In: Data & Knowledge Engineering? (1997) 233-259. 1

Exploiting Abstraction Relationships’ Semantics for

Transaction Synchronization in KBMSs

Fernando de Ferreira Rezendeand Theo Harder

Department of Computer Science - University of Kaiserslautern
P.0.Box 3049 - 67653 Kaiserslautern - Germany

Phone: ++49 (0631) 205 3274/4031 - Fax: ++49 (0631) 205 3558
E-Mail: {rezende/haerder}@informatik.uni-kl.de

Abstract - Currently, knowledge sharing is turning out to be a crucial point to be supported
by Knowledge Base Management Systems (KBMSs). We propose an approach for transaction
synchronization in KBMSs - LARS (Locks using Abstraction Relationships’ Semantics). We
show how we obtain serializability of transactions thereby providing different locking
granules. The main benefit of our technique is the high degree of potential concurrency, which
is obtained by means of a logical partitioning of the knowledge base (KB) grounded in the
abstraction relationships, and the provision of many lock types to be used on the basis of each
partition. By this way, we capture the abstraction relationships’ semantics contained in a KB
graph for transaction synchronization purposes and enable the exploitation of the inherent
parallelism in a knowledge representation approach.

Keywords - Transaction synchronization, concurrency control, locking, knowledge base
management systems, object-oriented database systems.

1. Introduction

In recent years, the use of KBMSs is becoming more and more widespread and,
accordingly, the demand for ever-larger KBs higher and higher. Nowadays, the main
challenge of the KBMS research is to try the successful adaptation of such systems to real-
life production environments [49]. In this scope, concurrency control (CC) techniques for
KBMSs play a crucial role, because they are among the most important means for
allowing large, multi-user KBs to become a reality [55, 10].

In this paper, we present our approach for transaction synchronization in KBMSs.
The main goal we have in mind is the provision of serializability [24] for ACID [28] trans-
actions. Among the most important classes of CC algorithmeckiag, timestampsand
serialization graph$5]. In particular, the class of locking-based algorithms has shown its
practicality and performance. Additionally, locking-based algorithms have special
solutions for graph structures, the abstractions for KBs that appear to be the most
appealing [11]. Thus, we have chosen to develop our technique based on locking.

2 In: Data & Knowledge EngineeringR (1997) 233-259.

With respect to locking, we could consider several approachesdicate locks
[17], the two-phase locking (2PL) protocfl7], the multigranularity locking (MGL)
protocol [24], etc. In particular, we are more interested in granular locks, because they
provide transactions the possibility of choosing, among different locking granules, the
most appropriate one to accomplish their tasks. In addition, the notion of implicit locks
significantly minimizes the number of locks to be set by transactions. These are some of
the reasons which lead us to use the power and elegance of granular locks also in the
KBMS environment.

This paper is organized as follows. After providing short discussions on some
particular issues in KBMSs (Sect. 2), we present an overview of MGL and point out the
main problems of its pure appliance in the KBMS environment (Sect. 3). Then, we
introduce our approach for transaction synchronization in KBMSs (Sect. 4). Thereatter,
we discuss related work (Sect. 5) and finally conclude the paper (Sect. 6).

2. Particular KBMS Issues

2.1 Knowledge Bases

Perhaps due to the existence of several journals, conferences, communities, etc.
concerned wittknowledge-based systemtisere are so many definitions characterizing
the meaning oknowledgeandknowledge base®utting aside a discussion on the philo-
sophical meaning of these concepts and without trying to speculate what a KBMS might
be and in what way it may differ from conventional Database Management Systems
(DBMSSs), we refer here to a specific definition given by Levesque and Brachman [37],
which is widely accepted in the knowledge representation community:

“A knowledge base has explicit structures representing the knowledge of the
system which determine the actions of the system. ... It is not the use of a
certain programming language or a data-structuring facility that makes a
system knowledge-based.”

This definition views a KB as a system with explicit structures representing the
knowledge. This is exactly the most important characteristic of such a system for our
purposes. Any data model which explicitly represents the knowledge and, therefore,
explicitly encodes the knowledge and the semantic structure of an application domain
may use the results we present in this paper. Such an explicit representation of knowledge
is found not only in knowledge-based systems, but also in several, especially object-
oriented, data models. Even many conventional relational database (DB) systems can

In: Data & Knowledge Engineering? (1997) 233-259. 3

satisfy this requirement. The essential feature is that they can be visualized as Directed
Acyclic Graphs (DAGS), as explained in the following. Therefore, unless otherwise noted,
we use in this paper the termigtabasesandknowledge basasterchangeably meaning

that the results of our work are general and applicable to a broad class of applications.

2.2 The Abstraction Concepts

KBMSs manage complex and structured objects and different types of abstraction
relationships. In fact, abstractions turned out to be fundamental tools for knowledge
organization. An important aspect of KBMSs is that objects can play different roles at the
same time - the object-centered representation [42]. Consequently, the KB features can be
visualized as a superposition of the abstraction hierarchies (in fact DAGs) of generali-
zation and classification, association, as well as aggregation, building altogether the so-
calledKB graph It is beyond the scope of this paper to begin a detailed discussion about
the abstraction concepts. The interested reader is referred to [42, 43]. In order to illustrate
one such a KB graph, in Fig. 1 we provide an example of a restaurant KB. Notice that the
purpose of this scenario is merely to illustrate our solution for knowledge sharing, rather
than schema design issues. This scenario will serve as a running example along this paper.

—_—

classes

— — ——
— —

-
%
;

wine-origing

VAR
SS
7 \SS

/ AN

e i
e/\ f

|bordeauﬂcote-du-rhon"schwarzekaﬂiébfraumilcr} 0 [sunday-menjidessertk | appetizer$ |maiﬁ-coursek

SC SC

p.--p

e i N
[turtle-soug{bouillabaissfgreek-salajjsalade-nicoigfish-platgshrimp-cocktaljsteak-au-poivijveau-au-vif
Notation: sc: subclass-of i: instance-of ss: subset-of e: elememt-efibcomponent-of p: part-of

N
i | i | N

Figure 1: A restaurant knowledge base.

In order to restrict the KB to a rooted and connected graph, we have added the
objectsglobal, the only root of the whole grapsets the root of the association graph,

4 In: Data & Knowledge EngineeringR (1997) 233-259.

classesthe root of the classification/generalization graph, and filagigyegatesthe root

of the aggregation graph. We provide such objects in order to have an adequate
environment for the appliance of our protocol. In addition, we assume that all objects (or
schemas) are directly or indirectly relatedgtobal. When a schema is neither a class/
instance, nor a set/element, nor a component/part, it is connected as a direct instance of
global In turn, all classes/instances, sets/elements, and components/parts are directly or
indirectly related to the predefined schemksses, setsaandaggregatesrespectively.
Moreover, we assume that the KB graph automatically stays in this form (rooted and
connected) as changes undergo over fime.

2.3 Expressiveness of KB Languages

The expressiveness of the KB languages is generally greater than that usually
provided by traditional systems, e.g., relational languages. In knowledge languages, the
guery formulation can make use of the different abstraction relationships and the complex
structure of the objects. Operations, usually set-oriented, on these structures may refer to
ancestors as well as subordinate objects to derive or modify KB information. Hence, an
influencing factor in the query evaluation mechanisms of KBMSs is the representation of
the edges in KB graphs. In general, the edges in KBs may be represented either in a unidi-
rectional way (one link, top-down) or in a bidirectional way (two links, top-down and
bottom-up), depending on the implementation characteristics of each system in particular.
Representing the edges by unidirectional links has the advantage of less maintenance
overhead, since maintaining one link up-to-date is less expensive than two links, of
course. However, with a unidirectional representation of edges many significant queries
may not be answered (at least at the same costs when bidirectional links are provided).
Furthermore, questions involving the inheritance of attributes may be made much more
difficult. All in all, the costs for maintaining them up-to-date are paid off when evaluating
the queries much more efficiently.

In this paper, we assume that the edges in a KB graph are bidirectionally repre-
sented. Like the KBMSs’ query evaluation components, we use the power of bidirectional
links also in LARS. However, it is convenient to notice here that such bidirectional links
are used in LARS just in the representation of the abstraction conceptgtandhe
access paths (indices like B*-trees). This will become clear in the later sections.

1. This representation and behavior are very similar to the ones used by KRISYS [43] to represent KBs.

In: Data & Knowledge Engineering? (1997) 233-259. 5

2.4 Behavioral Aspects of Objects

The behavioral aspect of objects can be expressed by the methods, rules?2demons
etc. commonly provided by KBMSs. In the last few years, there have been considerable
efforts in order to approach the limits of concurrency by exploiting the semantics of
objects and their operations (methods) when synchronizing transactions [20, 9, 35, 19, 23,
40, 2, 59, 48, 18, 58, 52, 13, 26]. The main idea behind these approaches is to break the
serializability of transactions, allowing non-serializable schedules to be produced, as long
as they preserve the consistency and are acceptable to the system users.

