, Ac contains the arcs representing the set- and element-
association abstraction relationships of A.

Definition 4: The aggregation graph, Ga, is a subgraph of G, containing the set of
nodes Na and the set of arcs Aa. Na contains the nodes representing the (super-)
components and parts of N. In turn, Aa contains the arcs representing the component-
and element-aggregation abstraction relationships of A.

Observation 1: (Gc ∪ Gs ∪ Ga) = G

Observation 2: (Nc ∪ Ns ∪ Na) = N

Observation 3: (Ac ∩ As) = (Ac ∩ Aa) = (As ∩ Aa) = ∅

Definition 5: A nodep is aparent of nodec andc is achild of nodep, if <p, c> ∈ A.

Definition 6: A node with no parents is aroot. There is always only one root in G,
namely, the predefined nodeglobal.

Definition 7: A node with no children is aleaf.

Definition 8: A path is a set of arcs of A,a1 ...an, whereai = <bi, bi+1> andbi ∈ N.

Definition 9: Nodeb is anancestor of nodec if b = c or b lies in some path from the
root to nodec.

Definition 10: Nodeb is asuperior of nodec if b is an ancestor ofc other thanc itself.

Definition 11: Nodec is adescendant of nodeb if b is not a leaf and eitherc = b or c
lies in some path fromb to some leaf.

Definition 12: Nodec is aninferior of nodeb if c is a descendant ofb other thanb itself.

Definition 13: A bastard is any node which has more than one parent.

Definition 14: A purebred is any node which has only one parent.

22 In: Data & Knowledge Engineering22 (1997) 233-259.

Observation 4: The LARS protocol is a strict two-phase locking (strict 2PL) protocol.
All transactions are well-formed and strict two-phase. Hence, as a strict 2PL protocol,
for any arbitrary schedule of transactions running under the LARS protocol, the serial-
izability graph is acyclic and thus it is serializable. (The reader is referred to [5] for
correctness concerns about the serializability of 2PL protocols.)

Suppose all transactions obey the LARS protocol with respect to a given lock graph,

G, that is a DAG.

Theorem 1: If a transaction owns an explicit or implicit lock on a node of G, then no
other transaction owns a conflicting explicit or implicit lock on that node.

Proof: We prove by induction on the length of the shortest path from the root to a
node that the claim of the Theorem 1 is true.

Base case: The base case is trivial. The lengthl of the shortest path from the rootr to
a noden is equal zero (l = 0). In this case,n is the rootr itself. As the root,n then has
only outgoing vertices, and therefore no implicit locks onn are possible. Conflicting
explicit locks onn are handled by the compatibility matrices. Hence, the claim holds
for the base case.

Induction step: Suppose the Theorem 1 is true for all nodesn such that the length of
the shortest pathp fromr to n is less thanl.

Consider a particular noden such that the length of the shortest path fromr to n is l.
There are two different cases.

Case 1: If n is a bastard, then the claim follows easily, it must have been explicitly
locked by using any of the locking rules 3-5, and conflicting explicit locks are coped
with by the compatibility matrices.

Case 2: If n is a purebred, it may have been either explicitly or implicitly locked. Thus,
there are two subcases.

Case 2.1: If n is an explicitly locked purebred, then the claim holds due to the same
arguments above, i.e., any of the locking rules 3-5 was applied, and conflicting
explicit locks are handled by the compatibility matrices.

Case 2.2: If n is an implicitly locked purebred, then there must be a superior of it
in p explicitly locked. Considering each of them in turn, in conjunction with the
induction hypothesis, one falls back on Case 1 or Case 2.1 or latest on the base
case, and therefore the claim holds. ❑

Theorem 2: If a transaction inserts a node in G, then no other transaction may lock that
node until the inserting transaction commits.

In: Data & Knowledge Engineering22 (1997) 233-259.

Proof: We prove by using rule 6 that the claim of the Theorem 2 is true. As stated
by rule 6, a transaction is granted an exclusive lock on the object being inserted. In
addition, since an object is inserted in only one of Gc, Gs, or Ga, such an exclusive
lock is incompatible with any other lock of the same type, and hence any other lock
request on that node will be refused, obeying the compatibility matrix for locks of the
same type (Table 2). Since LARS is a strict two-phase locking protocol, this lock will
be released only at transaction’s termination. Hence, the claim holds. ❑

Theorem 3: If a transaction owns an explicit or implicit lock on a node of G, then no
other transaction may delete that node.