When we started analyzing the challenging issue of knowledge sharing, we investi-
gated the details of such approaches thoroughly. Nevertheless, we came to the conclusion
that we should not exploit the methods’ semantics to allow for non-serializable schedules
due to several reasons. Essentially, mainly due to schema evolution, complications on
recovery, and direct accesses to objects which bypass the object encapsulations. Thus, in
our technique, methods are not treated separately; data references in the body of methods
are synchronized as ordinary read and write operations.

3. The Multigranularity Locking Protocol

The basic idea of MGL [24] comes from the choice of different lockable units to be
locked by the system in order to ensure consistency and to provide isolation. Its main
benefit is that it allows lockable units of different granularities to coexist in the same
system. Moreover, this protocol created the notiameficit locks stating that by putting
a lock on a granule, all its descendants become implicitly locked, without the necessity of
setting further locks. Lastly, this protocol introduced the so-caitedtion locksin order
to prevent locks on the ancestors of a node which might implicitly lock it in an incom-
patible mode. Basically, the lock modes of MGL are: IS (Intention Share), IX (Intention
eXclusive), S (Share), SIX (Share Intention eXclusive), and X (eXclusive). These are then
applied to the nodes in a lock graph - a hierarchy or a DAG (Fig. 2) [24].

MGL is designed for a single organization hierarchy, extended to DAGs in case of
index structures. Particularly in the case of DAGs, MGL requires that, before requesting
an X mode access to a node, all superiors of the node must be covered with IX (or greater)
locks [22, 24]. One question arises: How may transactions know which are the superiors
of a node? The data model, to which MGL may be applied, provides a strict separation

2. Demons are procedures to be attached to attributes of objects that are automatically activated when
these attributes are accessed. In the DB terminology, this notion is sintilggéas.

6 In: Data & Knowledge EngineeringR (1997) 233-259.

between data and meta-data, a separate DB catalog. Hence, transactions may access, e.g.,
the DB catalog, and learn that (using Fig. 2keordis always contained in fde and

pointed to by amdex in turn, &file and the respectivadexare contained in aarea and

at last arareais contained in database

database

|
areas
|

. L]
flltles |nd||ces

reclords
Figure 2: A lock graph for granular locks.

However, in the data (knowledge) models provided by KBMSs, the object concept
is completely symmetric, such that this separation data/meta-data (like, for example, in
the relational model) no longer exists. The superiors of a node (an object in the KB graph)
may be arbitrarily chosen, accordingly to the semantics of the application being modeled.
More importantly, this information may be dynamically changed as a KB undergoes
changes over time. Exemplifying, by means of the classification DAG of Fig. 3, how
could a transaction know which are the superiors of any classlasg? A transaction,
obeying MGL, does need such information in order to lock a class in X mode. This infor-
mation is not statically available in KBMSs, as in usual DB catalogs. In addition, how
could a transaction be sure that by putting an X lock on a class, no one of its subclasses
would be accessed in a conflicting mode by another transaction? Using Fig. 3, a trans-
action putting an X lock oalasg and IX on all its superiors (.class, ...) would have no
guarantee that another transaction would not actass, by similarly putting an X lock
onclasg and IX on all its superiors (.class, ...). Therefore, transactions obeying MGL
may get into troubles with implicitly locked objects, as long as they implicitly lock those
objects in conflicting modes via different paths of the graph.

N
class
P
e Y
cla|15§ cl?ssi
i |
clai? CE;’(S%
NS
clasg,
/’/\\v
Figure 3: A classification DAG.

Summarizing, if there would be justrict abstraction hierarchies in KBMSs, MGL
would be adaptable and could work without problems. However, wherapping

In: Data & Knowledge Engineering? (1997) 233-259. 7

multi-abstraction hierarchies are possible, MGL fails due to the implicit locks on objects
with multiple direct parents, because those objects might be implicitly locked in incom-
patible modes by different transactions using different paths along a single kind of
hierarchy or different paths using different hierarchies. Finally, the richness of the KB
structure makes the synchronization substantially more complicated in KBMSs.

Another problem of directly applying MGL in the KBMS environment is the non-
use of the semantically rich structure represented by KB graphs. To put it another way,
using MGL, when a shared/exclusive lock on a node is granted to a transaction, all descen-
dants of this node are implicitly locked in the same mode, independently of the
relationship the descendants have to the ancestor. However, if such an object is, at the
same time, a set (component), all its subsets (subcomponents) and elements (parts)
become also implicitly locked. This needlessly restricts the access to those objects by
other transactions. Therefore, with such a behavior, many objects may be locked unnec-
essarily, because it is not possible to precisely specify which kind of descendants should
be implicitly locked, and thus the overall concurrency may be affected negatively.

4. The LARS Protocol

4.1 The Main Goals

Before presenting the LARS - Locks using Abstraction Relationships’ Semantics -
protocol, this section lists the main goals we aimed for in our work.

» Different Granules of Lock

In KBMSs, accesses normally refer to different granules of objects. Hence, we strive
for providing different granules of locking based on objects and for making use of
implicit locks in order to improve the overall performance, in particular the lock
manager’s one.

» Multiple Abstraction Relationships to Objects

The objects in a KB build a complex and dynamic graph structure, where multiple paths
to objects at any time are possible. This characteristic imposes an extra task for us, since
we have aimed for using implicit locks, because an object with multiple parents may be
accessed via a path that does not have any lock on it.

» Semantics of the Relationships between Objects

The relationships between objects in KBs are based on the abstraction concepts. In turn,
each abstraction concept has a particular and special semantics. We target at using the
abstraction relationships’ semantics in order to improve the concurrency.

8 In: Data & Knowledge EngineeringR (1997) 233-259.

4.2 The Basic Ildea

The key feature of KBs is the presence of several semantic relationships. The basic
idea which originates LARS is based on this feature: The KBs can be partitioned into
several graphs, according to the semantics of those several relationships. Thus, we create
three different logical partitions from the whole KB graph. These are callediibssfi-
cation(which includes also generalizatioaysociationandaggregationgraphs. Finally,
we apply granular locks to each graph. By this way, we provide users with the possibility
of looking at a KB and abstracting from it just the partition to be worked out. On one hand,
we acquire a minimization of the number of locks in comparison with, for example, a
conventional approach with shared and exclusive lock modes, where every touched object
must be locked. On the other hand, we define more precisely the granule of lock to be
accessed by a transaction, allowing it to lock just the objects it really needs to access.

4.3 The Lock Modes

Following these logical partitions, we have created three distinct sets of lock types.
Hence, similar to MGL, we havelasic sebf lock modes, named: IR (Intention Read),
IW (Intention Write), R (Read), RIW (Read Intention Write), and W (Write). However,
we have this basic set to each logical partition - classification (recognized by a subscript
¢ (o) following the lock mode), associatiog),(and aggregation,X graphs. We named
those locks as pertaining respectively to the se@ tfpe S_type andA_type lockgin
general, we call thenyped lockks Table 1 presents, in a compact form, their semantics.

Table 1: Typed locks’ semantics.

IR¢isla | gives intention shared access to the requested object and allows the requester to pxplicitly
lock both direcsubclasse$subsety subcomponentsof this object in Rgja0r IR;jsjgmode
and direcinstances| elements| parts in R;jsgmode.

IW isla | gives intention exclusive access to the requested object and allows the requester to gxplicitly
lock both direcsubclassegsubsetd subcomponentsof this object in Wigja RIW|sja Rejsja
IW¢|sja0r IR jslamode and diredhstances] elements| parts in Wgj0r Rysjamode.

Rejsja gives shared access to the requested object and implicitly to all direct and mdiaasse
| subsetq subcomponentsandinstances elementg parts of this object.

RIW ¢5ja | gives shared and intention exclusive access to the requested object (i.e., implicitly Ipcks all
direct and indirecsubclasse$subsety subcomponentsandinstances elementg parts of
this object in shared mode and allows the requester to explicitly lock bothalibetasse$
subsets| subcomponentsin W gja RIW¢|sja Rejsja0r 1Wesjamode and direcinstances|
elements| parts in Weg|q0r Rejsjgmode).

Weisja gives exclusive access to the requested object and implicitly to all direct and ihdirect
subclasse$subsety subcomponentsandinstances elementg parts of this object.

In: Data & Knowledge Engineering? (1997) 233-259. 9

4.4 The Lock Compatibilities

Two lock requests for the same object by two different transactions are said to be
compatibleif they can be granted concurrently [22]. With respect to the compatibility of
the above mentioned lock types, we have two distinct situations to cope with. These are
discussed in the following.

Compatibility of Locks of Identical Types

First, if the locks requested and granted give respect to the same set of objects (either
C_type vs. C_type, or S_type vs. S_type, or A_type vs. A_type), then the compatibility
matrix to be followed is the same of MGL known from the literature [24, 22] (Table 2).