Proof: We prove by using rule 7 that the claim of the Theorem 3 is true. As stated
by rule 7, a transaction must acquire an exclusive lock on the object being deleted. In
turn, such an exclusive lock must be covered by intention exclusive (or higher) locks
on the superior objects. Since an object is deleted from one of Gc, Gs, or Ga, we have
that: First, such an exclusive lock on the object itself is incompatible with any other
explicit lock of the same type on the object, and second, such intention exclusive locks
on the superiors of the object are incompatible with any other lock which could lock
the object implicitly, accordingly to the compatibility matrix for locks of the same type
(Table 2). Hence, a transaction may not delete an object which is explicitly of
implicitly locked by another transaction, and therefore the claim holds. ❑

Theorem 4: If a transaction owns an explicit or implicit C_type | S_type | A_type lock
on a node of Gc|s|a, then no other transaction may connect that node to another superior
node in Gc|s|a.

Proof: We prove by using rule 8 that the claim of the Theorem 4 is true. As stated
by rule 8, a transaction must acquire an exclusive lock on the object before connecting
it to another superior object. In turn, such an exclusive lock must be covered by
intention exclusive (or higher) locks on the superior objects. Since an object is
connected to one of Gc, Gs, or Ga, we have that: First, such an exclusive lock on the
object itself is incompatible with any other explicit lock of the same type on the object,
and second, such intention exclusive locks on the superiors of the object are incom-
patible with any other lock which could lock the object implicitly, accordingly to the
compatibility matrix for locks of the same type (Table 2). Hence, a transaction may
not connect an object which is explicitly of implicitly locked by another transaction,
and therefore the claim holds. ❑

Theorem 5: If a transaction owns an explicit or implicit C_type | S_type | A_type lock
on a node of Gc|s|a, then no other transaction may disconnect that node from another
superior node in Gc|s|a.

Proof: We prove by using rule 9 that the claim of the Theorem 5 is true. As stated
by rule 9, a transaction must acquire an exclusive lock on the object before discon-

24 In: Data & Knowledge Engineering22 (1997) 233-259.

necting it from another superior object. In turn, such an exclusive lock must be
covered by intention exclusive (or higher) locks on the superior objects. Since an
object is disconnected from one of Gc, Gs, or Ga, we have that: First, such an exclusive
lock on the object itself is incompatible with any other explicit lock of the same type
on the object, and second, such intention exclusive locks on the superiors of the object
are incompatible with any other lock which could lock the object implicitly, accord-
ingly to the compatibility matrix for locks of the same type (Table 2). Hence, a trans-
action may not disconnect an object which is explicitly of implicitly locked by another
transaction, and therefore the claim holds. ❑

4.10 Final Considerations

Including Indices in the KB Graph

Thus far, we have pretended that all accesses against a KB take place through the

abstraction relationships. However, a more detailed examination of KBMSs suggests

otherwise. Hash tables, trees, sorted and unsorted lists, arrays, access sequences, etc., are

normally used to speed up the access to objects in KBs. There are several special purpose

CC algorithms for indices (e.g., [14, 46, 47, 44]), most of which uses some form of non-

two-phase locking. In general, any of them may be used for controlling the accesses via

indices in KBs. LARS, which is a strict two-phase locking protocol, would probably not

be useful to index locking as compared to existing techniques.

Deadlocks

LARS is subject to deadlocks. In addition, the protocol for handling bastards intro-

duces deadlocks that did not occur in conventional hierarchical locking. The difference is

that LARS’ rules 3-5 require also explicit locks on the implicitly locked bastards, and

when acquiring those locks, transactions may get deadlocked.

Lock Conversion

Lock conversions are normally used to increase (upgrade) the access mode a trans-

action has to an object [24]. In LARS, lock conversions are handled accordingly to the

type of lock. In [56] we discuss how upgrade operations shall be done in our transaction

model, which allows also for controlled downgrading of locks.