Table 2: Compatibility matrix for locks of identical types.
Granted Mode [c|s|a]

- IR W R RIW w
IR 0 0 0 0
Requested W O u
Mode R O O
Lelslal—mw 1o
W

Compatibility of Locks of Distinct Types

The second situation with respect to the compatibility of the typed locks is the one
where both are of different types (either C_type vs. {S_type or A_type}, or S_type vs.
{C_type or A_type}, or A_type vs. {C_type or S_type}). In this case, the compatibility of
the lock modes is not the same as above, because we are dealing with distinct sets of
objects. Let us try to build such a compatibility matrix. To do that, we need to compare
pairs of lock modes in order to find out whether conflicts may happen or not when both
are granted simultaneously.

Let us use as a general example an extreme case, IW and W lock modes of different
types being requested on a same object,nsayus(see Fig. 1). Suppose we have a
physical representation eofienuslike the one sketched in Fig. 4. As can be seen, all
relationships are bidirectionally represented. Let us consider them top-down, like the way
the transactions are going to request locks. Suppose a transaction, say T1, comes from
aggregatesand wants to writethe objectmenusand all its parts, namelglesserts

3. In the scope of this paper, we use the t&amvrite an object’as meaning an update operation in an
existing object. For insert and delete operations (see Sect. 4.7), we explicitly use tlie iesed an
object’ and‘'to delete an object'respectively.

10 In: Data & Knowledge EngineeringR (1997) 233-259.

appetizersandmain-coursesT1 must require then, in addition to anjJW@haggregates

a W, onmenus Suppose no other transaction is actuatingnenusn the moment, so that

this lock may be immediately granted to T1. Once granted, T1 is able to write the object
menusand all its parts, accordingly to the semantics gf @onsidering only the object
menusn Fig. 4, we can say that T1 is able to write the fields of menus from 9 until end.
The fields 1-8 may neither be accessed nor traversed by T1 with its current lock, just
because the semantics of g Wbes not comprise the objects pointed by those fields (see
Table 1). In other words, T1 may write no descendantseoius but only its parts. Let us

go ahead with another transaction, say T2. Suppose T2 comes from thdauujetd

menus In addition, suppose T2 sets an@hfoodsand tries to set an IWbnmenusin

order to set, further, a \Won sunday-menuan instance ofmenus If we analyze the
semantics of I, we notice that this lock represents an intention to write subclasses and
instances of an object. In our example, it represents an intention to write the object
sunday-menuJsing Fig. 4, we may notice that T2 wants to traverse only the fields 1-4 of
menusthe ones pointing to its subclasses and instances. Therefore, although T1has a W
on menus the lock manager may grant this /W T2, because both transactions are
accessing different fields afenusand so they may not stay in conflict with one another.
Therefore, when applied to distinct sets of objects, IW and W lock modes are compatible.

lobject-id: foodd 1:, [... | |object-id: aggregate ... | 9, [... |
A —_— —
A~ — — — I
[object-id: menu{ T /[2:1] 8:,[4:/]5: /] 6:/[7:/]8:/]9:/]10>]11,]12: /] <object data>|
k% \V\ LS - - v
N T mm et - ST
\'\/\'i:—._\\ P ¥ >
. T O NS~ 1 1 |object-id: desser{ ... [12»] ... |
(. N =~ — - I_ A —_ —
[object-id: sunday-men] ... [41] ..]~ ~ PO AN — =S
~ < . |object-id: appetizer| ... [122] ... |
~ ~ - -
N
Notation: N object-id: mam'—coursel .o 12a] L
generalization/classification association aggregation
1: has-subclasses 5: has-subsets 9: has-subcomponents
2: subclass-of 6: subset-of 10: subcomponent-of
3: has-instances 7: has-elements 11: has-parts
4: instance-of 8: element-of 12: part-of

Figure 4: Physical representation of the objeehus

4. Notice that if T2 would require a nmenusit would conflict with T1, because T2 would be able to
write not only the fields 1-4, but also the ones after 12, i.e., the object datnoé

In: Data & Knowledge Engineering? (1997) 233-259.

Our discussion has shown that conflicting lock modes applied to requests of the
same abstraction hierarchy may become compatible when issued for different hierarchies,
e.g., IW. and W, Table 3 shows the compatibility for typed locks of distinct types. In
general, there are no conflicts between locks in different hierarchies if one of them is an
intention lock. Only non-intention locks of different hierarchies conflict like ordinary R
and W locks. The reason is simply that an intention lock in hierdr@nly ‘protects’
paths along hierarchlg. An R or W lock in another hierarclyyonly implicitly locks
objects reachable by hierarchyln the absence of multiple relationships to objects, one
talks about disjoint sets of objects. Objects belonging to different hierarchies are imple-
mented such that distinct parts of an object implement different hierarchies. Other object
data can be accessed independently of the hierarchy that has been used to locate the object.
This is the only chance for conflicts and is covered by R/W and W/W conflicts. Multiple
abstraction relationships to objects are discussed in the next section. In Table 3, the boxes
marked with darker shadows are where our technique offers more concurrency, all of that
due to the consideration given to the semantics of the edges in a KB graph.

Table 3: Compatibility matrix for locks of distinct types.
Granted Mode [c|s|a]

- IR W R RIW W

IR O O O 0 0
Requested Mode W O 0 0 0 0
[soralcoralcory] R 0 0 0 0
RIW 0 0 O 0
w 3] O

4.5 Accessing Implicitly Locked Objects

In Sect. 3 and Sect. 4.1, we have briefly discussed that multiple abstraction relation-
ships to an object may lead to problems with the implicit locks. As a matter of fact, an
interference arises whenever an object with multiple parents is implicitly locked via one
of them. From now on, we call these objects with multiple pakergards in contrast to
purebredsobjects with only one parent.

To illustrate this problem, let us refer to Fig. 5. There, both transactions T1 and T2
required an IWlock onbeveragesnd were granted because they are compatible. There-
after, T1 followed the path taperitifs and locked it in VW mode. Then, it received an
exclusive lock onaperitifs and implicitly on its instancepérnod champagne and
cointreay. Following another path, T2 lockéduorsin W, mode and implicitly received
exclusive locks on its instances tamiptreauandchantrg. T1 and T2 may get into

12 In: Data & Knowledge EngineeringR (1997) 233-259.

troubles with one another. The problem is that none of them knows a priori which are the
instances of those objects due to the dynamism of the KB graph; hence, both requested a
lock on a node in the hope that its descendants were locked as a whole implicitly.

Notation: sc: subclass-of i: instance-of T1: W, [beverage$ T2 : IW,
write-locked byT1 T1 : W, |aperitifs T2 : W,
write-locked byT?2 i i z

' 'implicitly locked in conflicting modes [pernod [champagriecointreal)

Figure 5: The problem with implicit locks in a graph structure.

In order to find out conflicts with implicitly locked objects, we may access all
ancestors or descendants of an object. For this purpose, we use the bidirectional represen-
tation of links in KB graphs (c.f. Sect. 2.3). We could follow basically five approaches.

Lock All Referenced Objects

The first and most simple approach is to explicitly lock all referenced objects. In the
example of Fig. 5, if either T1 or T2 locks all objects explicitly, the interference in
cointreauis detected. This practically vanishes the semantics of implicit locks, but it
solves the problem.Nevertheless, this method leads to a large overhead, since many
locks are required.

Search for Conflicts

The second approach is, before accessing any implicitly locked bastard, to climb up
the structure in order to search for possible conflicts. In this case, a conflict is detected if
such a bastard is already implicitly locked by any other ancestor in a conflicting mode. In
the above example (Fig. 5), T1 needs to upward traverse the other path coming in
cointreauin order to look for conflicts. In this particular case, it soon realizes a conflict in
liquors. This alternative requires less locks to be held than the first one, because it does
not consider explicit locks on all referenced objects and still makes use of implicit locks,
but it also leads to some substantial drawbacks. Of course, it is very expensive if an object
has several parents, which in turn have several parents, and so on. In such a case, a trans-
action needs to traverse very long paths in order to find out possible conflicts. After all, it
may happen that there is no conflict at all.

5. This alternative is followed by ORION [30] for its class lattices (see Sect. 5.2).

In: Data & Knowledge Engineering? (1997) 233-259.

Analysis of All Descendants

The third approach is, before setting any explicit lock on an object, to analyze all
descendants of this object and to explicitly set locks on the ba@tﬁcdsany conflict is
immediately avoided, because the objects where potential conflicts may happen, are
already explicitly locked. In the current example (Fig. 5), as soon as transaction T1 sets a
W, lock onaperitifs it also needs to set the same lockcomtreay the only bastard
descendant dperitifs When following the same proceeding, T2 detects the conflict and
must then wait until T1 terminates. In this alternative, the lock manager, always before
granting an explicit lock, needs to downward traverse all paths affected by this explicit
lock and to set an explicit lock on all bastard descendants.

Lazy Evaluation Strategy

The fourth approach is to add to the previous one a kitakgfevaluatiorstrategy
for lock conflict resolution. In this approach, a transaction may request and be granted an
explicit lock without further analysis. However, before effectively accessing an implicitly
locked bastard, it must verify whether this object is already locked in a conflicting mode.
If so, it must wait until this lock is released. If not, it sets an explicit lock on this object,
signalling that it has accessed it. This lock acts like a tag in the bastard indicating that it
has been already accessed via another parent of it.

The main difference of this alternative to the previous one is that a transaction needs
to explicitly lock only those bastard descendants which it actually accesses, leaving the
others for the concurrent access by other transactions. In the current example (Fig. 5), the
W, lock onaperitifsby T1 is immediately granted. T1 can acgegssodandchampagne
without problems, but if, and only if, it accessemtreay it then needs to set an explicit
lock on this object. On the other side, T2 performs a similar proceeding, and it only needs
to set an extra lock if it wants to accesmtreau In this case, if the lock by T1 is already
released, for example because T1 has already committed, T2 can receive the lock, but if
T1 still holds the lock, T2 must wait. In this approach, only the bastard descendants effec-
tively accessed need to be explicitly locked. Those which are not accessed are not locked.
Hence, implicitly locked bastards not touched via some parent may be accessed via
another one. For these reasons, this is the best alternative to solve the problem with
implicit locks in graph structures, and therefore we are going to follow it in LARS.

6. This alternative was pointed out by Garza and Kim [21] for the class lattices in ORION [30], imple-
mented for test purposes, but discarded.

14 In: Data & Knowledge EngineeringR (1997) 233-259.

Semantic Optimizations

As a last point for discussion, we briefly mention a fifth approach, which represents
an improvement in the previous one, by means of the addition of some semantic optimi-
zations. For example, if we state that when all possible paths to an implicitly locked
bastard are already explicitly locked by a transaction, this transaction does not need to set
an explicit lock on this bastard when accessing it. In fact, all paths reaching this bastard
should be already covered by this transaction with explicit locks on its parents, and
therefore the potential conflicts would be already detected. This proceeding may be cheap
in some special cases, but in general it is too difficult to be realized and too expensive.

4.6 The Locking Rules

Having presented the general guidelines of LARS, we are finally able to expose its
locking rules (Table 4). Before explaining these rules, it is convenient to notice that: First,
transactions are allowed to directly set locks in the root object in any mode. Second,
LARS always producestrict execution$5], i.e., it requires the locks of a transaction to
be released only at its termination (commit or abort). Third, as we have assumed in Sect.
2.2, the KB graph is (single) rooted and connected, and it automatically stays is this form
as changes undergo over time. Thus, even in a constantly changing graph, there will
always be at least one path from the object to the root. In turn, which specific path should
be locked does not matter for LARS, it must be one, but anyone (we return to this point in
a moment). (Of course, the abstraction relationship being used for locking must be
considered.)

Table 4: Locking rules.

1 | Before requesting an lig lock on an object, the requester must cover a path from the objecfto the
root with IR sja0r IWgsjalocks.

2 | Before requesting an I¥)|lock on an object, the requester must cover a path from the objec] to the
root with IWggj20r RIW s glocks.

3 | Before requesting ancR|lock on an object, the requester must cover a path from the objec{to the
root with IR;ga0r IWgsjalocks. In addition, before accessing any implicitly locked bagtard
descendant, the requester must set gyjRck on it.

4 | Before requesting an RIy{slock on an object, the requester must cover a path from the object to
the root with IW, 5 ,50r RIW; gjalocks. In addition, before accessing any implicitly locked bagtard

descendant, the requester must set either ajigalétk on it, if it is a leaf object, or b) an RiY4
lock on it, if it is a non-leaf object.

5 | Before requesting a ¥{|slock on an object, the requester must cover a path from the objec{to the
root with IWggja0r RIWg5locks. In addition, before accessing any implicitly locked bagtard
descendant, the requester must sef.g\ck on it.

In: Data & Knowledge Engineering? (1997) 233-259.

The first rule states that an IR lock (from the C_type, S_type, or A_type) on a non-
root object must be preceded by either IR or IW locks (from respectively the C_type,
S type, or A_type) on at least one parent of this object, and so recursively until the root
object is reached. The second rule has a similar meaning, but for the IW locks, requiring
that they must be preceded by IW or RIW locks on at least one path from that object to
the root object. The third rule states, first of all, that an R lock on a non-root object must
be covered by IR or IW locks on at least one path from this object to the root object. There-
after, it requires that a transaction must explicitly lock the bastard descehdhigss
implemented by LARS’ lazy evaluation strategy, thereby avoiding conflicts with
implicitly locked objects. The fourth and fifth rules have a similar meaning, but for RIW
and W locks, respectively.

We now provide a complete example (Fig. 6) using again our restaurant KB (Fig.
1). Suppose T1 wants to read the objadle-soupas a part of the objestinday-menu
To do that it must follow rules 1 and 3 for requesting, respectively|oéks on the
parents ofurtle-soup and an Rlock on it. On the other side, T2 wants to write the object
appetizerdogether with its subclasses and instances. In turn, it must follow rules 2 and 5
for requesting IW locks on the ancestors appetizersand a W lock on it, respectively.
However, when trying to access the objeaid-dishes T2 realizes that this object is a
bastard and, as stated by the rule 5, it requestg @& on this object and is granted
because this object was free. The same may happen for thetolijeesoupas long as
T2 tries to access it. When trying this, either T2 must wait, if thledk on this object is
still held by T1, or it may be granted, if T1 has already terminated.

An important point of explicitly locking bastard descendants, besides guaranteeing
serializability, is the slackness of the original requirement of MGL of covering all paths
from the node to the root, and as a consequence all ancestors, with intentions before
granting an exclusive lock [24]. This is a serious limitation when an object has several
ancestors and is likely to be used via many of them. In such situations, it is very inefficient
to set intention locks on all the parents [29] and as a consequence on all paths to the root.
LARS limits the overhead of the whole process of setting write locks and still provides,
to a limited extent, a minimization of the number of locks to be set by transactions,
through the use of implicit locks.

7. There may be situations where a descendant may have two edges pointing to the same ancestor. For
example, when an object is at the same time instance and element of the same object. In such situations,
the object is considered to be a bastard, no matter whether the parents are the same object.

16 In: Data & Knowledge EngineeringR (1997) 233-259.

Notation: T1:1R, T2 :1W,
sc: subclass-of === ¢

— 7 T1:IRy -_aggregate

i: instance-of "

c: subcomponent-of c

p: part-of

predefined schemas

---- signs other paths)
g P T1:IR,

|7 7! read'locked b)Tl

write-locked byT2 0.
g d disheT2 : Wc

o - ———

Figure 6: Avoiding conflicts with implicitly locked objects.

4.7 Coping with Insert and Delete Operations

Thus far, we have considered a KB as a fixed set of objects, which can be accessed
by reads and writes. Most real KBs can dynamically grow and shrink. Therefore, in
addition to reads and writes, we must support operations to insert new relationships and
objects as well as to delete existing relationships and objects. Before passing on to the
explanation of the rules, we need to make some considerations in the way these operations
are performed. We have assumed (Sect. 2.2) that a KB is represented by a rooted and
connected graph and, additionally, that when an object does not participate in the defined
abstraction relationships, it is treated as being an instance of the predefingidlvabt
Further, we have assumed that the abstraction relationships between the objects are repre-
sented in a bidirectional way (Sect. 2.3). All of that has some consequences in the way
insert and delete operations should be performed. In the following, we discuss inserts and
deletes in detail. In particular, these operations may be arbitrarily complex, and we are
interested in finding out the primitive operations by means of which any other complex
operation may be realized as a composition of those. The essence of our idea is: There are
four operations - insert node, insert edge, delete node, and delete edge; node operations
are always accompanied by one edge operation; to operate on a node, it must be locked,
and to operate on an edge, its end points must be locked.

Inserting an Object

Since the KB graph is connected, the insertion of an object must be handled as an
operation composed of two steps: The creation of the object itself and its connection to
another existing objeétn turn, since two objects are involved in this operation, one

In: Data & Knowledge Engineering? (1997) 233-259.

could ask: Which is the object being inserted, the superior or the inferior object? The way

LARS represents the KB graph (as a single-rooted graph) answers this question. It must
be the inferior object, otherwise one would create another root in the graph when inserting
an object as a superior. Hence, LARS considers the object being inserted as the inferior.
Notice that this is not a restriction, but the establishment of a primitive case. If one states
that an object O being inserted must be the superior, LARS can handle it as two opera-
tions. First, the insertion of O and its connection to a superior object (at least to the corre-
sponding predefined object, and hence O is handled as an inferior), followed by the

connection of O to the inferior object (coped with by the objects’ connection rule).