Lock Escalation

Lock escalation [25, 5] is also taken into consideration by LARS. Nevertheless, a

lock escalation in LARS alleviates the transaction from requesting locks just on

purebreds, but not on bastards - they must still be explicitly locked on access.

In: Data & Knowledge Engineering22 (1997) 233-259.

Implementation and Performance Considerations

The LARS protocol is not directly comparable to MGL. As a matter of fact, LARS

takes advantage of the hierarchical structuring of different locking granules like MGL

does, but the accessibility of objects via multiple relationships (paths) alters its behavior

substantially. LARS was fully implemented in the KBMS KRISYS, following a model of

nested transactions [56]. The details of its implementation can be found in [38].

An important point to the performance of LARS is the frequency of bastards in the

KB graph. If bastards are very, very common (e.g., over 90% of the objects), then LARS’

performance would probably be comparable to 2PL, where every touched object must be

locked (10% of the objects would not be explicitly locked, but LARS has the extra costs

of setting intention locks). Whether or not bastards are common in KBs will certainly

depend on the richness of the modeling and the requirements (features) of the applica-

tions. We have applied single-user KRISYS to run quite a number of prototype applica-

tions during the last few years [15]. For the evaluation of the bastard problem, we have

analyzed five different KBs which were developed in the last years in our university

(namely, an architecture KB, a restaurant KB, a mechanical engineering KB, a medical

KB, and a real estate appraiser KB). Since they were developed for academic purposes

and for single-user environments, the number of objects was about 500 in each KB. Not

specially the absolute number, but importantly the degree of bastard occurrences may be

indicative for larger KBs. In three of them, the percentage of bastards was in average 2%

(more specifically, 1.5%, 1.8%, and 2.6%). In one of them, it reached 30% and in the other

50%. Of course, the fewer the bastards, the better is the performance of LARS. At the

moment, LARS is undergoing more detailed investigations on its performance [39].

5. Related Work

5.1 Concurrency Control for KBMSs

As far as we know, the only other work addressing transaction synchronization in

KBMSs is Chaudhri’s Dynamic Directed Graph (DDG) policy presented in [11, 10, 12].

It is an extension of the locking protocol for hierarchical DB systems of Silberschatz and

Kedem [57]. Whereas the former is able to cope with cycles and updates in the underlying

structure, this is not considered by the latter. The main distinction between LARS and

DDG is that they address different problems. When transactions access a large number of

objects there are two potential problems. The first problem is that the large number of

locks held by a transaction can mean high locking overhead which can be potentially

26 In: Data & Knowledge Engineering22 (1997) 233-259.

reduced by locking several objects at once (i.e., by using coarse granules of locking). The

second problem, which is a consequence of using two-phase locking, is that the locks may

be held for a long period of time, thus limiting the concurrency. DDG attempts to address

the second problem and does not say anything about the first. In turn, LARS addresses the

first problem and does not deal with the second.

Nevertheless, the DDG policy makes no difference between different abstraction

relationships, i.e., it does not treat, for example, neither a class and its instances, nor an

aggregate and its components, etc., as a single lockable unit. Hence, the semantics of the

KB graph is not exploited to improve the concurrency. Further, no kind of implicit locks

is defined. This may jeopardize the overall performance of DDG and, in addition, lead the

lock system to run out of storage. Finally, phantoms are not taken into consideration. A

more detailed critical analysis of this protocol may be found in [54].

5.2 Concurrency Control for OODBMSs

Due to the lack of work on transaction synchronization in KBMSs, we have

analyzed some CC protocols of a related area, namely OODBMSs [53]. There are some

CC methods for OODBMSs that have been designed independent of any specific system

[1, 26]. Due to space limitations, we provide here just a brief analysis of CC protocols in

some specific OODBMSs.

ORION

ORION [4, 31, 34] supports locks on three different types of hierarchy, namely the

so-called granularity hierarchy for logical entities, the class lattice hierarchy, and the

composite objects (aggregates) hierarchy. ORION extended MGL and partially provides

implicit locks [21, 33, 32]. The main problem of ORION is that it does not allow even a

read on a class to be performed in parallel with a write on an instance of it. ORION

provides implicit locks for the instances of a class, but not for the subclasses of a class.