Another important point in the insertion of an object gives respect to the roles of the
superior object in the current KB state. We use the restaurant KB (Fig. 1) in order to
explain this point. Suppose we are designing our KB and that we have not yet defined the
parts of the objeatnousse-au-chocolaHence mousse-au-chocolaurrently is just an
instance oflessertsand therefore takes no part in the aggregation graph. When inserting
any part ofmousse-au-chocolabne should acquire a lock of the A_type on it, since the
aggregation concept is being applied. However, it is impossible to acquire an A_type lock
on mousse-au-chocolabecause it is not yet in the aggregation graph, and therefore one
cannot navigate from the predefined obpggregateso it. Nevertheless, since the aggre-
gation graph is rooted &aggregates this operation must be accompanied by the
connection omousse-au-chocoléb aggregatesanyway. Hence, LARS treats such cases
as first of all the connection of the superior object to the corresponding graph, followed
by the insertion of the inferior object. In our example, LARS would cormeasse-au-
chocolatto aggregatesand thereafter insert any part of it. By this way, we have that the
superior object is already connected to the corresponding graph when an inferior of it is
being inserted. Particularly, we need this to synchronize the type of the locks to be
requested in both objects.

At last, another important aspect is how many relationships (connections) are
specified in the insertion of an object. For example, one can state that the object being
inserted is an instance of a class and an element of a sdiqdeauxin our restaurant
KB). In such a case, LARS decomposes such an operation and handles it as an insertion
followed by as many connections as necessary (and so handled by the objects’ connection
rule). Hence, by the insertion of an object we are connecting it to a single superior object.

8. At least the predefined objectddbal, classessets andaggregatelwill be present in the KB graph.

18 In: Data & Knowledge EngineeringR (1997) 233-259.

Finally, rule 6 in Table 5 presents the lock requests necessary to insert an object. It
states that before inserting an object, its parent (the superior object) must be held in at least
IW mode (and so recursively until the root object is reached). The type of such an IW is
dictated by the abstraction relationship being inserted. Fig. 7 provides an example of the
appliance of this rule. Suppose transaction T1 wants to insert the aiicte-provence
as an instance afines To accomplish this task, T1 must request ag dWwines the
parent ofcote-de-provencdn turn, this IW. must be covered by IMbn the parents of
winesuntil the rootglobal. Just after holding those locks, T1 is then able to insert the
objectcote-de-provenceAs soon asote-de-provences inserted, T1 is granted a Wn
this object and holds it until it terminates.

Notation:
sc: subclass-of

i: instance-of
predefined schemas

object inserted by1

after insertiond) T1 holds W; [cote-de-provenck

Figure 7: Locks for the insertion of an object.
Deleting an Object

We will profit from the above discussions about the insertion of an object and
summarize our considerations about deleting an object. There may be several steps
involved in this operation (the deletion of the object itself and several disconnections,
depending on the current KB state). The primitive case comprehends the deletion of an
inferior object and its disconnection from a superior object. Like above, the other more
complex cases may be built upon this simple case, so that they may be composed of this
primitive case and as many disconnections as necessary (thus handled by the objects’
disconnection rule). Rule 7 in Table 5 deals with deletion of objects, similarly to inser-
tions, with the extra requirement that the object itself (the inferior) must be held in W
mode. Notice that such a W lock implies IW locks on a parent, on a parent of the parent,
and so forth until the root is reached. Finally, the type of such W and IW locks is dictated
by the abstraction relationship in question.

In: Data & Knowledge Engineering? (1997) 233-259.

Connecting Objects

Like before, also here two objects are affected by this operation, namely a superior
and an inferior object, and the current state of both objects with respect to other objects in
the KB may be arbitrary. The main difference here is that the inferior object may be either
a bastard or a purebred. Rule 8 in Table 5 copes with the connection of objects. It states
that in order to connect objects, the inferior object must be hadyiklV mode and the
superior object in at least IW mode (this one according to the abstraction relationship
being applied). In Fig. 8, which complements the last example (Fig. 7), it becomes clear
why any exclusive typed lock may be requested in this case. Suppose that T1 wants to
connect the recently created objecte-de-provences an element drench-wines
Following rule 8, T1 must request a W lock on this object, normallysasifice it is
applying the association concept. However, this object takes no part in the association
graph yet, what makes impossible the acquirement of anit (before the connection,
there is no path fronsetsto it). Sincecote-de-provencés an instance oWines T1
requires a \)on this object and is granted because it in fact already holds such a lock due
to the proceedings of the last example (if this were not the case, it should cover a path to
the root with IW. locks). Thereafter, T1 must require angléh french-winesthe new
parent of it, and recursively on the ancestors. Finally, after holding all the required locks,
T1 connects both objects. Therefore, in the particular case of connecting objects, a trans-
action is allowed to acquire a W lock of any type in the inferior object. In general, such a
W lock will in fact be of the C_type, because normally an object first receives its structure
by means of the inheritance mechanism of the classification concept, and thereafter it is
connected to other objects using the association or aggregation concepts. As can be seen,
the connection of objects is a bit more complicated operation, because the transaction does
not know a priori which are the roles of both objects in the current KB state.

Notation: T1: 'Ws/ T1:1W,
sc: subclass-of T1:IW, ss SC TL: W,
i: instance-of SS
ss: subset-of T1: 'Ws T1:1W,
TE— , SS
e element-of T1: IWs [french-winep [beveragepT1 : IW,

predefined schemas N Sc

new edge inserted byL O €™ N i [wines| T1 : IW,

[cote-de-provengeT1 : W,

Figure 8: Locks for the insertion of an edge.

20 In: Data & Knowledge EngineeringR (1997) 233-259.

Disconnecting Objects

Profiting from all discussions so far, we shortly present the disconnection of objects.
We shall only mention that we do not allow the disconnection of purebreds, because if we
disconnect a purebred (deleting its only edge, then), we are either disconnecting the KB
graph or creating a new root of it. Hence, in the disconnection of a purebred, the trans-
action must choose between either deleting the object (and thus handled by the objects’
deletion rule), or connecting it firstly to another superior object (and hence handled by the
objects’ connection rule). Therefore, when disconnecting objects, the inferior object must
always be a bastard object. Rule 9 in Table 5 presents the objects’ disconnection rule. It
is a simple case because the transaction does know the current roles of both objects, and
by this way the path it must traverse for requesting locks. It must request a W lock on the
inferior object, an IW lock on the superior, accordingly to the abstraction concept in
question, and finally recursively cover a path to the root with IW locks.

Table 5: Locking rules for insert and delete operations.

6 | Before inserting an object in the classification | association | aggregation graph, the requepter must
acquire an IWgja RIW;520r Weisjalock on the superior object. After the insertion, the requegfer is
granted a Wsjalock on the object.

7 | Before deleting an object from the classification | association | aggregation graph, the requepter must
acquire a Wgjglock on it and an 1Wsja RIW¢5|a0r W sjalock on the superior object.

8 | Before connecting objects using the classification | association | aggregation concept, the fequester
must acquire either a Yér a W or a W, lock on the inferior object and an ¥ RIWgj0r Weys|4
lock on the superior object.

9 | Before disconnecting objects using the classification | association | aggregation condept, the
requester must acquire a:)yslock on the inferior object and an [y RIWsja0r Wesjalock on
the superior object.

4.8 The Phantom Problem

Granular locks provide physical locks and being so we have problems with the so-
called phantoms in LARS. The most reasonable solution we found to this problem is to
delegate to the transactions the decision about tolerating or not phantoms. If a transaction
decides to avoid phantoms at all, it must then request exclusive typed locks (i.e., gither W
or W5 or W) on the object in the next higher level of the graph it is currently working on
(what is foreseen by the locking rules). Taking this measure accordingly, no phantoms
may happen because other transactions are unable to access any inferior of such an object,
or to create a new inferior, or to delete an existing inferior (all of that with respect to the
working graph, of course). Hence, no phantom appears.

In: Data & Knowledge Engineering? (1997) 233-259.

4.9 Correctness Concerns

Definition 1: A directed acyclic graph (DAG), G, is a finite set of node¥ and a set
of arcsA (a subset of Nk N). N represents all objects in the KB, whereas A all
abstraction relationships between these objects.

Definition 2: The classification graph, G, is a subgraph of G, containing the set of
nodes N and the set of arcs, AN contains the nodes representing the (super-) classes
and instances of N. In turn,cAontains the arcs representing the generalization and
classification abstraction relationships of A.

Definition 3: The association graph, G, is a subgraph of G, containing the set of
nodes N and the set of arcsgANg contains the nodes representing the (super-) sets
and elements of N. In turn,/Aontains the arcs representing the set- and element-
association abstraction relationships of A.

Definition 4: The aggregation graph, G, is a subgraph of G, containing the set of
nodes N and the set of arcs AN, contains the nodes representing the (super-)
components and parts of N. In turn, @ntains the arcs representing the component-
and element-aggregation abstraction relationships of A.

Observation 1: (G. 0 GO Gy = G

Observation 2: (N, O NgO Ng) =N

Observation 3: (Acn A9 = (Ac N Ay = (Asn Ay =0

Definition 5: A nodep is aparent of nodec andc is achild of nodep, if <p, c> U A.

Definition 6: A node with no parents isr@ot. There is always only one root in G,
namely, the predefined nodkobal.

Definition 7: A node with no children is keaf.
Definition 8: A path is a set of arcs of Ay, ... a,, whereg; = <b;, bj;1> andb; O N.

Definition 9: Nodeb is anancestor of nodec if b = c or b lies in some path from the
root to nodec.

Definition 10: Nodeb is asuperior of nodec if b is an ancestor af other tharct itself.

Definition 11: Nodec is adescendant of nodeb if b is not a leaf and either=borc
lies in some path frorh to some leaf.

Definition 12: Nodec s aninferior of nodeb if cis a descendant bfother tharb itself.
Definition 13: A bastard is any node which has more than one parent.

Definition 14: A purebred is any node which has only one parent.

22 In: Data & Knowledge EngineeringR (1997) 233-259.

Observation 4: The LARS protocol is a strict two-phase locking (strict 2PL) protocol.
All transactions are well-formed and strict two-phase. Hence, as a strict 2PL protocol,
for any arbitrary schedule of transactions running under the LARS protocol, the serial-
izability graph is acyclic and thus it is serializable. (The reader is referred to [5] for
correctness concerns about the serializability of 2PL protocols.)

Suppose all transactions obey the LARS protocol with respect to a given lock graph,
G, that is a DAG.

Theorem 1: If a transaction owns an explicit or implicit lock on a node of G, then no
other transaction owns a conflicting explicit or implicit lock on that node.

Proof: We prove by induction on the length of the shortest path from the root to a
node that the claim of the Theorem 1 is true.

Base case: The base case is trivial. The lendjtbf the shortest path from the racto

a noden is equal zerol(= 0). In this casen is the root itself. As the root) then has
only outgoing vertices, and therefore no implicit lockshare possible. Conflicting
explicit locks om are handled by the compatibility matrices. Hence, the claim holds
for the base case.

Induction step: Suppose the Theorem 1 is true for all nagssich that the length of
the shortest patp fromr ton is less thar.

Consider a particular noda such that the length of the shortest path framn is|.
There are two different cases.

Case 1: If n is a bastard, then the claim follows easily, it must have been explicitly
locked by using any of the locking rules 3-5, and conflicting explicit locks are coped
with by the compatibility matrices.

Case2: If nis a purebred, it may have been either explicitly or implicitly locked. Thus,
there are two subcases.

Case2.1: If nis an explicitly locked purebred, then the claim holds due to the same
arguments above, i.e., any of the locking rules 3-5 was applied, and conflicting
explicit locks are handled by the compatibility matrices.

Case 2.2: If nis an implicitly locked purebred, then there must be a superior of it

in p explicitly locked. Considering each of them in turn, in conjunction with the
induction hypothesis, one falls back on Case 1 or Case 2.1 or latest on the base
case, and therefore the claim holds. O

Theorem 2: If a transaction inserts a node in G, then no other transaction may lock that
node until the inserting transaction commits.

In: Data & Knowledge Engineering? (1997) 233-259.

Proof: We prove by using rule 6 that the claim of the Theorem 2 is true. As stated
by rule 6, a transaction is granted an exclusive lock on the object being inserted. In
addition, since an object is inserted in only one gf G, or G,, such an exclusive
lock is incompatible with any other lock of the same type, and hence any other lock
request on that node will be refused, obeying the compatibility matrix for locks of the
same type (Table 2). Since LARS is a strict two-phase locking protocol, this lock will
be released only at transaction’s termination. Hence, the claim holds. O

Theorem 3: If a transaction owns an explicit or implicit lock on a node of G, then no
other transaction may delete that node.

Proof: We prove by using rule 7 that the claim of the Theorem 3 is true. As stated
by rule 7, a transaction must acquire an exclusive lock on the object being deleted. In
turn, such an exclusive lock must be covered by intention exclusive (or higher) locks
on the superior objects. Since an object is deleted from ong G®r G,, we have
that: First, such an exclusive lock on the object itself is incompatible with any other
explicit lock of the same type on the object, and second, such intention exclusive locks
on the superiors of the object are incompatible with any other lock which could lock
the object implicitly, accordingly to the compatibility matrix for locks of the same type
(Table 2). Hence, a transaction may not delete an object which is explicitly of
implicitly locked by another transaction, and therefore the claim holds. 0

Theorem 4. If a transaction owns an explicit or implicit C_type | S_type | A_type lock
on a node of g5 then no other transaction may connect that node to another superior
node in lela

Proof: We prove by using rule 8 that the claim of the Theorem 4 is true. As stated
by rule 8, a transaction must acquire an exclusive lock on the object before connecting
it to another superior object. In turn, such an exclusive lock must be covered by
intention exclusive (or higher) locks on the superior objects. Since an object is
connected to one of 3G, or G,, we have that: First, such an exclusive lock on the
object itself is incompatible with any other explicit lock of the same type on the object,
and second, such intention exclusive locks on the superiors of the object are incom-
patible with any other lock which could lock the object implicitly, accordingly to the
compatibility matrix for locks of the same type (Table 2). Hence, a transaction may
not connect an object which is explicitly of implicitly locked by another transaction,
and therefore the claim holds. O

Theorem 5: If a transaction owns an explicit or implicit C_type | S_type | A_type lock
on a node of Gg, then no other transaction may disconnect that node from another
superior node in Ga

Proof: We prove by using rule 9 that the claim of the Theorem 5 is true. As stated
by rule 9, a transaction must acquire an exclusive lock on the object before discon-

24 In: Data & Knowledge EngineeringR (1997) 233-259.

necting it from another superior object. In turn, such an exclusive lock must be
covered by intention exclusive (or higher) locks on the superior objects. Since an
object is disconnected from one ¢f G, or G,, we have that: First, such an exclusive

lock on the object itself is incompatible with any other explicit lock of the same type
on the object, and second, such intention exclusive locks on the superiors of the object
are incompatible with any other lock which could lock the object implicitly, accord-
ingly to the compatibility matrix for locks of the same type (Table 2). Hence, a trans-
action may not disconnect an object which is explicitly of implicitly locked by another
transaction, and therefore the claim holds. O

4.10 Final Considerations

Including Indicesin the KB Graph

Thus far, we have pretended that all accesses against a KB take place through the
abstraction relationships. However, a more detailed examination of KBMSs suggests
otherwise. Hash tables, trees, sorted and unsorted lists, arrays, access sequences, etc., are
normally used to speed up the access to objects in KBs. There are several special purpose
CC algorithms for indices (e.qg., [14, 46, 47, 44]), most of which uses some form of non-
two-phase locking. In general, any of them may be used for controlling the accesses via
indices in KBs. LARS, which is a strict two-phase locking protocol, would probably not
be useful to index locking as compared to existing techniques.

Deadlocks

LARS is subject to deadlocks. In addition, the protocol for handling bastards intro-
duces deadlocks that did not occur in conventional hierarchical locking. The difference is
that LARS’ rules 3-5 require also explicit locks on the implicitly locked bastards, and
when acquiring those locks, transactions may get deadlocked.

Lock Conversion

Lock conversions are normally used to increase (upgrade) the access mode a trans-
action has to an object [24]. In LARS, lock conversions are handled accordingly to the
type of lock. In [56] we discuss how upgrade operations shall be done in our transaction
model, which allows also for controlled downgrading of locks.

Lock Escalation

Lock escalation [25, 5] is also taken into consideration by LARS. Nevertheless, a
lock escalation in LARS alleviates the transaction from requesting locks just on
purebreds, but not on bastards - they must still be explicitly locked on access.

In: Data & Knowledge Engineering? (1997) 233-259.

I mplementation and Performance Considerations

The LARS protocol is not directly comparable to MGL. As a matter of fact, LARS
takes advantage of the hierarchical structuring of different locking granules like MGL
does, but the accessibility of objects via multiple relationships (paths) alters its behavior
substantially. LARS was fully implemented in the KBMS KRISYS, following a model of
nested transactions [56]. The details of its implementation can be found in [38].

An important point to the performance of LARS is the frequency of bastards in the
KB graph. If bastards are very, very common (e.g., over 90% of the objects), then LARS’
performance would probably be comparable to 2PL, where every touched object must be
locked (10% of the objects would not be explicitly locked, but LARS has the extra costs
of setting intention locks). Whether or not bastards are common in KBs will certainly
depend on the richness of the modeling and the requirements (features) of the applica-
tions. We have applied single-user KRISYS to run quite a number of prototype applica-
tions during the last few years [15]. For the evaluation of the bastard problem, we have
analyzed five different KBs which were developed in the last years in our university
(namely, an architecture KB, a restaurant KB, a mechanical engineering KB, a medical
KB, and a real estate appraiser KB). Since they were developed for academic purposes
and for single-user environments, the number of objects was about 500 in each KB. Not
specially the absolute number, but importantly the degree of bastard occurrences may be
indicative for larger KBs. In three of them, the percentage of bastards was in average 2%
(more specifically, 1.5%, 1.8%, and 2.6%). In one of them, it reached 30% and in the other
50%. Of course, the fewer the bastards, the better is the performance of LARS. At the
moment, LARS is undergoing more detailed investigations on its performance [39].