ORION prohibits an object of being instance of many classes at the same time. This elimi-

nates the bastard problem at the instance level, but would be hardly applicable to KBMSs.

In turn, classes may have several direct superclasses, and hence the bastard problem

appears for classes. It is solved with the requirement that for a query involving a class and

its descendants as well as for a schema change operation on a class, a lock must be set not

only on the class, but also on each of its subclasses. Consequently, all subclasses of a class

must be explicitly locked in such cases.

In: Data & Knowledge Engineering22 (1997) 233-259.

O2

The CC technique actually implemented in the O2 [3, 16] is a conventional one used

in DBMSs, but there is an interesting approach for CC in O2 presented by Cart and Ferrié

[8] based on a classification of methods. Here we discuss the proposal of [8]. According

to [8], in O2 methods are classified according to whether they are performed on a class or

on an instance, and as a reading or a writing method. In addition to this classification of

methods, O2 also distinguishes the type of access a transaction requires for an object.

There are the so-calledreal andvirtual accesses [8]. The main benefit of this classification

is that reading (but not writing) a class is compatible with either reading or writing any of

its instances. Implicit locks on instances of a class are provided. However, no kind of

implicit locks is available for subclasses of a class. The bastard problem is handled by O2

in a similar manner as by ORION, with the inclusion of the distinction between real and

virtual accesses which may be also used for detecting conflicts.

GemStone

GemStone [41, 51, 6, 7] protects its concurrent transactions using a combination of

optimistic and pessimistic CC techniques. Particularly, the choice of whether to use the

optimistic or pessimistic technique depends on the degree of contention of an object.

Using an optimistic access, the objects do not need to be locked, being controlled by a

shadowing mechanism. Instead, at commit time, existing conflicts are detected. Finally,

locks are used to control the pessimistic accesses. Optimistic methods may show very

poor performance due to, among other things, the possibly high percentage of transactions

that must be aborted when, at commit time, conflicts are detected [27, 50, 45]. In turn, the

pessimistic method of GemStone does not provide implicit locks. GemStone’s limited

number of lock types restricts the parallelism, and it is unaware about the semantics of the

relationships between objects.

ObjectStore

The CC mechanism of ObjectStore [36] is similar to those used in conventional

DBMSs. It provides 2PL with a read/write lock for each page, i.e., the locking granularity

is on a per-page basis. Every time a user needs to access an object, the corresponding page

is transferred to the workstation and locked in the server in either exclusive or shared

mode [36]. Thus, ObjectStore does not show any improvement with respect to CC.

28 In: Data & Knowledge Engineering22 (1997) 233-259.

6. Conclusions

KBMSs are a growing research area finding applicability in many different

domains. The higher its demand, the greater the necessity for knowledge sharing. As a

matter of fact, the research for CC techniques tailored to the KBMS environment plays a

crucial role in this context. Moreover, it assumes a paramount importance as the demand

for ever-larger KBs grows.

Following this research direction, we have presented the LARS approach for trans-

action synchronization in KBMSs. The most important feature of LARS is the partition of

the KB graph into several logical ones, hence allowing transactions to concurrently access

such partitions through different points of view. Thereafter, LARS applies granular locks

to each partition, providing thus many different lock types and taking the necessary

precautions with respect to the dynamism of the KB graph. In this manner, LARS captures

more of the semantics contained in the KB graph, in the sense that it does not consider

descendants of an object as being simply descendants of it, but, on the contrary, descen-

dants with special characteristics and significance, which are based on the abstraction

relationships. By such a means, LARS can exploit the inherent parallelism in a knowledge

representation approach. Further, LARS offers different locking granules and considers

implicit locks, alleviating the task of managing too many locks due to the high number of

objects in real world applications. Finally, LARS copes well with multiple abstraction

relationships to objects, by requiring explicit locks on bastards. This, in turn, relaxes the

necessity of covering all paths to the root with intentions, reducing it to only one path.