5. Related Work

5.1 Concurrency Control for KBMSs

As far as we know, the only other work addressing transaction synchronization in
KBMSs is Chaudhri’'s Dynamic Directed Graph (DDG) policy presented in [11, 10, 12].
It is an extension of the locking protocol for hierarchical DB systems of Silberschatz and
Kedem [57]. Whereas the former is able to cope with cycles and updates in the underlying
structure, this is not considered by the latter. The main distinction between LARS and
DDG is that they address different problems. When transactions access a large number of
objects there are two potential problems. The first problem is that the large number of
locks held by a transaction can mean high locking overhead which can be potentially

26 In: Data & Knowledge EngineeringR (1997) 233-259.

reduced by locking several objects at once (i.e., by using coarse granules of locking). The
second problem, which is a consequence of using two-phase locking, is that the locks may
be held for a long period of time, thus limiting the concurrency. DDG attempts to address
the second problem and does not say anything about the first. In turn, LARS addresses the
first problem and does not deal with the second.

Nevertheless, the DDG policy makes no difference between different abstraction
relationships, i.e., it does not treat, for example, neither a class and its instances, nor an
aggregate and its components, etc., as a single lockable unit. Hence, the semantics of the
KB graph is not exploited to improve the concurrency. Further, no kind of implicit locks
is defined. This may jeopardize the overall performance of DDG and, in addition, lead the
lock system to run out of storage. Finally, phantoms are not taken into consideration. A
more detailed critical analysis of this protocol may be found in [54].

5.2 Concurrency Control for OODBMSs

Due to the lack of work on transaction synchronization in KBMSs, we have
analyzed some CC protocols of a related area, namely OODBMSs [53]. There are some
CC methods for OODBMSs that have been designed independent of any specific system
[1, 26]. Due to space limitations, we provide here just a brief analysis of CC protocols in
some specific OODBMSs.

ORION

ORION [4, 31, 34] supports locks on three different types of hierarchy, namely the
so-called granularity hierarchy for logical entities, the class lattice hierarchy, and the
composite objects (aggregates) hierarchy. ORION extended MGL and partially provides
implicit locks [21, 33, 32]. The main problem of ORION is that it does not allow even a
read on a class to be performed in parallel with a write on an instance of it. ORION
provides implicit locks for the instances of a class, but not for the subclasses of a class.
ORION prohibits an object of being instance of many classes at the same time. This elimi-
nates the bastard problem at the instance level, but would be hardly applicable to KBMSs.
In turn, classes may have several direct superclasses, and hence the bastard problem
appears for classes. It is solved with the requirement that for a query involving a class and
its descendants as well as for a schema change operation on a class, a lock must be set not
only on the class, but also on each of its subclasses. Consequently, all subclasses of a class
must be explicitly locked in such cases.

In: Data & Knowledge Engineering? (1997) 233-259.

O,

The CC technique actually implemented in thg®) 16] is a conventional one used
in DBMSs, but there is an interesting approach for CCipr@sented by Cart and Ferrié
[8] based on a classification of methods. Here we discuss the proposal of [8]. According
to [8], in O, methods are classified according to whether they are performed on a class or
on an instance, and as a reading or a writing method. In addition to this classification of
methods, @ also distinguishes the type of access a transaction requires for an object.
There are the so-calledal andvirtual accessef8]. The main benefit of this classification
is that reading (but not writing) a class is compatible with either reading or writing any of
its instances. Implicit locks on instances of a class are provided. However, no kind of
implicit locks is available for subclasses of a class. The bastard problem is handled by O
in a similar manner as by ORION, with the inclusion of the distinction between real and
virtual accesses which may be also used for detecting conflicts.

GemsStone

GemStone [41, 51, 6, 7] protects its concurrent transactions using a combination of
optimistic and pessimistic CC techniques. Particularly, the choice of whether to use the
optimistic or pessimistic technique depends on the degree of contention of an object.
Using an optimistic access, the objects do not need to be locked, being controlled by a
shadowing mechanism. Instead, at commit time, existing conflicts are detected. Finally,
locks are used to control the pessimistic accesses. Optimistic methods may show very
poor performance due to, among other things, the possibly high percentage of transactions
that must be aborted when, at commit time, conflicts are detected [27, 50, 45]. In turn, the
pessimistic method of GemStone does not provide implicit locks. GemStone’s limited
number of lock types restricts the parallelism, and it is unaware about the semantics of the
relationships between objects.

ObjectStore

The CC mechanism of ObjectStore [36] is similar to those used in conventional
DBMSs. It provides 2PL with a read/write lock for each page, i.e., the locking granularity
is on a per-page basis. Every time a user needs to access an object, the corresponding page
is transferred to the workstation and locked in the server in either exclusive or shared
mode [36]. Thus, ObjectStore does not show any improvement with respect to CC.

28 In: Data & Knowledge EngineeringR (1997) 233-259.
6. Conclusions

KBMSs are a growing research area finding applicability in many different
domains. The higher its demand, the greater the necessity for knowledge sharing. As a
matter of fact, the research for CC techniques tailored to the KBMS environment plays a
crucial role in this context. Moreover, it assumes a paramount importance as the demand
for ever-larger KBs grows.

Following this research direction, we have presented the LARS approach for trans-
action synchronization in KBMSs. The most important feature of LARS is the partition of
the KB graph into several logical ones, hence allowing transactions to concurrently access
such partitions through different points of view. Thereafter, LARS applies granular locks
to each partition, providing thus many different lock types and taking the necessary
precautions with respect to the dynamism of the KB graph. In this manner, LARS captures
more of the semantics contained in the KB graph, in the sense that it does not consider
descendants of an object as being simply descendants of it, but, on the contrary, descen-
dants with special characteristics and significance, which are based on the abstraction
relationships. By such a means, LARS can exploit the inherent parallelism in a knowledge
representation approach. Further, LARS offers different locking granules and considers
implicit locks, alleviating the task of managing too many locks due to the high number of
objects in real world applications. Finally, LARS copes well with multiple abstraction
relationships to objects, by requiring explicit locks on bastards. This, in turn, relaxes the
necessity of covering all paths to the root with intentions, reducing it to only one path.

Abstraction concepts are defined for KBMSs’ use in general. We have designed
LARS to work with the three abstraction concepts that should be provided by KBMSs, and
we have referred to an existing KBMS, namely KRISYS [43], as a powerful example to
make our discussions specific. Nevertheless, LARS is flexible enough to be used by other
object-oriented data models. In the case of a specific data model not supporting all the
three abstractions, one should only cut off the corresponding lock modes of LARS and
handle bastards in the same way. Of course, the data model must be powerful enough to
support bidirectional links in the representation of edges in KB graphs, because LARS
uses them to easily find bastard objects. Representing the edges bidirectionally in KB
graphs exclusively for the right functioning of LARS would probably not pay off.

Acknowledgments We would like to thank J. Reinert for the helpful discussions on the correctness
concerns of LARS, J. Thomas for supporting us understanding the upper layers of
KBMSs, and the anonymous referees for suggestions to improve the presentation.

In: Data & Knowledge Engineering? (1997) 233-259.

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Agrawal and A. El Abbadi. A non-restrictive concurrency control protocol for
object-oriented databases. Proc. of the 3rd Int. Conf. on Extending Database
TechnologyVienna, Austria, 469-482 (1992).

B.R. Badrinath and K. Ramamrithan. Semantics-based concurrency control:
Beyond commutativity. InProc. of the 3rd Int. Conf. on Data Engineerjirigs
Angeles, USA, 304-311 (1987).

F. Bancilhon, C. Delobel and P. Kanellakis (edBuilding an object-oriented
database system: The story of ®lorgan Kaufmann, USA (1992).

J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk and N. Ballou. Data model
issues for object-oriented applicatio®sCM Transactions on Office Information
System$ (1), 3-26 (1987).

P.A. Bernstein, V. Hadzilacos and N. Goodnfaancurrency control and recovery

in database system&ddison-Wesley, USA (1987).

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H. Willians and M.
Willians. The GemStone data management system. In: W. Kim and F.H. Lochovsky
(eds.),Object-oriented concepts, databases, and applicatid®M Press, USA,
283-308 (1989).

P. Butterworth, A. Otis and J. Stein. The GemStone object database management
systemCommunications of the ACB# (10), 64-77 (1991).

M. Cart and J. Ferrié. Integrating concurrency control into an object-oriented
database system. In: [3], 463-485.

M.A. Casanova and P.A. Bernstein. General purpose schedulers for database
systemsActa Informaticad (1980).

V.K. Chaudhri. Transaction synchronization in knowledge bases: Concepts,
realization and quantitative evaluatiorPh.D. Thesis, University of Toronto,
Toronto, Canada (1994).

V.K. Chaudhri, V. Hadzilacos and J. Mylopoulos. Concurrency control for
knowledge bases. IRroc. of the 3rd Int. Conf. on Principles of Knowledge Repre-
sentation and ReasoninGambridge, USA (1992).

V.K. Chaudhri, V. Hadzilacos, J. Mylopoulos and K.C. Sevcik. Quantitative evalu-
ation of a transaction facility for a KBMS. IRroc. of the 3rd Int. Conf. on Infor-
mation and Knowledge Manageme@hithersburg, USA (1994).