Abstraction concepts are defined for KBMSs’ use in general. We have designed

LARS to work with the three abstraction concepts that should be provided by KBMSs, and

we have referred to an existing KBMS, namely KRISYS [43], as a powerful example to

make our discussions specific. Nevertheless, LARS is flexible enough to be used by other

object-oriented data models. In the case of a specific data model not supporting all the

three abstractions, one should only cut off the corresponding lock modes of LARS and

handle bastards in the same way. Of course, the data model must be powerful enough to

support bidirectional links in the representation of edges in KB graphs, because LARS

uses them to easily find bastard objects. Representing the edges bidirectionally in KB

graphs exclusively for the right functioning of LARS would probably not pay off.

Acknowledgments - We would like to thank J. Reinert for the helpful discussions on the correctness
concerns of LARS, J. Thomas for supporting us understanding the upper layers of
KBMSs, and the anonymous referees for suggestions to improve the presentation.

In: Data & Knowledge Engineering22 (1997) 233-259.

References

[1] D. Agrawal and A. El Abbadi. A non-restrictive concurrency control protocol for
object-oriented databases. In:Proc. of the 3rd Int. Conf. on Extending Database
Technology, Vienna, Austria, 469-482 (1992).

[2] B.R. Badrinath and K. Ramamrithan. Semantics-based concurrency control:
Beyond commutativity. In:Proc. of the 3rd Int. Conf. on Data Engineering, Los
Angeles, USA, 304-311 (1987).

[3] F. Bancilhon, C. Delobel and P. Kanellakis (eds.).Building an object-oriented
database system: The story of O2. Morgan Kaufmann, USA (1992).

[4] J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk and N. Ballou. Data model
issues for object-oriented applications.ACM Transactions on Office Information
Systems5 (1), 3-26 (1987).

[5] P.A. Bernstein, V. Hadzilacos and N. Goodman.Concurrency control and recovery
in database systems. Addison-Wesley, USA (1987).

[6] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H. Willians and M.
Willians. The GemStone data management system. In: W. Kim and F.H. Lochovsky
(eds.),Object-oriented concepts, databases, and applications, ACM Press, USA,
283-308 (1989).

[7] P. Butterworth, A. Otis and J. Stein. The GemStone object database management
system.Communications of the ACM34 (10), 64-77 (1991).

[8] M. Cart and J. Ferrié. Integrating concurrency control into an object-oriented
database system. In: [3], 463-485.

[9] M.A. Casanova and P.A. Bernstein. General purpose schedulers for database
systems.Acta Informatica4 (1980).

[10] V.K. Chaudhri. Transaction synchronization in knowledge bases: Concepts,
realization and quantitative evaluation. Ph.D. Thesis, University of Toronto,
Toronto, Canada (1994).

[11] V.K. Chaudhri, V. Hadzilacos and J. Mylopoulos. Concurrency control for
knowledge bases. In:Proc. of the 3rd Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning, Cambridge, USA (1992).

[12] V.K. Chaudhri, V. Hadzilacos, J. Mylopoulos and K.C. Sevcik. Quantitative evalu-
ation of a transaction facility for a KBMS. In:Proc. of the 3rd Int. Conf. on Infor-
mation and Knowledge Management, Gaithersburg, USA (1994).

[13] P.K. Chrysanthis, S. Raghuram and K. Ramamritham. Extracting concurrency from
objects: A methodology. In:Proc. of the ACM SIGMOD Int. Conf. on Management
of Data, Denver, USA, 108-117 (1991).

[14] P. Dadam, V. Lum, U. Prädel and G. Schlageter. Selective deferred index mainte-
nance and concurrency control in integrated information systems. In:Proc. of the
11th Int. Conf. on Very Large Data Bases, Sweden (1985).

[15] S. Dessloch, F.-J. Leick, N.M. Mattos and J. Thomas. The KRISYS project: a
summary of what we have learned so far. In:Proc. of the BTW’93, Braunschweig,
Germany, March 1993.

30 In: Data & Knowledge Engineering22 (1997) 233-259.

[16] O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data
Engineering2 (1), 91-108 (1990).

[17] K.P. Eswaran, J.N. Gray, R.A. Lorie and I.L. Traiger. The notions of consistency
and predicate locks in a database system.Communications of the ACM19 (11), 624-
633 (1976).