P.K. Chrysanthis, S. Raghuram and K. Ramamritham. Extracting concurrency from
objects: A methodology. IProc. of the ACM SIGMOD Int. Conf. on Management

of Data Denver, USA, 108-117 (1991).

P. Dadam, V. Lum, U. Pradel and G. Schlageter. Selective deferred index mainte-
nance and concurrency control in integrated information systemBrda: of the

11th Int. Conf. on Very Large Data Bas8&sveden (1985).

S. Dessloch, F.-J. Leick, N.M. Mattos and J. Thomas. The KRISYS project: a
summary of what we have learned so farAroc. of the BTW93Braunschweig,
Germany, March 1993.

30 In: Data & Knowledge EngineeringR (1997) 233-259.

[16] O. Deux et al. The story of OIEEE Transactions on Knowledge and Data
Engineering2 (1), 91-108 (1990).

[17] K.P. Eswaran, J.N. Gray, R.A. Lorie and I.L. Traiger. The notions of consistency
and predicate locks in a database sys@wmmunications of the ACM (11), 624-

633 (1976).

[18] A.A. Farrag and M.T. Ozsu. Using semantic knowledge of transactions to increase
concurrencyACM Transactions on Database Systdm$4), 503-525 (1989).

[19] J.M. Fischer, N.D. Griffeth and N.A. Lynch. Global states of a distributed system.
IEEE Transactions on Software Engineertig-8(3), 198-202 (1982).

[20] H. Garcia-Molina. Using semantic knowledge for transaction processing in a
distributed databaséACM Transactions on Database Syste®ng2), 186-213
(1983).

[21] J.F. Garza and W. Kim. Transaction management in an object-oriented database
system. InProc. of the ACM SIGMOD Int. Conf. on Management of P@tacago,
USA, 37-45 (1988).

[22] J.N. Gray. Notes on database operating systemsOperating systems: An
advanced coursespringer, Berlin (1978).

[23] J.N. Gray. The transaction concept: Virtues and limitation®rwc. of the 7th Int.
Conf. on Very Large Data Basd&Sannes, France, 144-154 (1981).

[24] J.N. Gray, R.A. Lorie, G.R. Putzolu and I.L. Traiger. Granularity of locks and
degrees of consistency in a shared data baderdn: of the IFIP Working Conf. on
Modeling in DBMSsFreudenstadt, Germany, 365-394 (1976).

[25] J.N. Gray and A. ReutefTransaction processing: Concepts and techniques
Morgan Kaufmann, USA (1993).

[26] T. Hadzilacos and V. Hadzilacos. Transaction synchronization in object bases.
Journal of Computer and Systems Scied@&(d), 2-24 (1991).

[27] T. Harder. Observations on optimistic concurrency control schdmfesmation
System® (2), 111-120 (1984).

[28] T.Harder and A. Reuter. Principles of transaction-oriented database reédvisty.
Computing Surveyss (4), 287-317 (1983).

[29] U. Herrmann, P. Dadam, K.M. Kuspert, E.A. Roman and G. Schladgeteck
technique for disjoint and non-disjoint objec®chnical Report TR.89.01.003,
IBM Heidelberg Research Center, Heidelberg, Germany (1989).

[30] W. Kim. Introduction to object-oriented databas®sIT Press, USA (1990).

[31] W. Kim, N. Ballou, H.-T. Chou, J.F. Garza and D. Woelk. Features of the ORION
object-oriented database system. In: W. Kim and F. Lochovsky (€dggct-
oriented concepts, databases, and applicati&@M Press, USA, 251-282 (1989).

[32] W. Kim, J. Banerjee, H.-T. Chou, J.F. Garza and D. Woelk. Composite objects
support in an object-oriented database systemPitac. of the 2nd OOPSLA
Orlando, USA (1987).

[33] W. Kim, E. Bertino and J.F. Garza. Composite objects revisited®rbt. of the
ACM SIGMOD Int. Conf. on the Management of D&artland, USA, 337-347
(1989).

In: Data & Knowledge Engineering? (1997) 233-259.

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

W. Kim, J.F. Garza, N. Ballou and D. Woelk. Architecture of the ORION next-
generation database systeeEE Transactions on Knowledge and Data
Engineering? (1), 109-124 (1990).

H.T. Kung and C.H. Papadimitriou. An optimality theory of concurrency control for
databases. IProc. of the ACM SIGMOD Int. Conf. on the Management of Data
Boston, USA, 116-126 (1979).

C. Lamb, G. Landis, J. Orenstein and D. Weinreb. The ObjectStore database
systemCommunications of the ACB# (10), 50-63 (1991).

H.J. Levesque and R.J. Brachman. A fundamental tradeoff in knowledge represen-
tation and reasoning. In: R.J. Brachman and H.J. Levesque (Rdadings in
knowledge representatipiMorgan Kaufmann, USA (1985).

J. Lutze Lock Management in the KBMS KRISYS - An Implementation of the LARS
Protocol for Nested Transactior(gn German). Undergraduation Project Work,
Univ. of Kaiserslautern, Kaiserslautern, Germany (1996).

J. Lutze:Benchmarking the Architectural Components of a Multi-User Knowledge
Base Management SystefimGerman). Undergraduation Diploma Work, Univ. of
Kaiserslautern, Kaiserslautern, Germany (in preparation).

N. Lynch. Multilevel atomicity: A new correctness criterion for database concur-
rency controlACM Transaction on Database Systedr{g), 484-502 (1983).

D. Maier, J. Stein, A. Otis and A. Purdy. Development of an object-oriented DBMS.
In: Proc. of the OOPSLAPortland, USA, 472-482 (1986).

N.M. Mattos. Abstraction concepts: The basis for data and knowledge modeling. In:
Proc. of the 7th Int. Conf. on Entity-Relationship Apprgabm, Italy, 331-350
(1988).

N.M. Mattos. An approach to knowledge base managemkeatture Notes in
Artificial Intelligence 513, Springer, Germany (1991).

C. Mohan. ARIES/KVL: A key-value locking method for concurrency control of
multiaction transactions operating on B-tree indicesPtoc. of the 16th Int. Conf.

on Very Large Data BasgAustralia, 392-405 (1990).

C. Mohan. Less optimism about optimistic concurrency contraRroc. of the 2nd

Int. Workshop on RIDE: Transaction and Query Processiiegnpe (1992).

C. Mohan, D. Haderle, Y. Wang and J. CheSiggle table access using multiple
indices: Optimization, execution and concurrency control techniqédé ARC
Research Report RJ7341 68822, Almaden, USA (1989).

C. Mohan and F. LevineARIES/IM: An efficient and high concurrency index
management method using write-ahead loggiigM ARC Research Report
RJ6846 65380, Almaden, USA (1989).

P. Muth, T.C. Rakow, G. Weikum, P. Brossler and C. Hasse. Semantic concurrency
control in object-oriented database systemsPtoc. of the 9th Int. Conf. on Data
Engineering Vienna, Austria, 233-242 (1993).

J. Mylopoulos and M. Brodie. Knowledge bases and databases: Current trends and
future directions. In:Proc. of the Workshop on Artificial Intelligence and
DatabasesUIm, Germany (1990).

32

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

In: Data & Knowledge EngineeringR (1997) 233-259.

P. Peinl and A. Reuter. Empirical comparison of database concurrency control
schemes. InProc. of the 9th Int. Conf. on Very Large Data Basdsrence, Italy,
97-108 (1983).

D.J. Penney and J. Stein. Class modification in the GemStone object-oriented
DBMS. In: Proc. of the OOPSLAOrlando, USA, 111-117 (1987).

T.C. Rakow, J. Gu and E.J. Neuhold. Serializability in object-oriented database
systems. InProc. of the 6th Int. Conf. on Data Engineerings Angeles, USA,
112-120 (1990).

F.F. RezendeEvaluating the suitability of OODBMS concurrency control
techniques to the KBMS environmeltternal Report, Univ. of Kaiserslautern,
Kaiserslautern, Germany (1995). (submitted for publication).

F.F. Rezende. Concurrency control techniques and the KBMS environment: A
critical analysisRITA - Journal for Theoretical and Applied Computer Sciehce

(1), Brazil, 37-76 (1995).

F.F. Rezende and T. Harder. A lock method for KBMSs using abstraction relation-
ships’ semantics. InProc. of the 3rd Int. Conf. on Information and Knowledge
ManagementGaithersburg, USA, 112-121 (1994).

F.F. Rezende and T. Harder. Concurrency control in nested transactions with
enhanced lock modes for KBMSs. Proc. of the 6th Int. Conf. on Database and
Expert Systems Applicatigrisondon, UK (1995).

A. Silberschatz and Z. Kedem. Consistency in hierarchical database systems.
Journal of the ACM27 (1), 72-80 (1980).

P.M. Schwarz and A.Z. Spector. Synchronizing shared abstract &@ksTrans-
actions on Computer Syste@§3), 223-250 (1984).

W.E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Compute33 (12), 1488-1505 (1988).