[18] A.A. Farrag and M.T. Ozsu. Using semantic knowledge of transactions to increase
concurrency.ACM Transactions on Database Systems14 (4), 503-525 (1989).

[19] J.M. Fischer, N.D. Griffeth and N.A. Lynch. Global states of a distributed system.
IEEE Transactions on Software EngineeringSE-8 (3), 198-202 (1982).

[20] H. Garcia-Molina. Using semantic knowledge for transaction processing in a
distributed database.ACM Transactions on Database Systems8 (2), 186-213
(1983).

[21] J.F. Garza and W. Kim. Transaction management in an object-oriented database
system. In:Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Chicago,
USA, 37-45 (1988).

[22] J.N. Gray. Notes on database operating systems. In:Operating systems: An
advanced course, Springer, Berlin (1978).

[23] J.N. Gray. The transaction concept: Virtues and limitations. In:Proc. of the 7th Int.
Conf. on Very Large Data Bases, Cannes, France, 144-154 (1981).

[24] J.N. Gray, R.A. Lorie, G.R. Putzolu and I.L. Traiger. Granularity of locks and
degrees of consistency in a shared data base. In:Proc. of the IFIP Working Conf. on
Modeling in DBMSs, Freudenstadt, Germany, 365-394 (1976).

[25] J.N. Gray and A. Reuter.Transaction processing: Concepts and techniques.
Morgan Kaufmann, USA (1993).

[26] T. Hadzilacos and V. Hadzilacos. Transaction synchronization in object bases.
Journal of Computer and Systems Sciences43 (1), 2-24 (1991).

[27] T. Härder. Observations on optimistic concurrency control schemes.Information
Systems9 (2), 111-120 (1984).

[28] T. Härder and A. Reuter. Principles of transaction-oriented database recovery.ACM
Computing Surveys15 (4), 287-317 (1983).

[29] U. Herrmann, P. Dadam, K.M. Küspert, E.A. Roman and G. Schlageter.A lock
technique for disjoint and non-disjoint objects. Technical Report TR.89.01.003,
IBM Heidelberg Research Center, Heidelberg, Germany (1989).

[30] W. Kim. Introduction to object-oriented databases. MIT Press, USA (1990).
[31] W. Kim, N. Ballou, H.-T. Chou, J.F. Garza and D. Woelk. Features of the ORION

object-oriented database system. In: W. Kim and F. Lochovsky (eds.),Object-
oriented concepts, databases, and applications, ACM Press, USA, 251-282 (1989).

[32] W. Kim, J. Banerjee, H.-T. Chou, J.F. Garza and D. Woelk. Composite objects
support in an object-oriented database system. In:Proc. of the 2nd OOPSLA,
Orlando, USA (1987).

[33] W. Kim, E. Bertino and J.F. Garza. Composite objects revisited. In:Proc. of the
ACM SIGMOD Int. Conf. on the Management of Data, Portland, USA, 337-347
(1989).

In: Data & Knowledge Engineering22 (1997) 233-259.

[34] W. Kim, J.F. Garza, N. Ballou and D. Woelk. Architecture of the ORION next-
generation database system.IEEE Transactions on Knowledge and Data
Engineering2 (1), 109-124 (1990).

[35] H.T. Kung and C.H. Papadimitriou. An optimality theory of concurrency control for
databases. In:Proc. of the ACM SIGMOD Int. Conf. on the Management of Data,
Boston, USA, 116-126 (1979).

[36] C. Lamb, G. Landis, J. Orenstein and D. Weinreb. The ObjectStore database
system.Communications of the ACM34 (10), 50-63 (1991).

[37] H.J. Levesque and R.J. Brachman. A fundamental tradeoff in knowledge represen-
tation and reasoning. In: R.J. Brachman and H.J. Levesque (eds.),Readings in
knowledge representation, Morgan Kaufmann, USA (1985).

[38] J. Lutze.Lock Management in the KBMS KRISYS - An Implementation of the LARS
Protocol for Nested Transactions(in German). Undergraduation Project Work,
Univ. of Kaiserslautern, Kaiserslautern, Germany (1996).

[39] J. Lutze:Benchmarking the Architectural Components of a Multi-User Knowledge
Base Management Systems(in German). Undergraduation Diploma Work, Univ. of
Kaiserslautern, Kaiserslautern, Germany (in preparation).

[40] N. Lynch. Multilevel atomicity: A new correctness criterion for database concur-
rency control.ACM Transaction on Database Systems8 (4), 484-502 (1983).

[41] D. Maier, J. Stein, A. Otis and A. Purdy. Development of an object-oriented DBMS.
In: Proc. of the OOPSLA, Portland, USA, 472-482 (1986).

[42] N.M. Mattos. Abstraction concepts: The basis for data and knowledge modeling. In:
Proc. of the 7th Int. Conf. on Entity-Relationship Approach, Rom, Italy, 331-350
(1988).

[43] N.M. Mattos. An approach to knowledge base management. Lecture Notes in
Artificial Intelligence 513, Springer, Germany (1991).

[44] C. Mohan. ARIES/KVL: A key-value locking method for concurrency control of
multiaction transactions operating on B-tree indices. In:Proc. of the 16th Int. Conf.
on Very Large Data Bases, Australia, 392-405 (1990).

[45] C. Mohan. Less optimism about optimistic concurrency control. In:Proc. of the 2nd
Int. Workshop on RIDE: Transaction and Query Processing, Tempe (1992).

[46] C. Mohan, D. Haderle, Y. Wang and J. Cheng.Single table access using multiple
indices: Optimization, execution and concurrency control techniques. IBM ARC
Research Report RJ7341 68822, Almaden, USA (1989).

[47] C. Mohan and F. Levine.ARIES/IM: An efficient and high concurrency index
management method using write-ahead logging. IBM ARC Research Report
RJ6846 65380, Almaden, USA (1989).

[48] P. Muth, T.C. Rakow, G. Weikum, P. Brössler and C. Hasse. Semantic concurrency
control in object-oriented database systems. In:Proc. of the 9th Int. Conf. on Data
Engineering, Vienna, Austria, 233-242 (1993).

[49] J. Mylopoulos and M. Brodie. Knowledge bases and databases: Current trends and
future directions. In:Proc. of the Workshop on Artificial Intelligence and
Databases, Ulm, Germany (1990).

32 In: Data & Knowledge Engineering22 (1997) 233-259.

[50] P. Peinl and A. Reuter. Empirical comparison of database concurrency control
schemes. In:Proc. of the 9th Int. Conf. on Very Large Data Bases, Florence, Italy,
97-108 (1983).

[51] D.J. Penney and J. Stein. Class modification in the GemStone object-oriented
DBMS. In:Proc. of the OOPSLA, Orlando, USA, 111-117 (1987).

[52] T.C. Rakow, J. Gu and E.J. Neuhold. Serializability in object-oriented database
systems. In:Proc. of the 6th Int. Conf. on Data Engineering, Los Angeles, USA,
112-120 (1990).

[53] F.F. Rezende.Evaluating the suitability of OODBMS concurrency control
techniques to the KBMS environment. Internal Report, Univ. of Kaiserslautern,
Kaiserslautern, Germany (1995). (submitted for publication).

[54] F.F. Rezende. Concurrency control techniques and the KBMS environment: A
critical analysis.RITA - Journal for Theoretical and Applied Computer Science2
(1), Brazil, 37-76 (1995).

[55] F.F. Rezende and T. Härder. A lock method for KBMSs using abstraction relation-
ships’ semantics. In:Proc. of the 3rd Int. Conf. on Information and Knowledge
Management, Gaithersburg, USA, 112-121 (1994).

[56] F.F. Rezende and T. Härder. Concurrency control in nested transactions with
enhanced lock modes for KBMSs. In:Proc. of the 6th Int. Conf. on Database and
Expert Systems Applications, London, UK (1995).

[57] A. Silberschatz and Z. Kedem. Consistency in hierarchical database systems.
Journal of the ACM27 (1), 72-80 (1980).

[58] P.M. Schwarz and A.Z. Spector. Synchronizing shared abstract types.ACM Trans-
actions on Computer Systems2 (3), 223-250 (1984).

[59] W.E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers37 (12), 1488-1505 (1988).

