
Exploiting ADLs to Specify

Architectural Styles Induced by Middleware Infrastructures

Elisabetta Di Nitto
CEFRIEL - Politecnico di Milan0

Via Fucini, 2
20133 Milano, Italy

+39223954272
dinitto@elet.polimi.it

ABSTRACT
Architecture Dejnition Languages (ADLs) enable the for-
malization of the architecture of software systems and the
execution of preliminary analyses on them. These analyses
aim at supporting the identification and solution of design
problems in the early stages of software development. We
have used ADLs to describe middleware-induced architec-
tural styles. These styles describe the assumptions and con-
straints that middleware infrastructures impose on the archi-
tecture of systems. Our work originates from the belief that
the explicit representation of these styles at the architectural
level can guide designers in the definition of an architecture
compliant with a pre-selected middleware infrastructure, or,
conversely can support designers in the identification of the
most suitable middleware infrastructure for a specific archi-
tecture.

In this paper we provide an evaluation of ADLs as to
their suitability for defining middleware-induced architec-
tural styles. We identify new requirements for ADLs, and we
highlight the importance of existing capabilities. Although
our experimentation starts from an attempt to solve a spe-
cific problem, the results we have obtained provide general
lessons about ADLs, learned from defining the architecture
of existing, complex, distributed, running systems.

Keywords
Architectural styles, architecture definition languages, event-
based interaction, middleware infrastructures, software ar-
chitectures

1 INTRODUCTION
The development of complex systems demands well es-
tablished approaches that facilitate robustness of products,
economy of the development process, and rapid time to mar-
ket. This need has led, in the last few years, to the establish-
ment of a research area called software architecture [20, 71.
In this area, researchers have demonstrated the usefulness

,.
Permission to make digital or hard topics ol’all or part of this work fol

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists.

rquircs prior specific permission andior a fee.

ICSE ‘9’) Los Angclcs ‘&I

Copyright ACM 1999 l-581 13-074-O/99/05,.,$5.00

David Rosenblum
University of California, Irvine

Dept. of Information and Computer Science
Irvine, CA 92697-3425 USA

+19498246534
dsr@ics.uci.edu

of formalizing the definition of the high-level structure of
software systems and allowing designers to perform prelim-
inary analysis on the system under development. Such anal-
ysis aims at discovering and solving design problems in the
early stages of development. To support the definition of
software architectures, a number of Architecture De$nition
Languages (ADLs) [121 have been proposed. Also, a num-
ber of architectural styles are being identified [21]. A style
defines a set of general rules that describe or constrain the
structure.of architectures and the way their components in-
teract. Styles are a mechanism for categorizing architectures
and for defining their common characteristics. New archi-
tectures can be defined as instances of specific styles.

While these contributions hold the promise of setting up
a formal foundation for the definition of software archi-
tectures, others are taking a more pragmatic approach to
the development of distributed systems and are focusing
on the definition of middlavare infrastructures (or middle-
ware for short), such as ActiveX/DCOM, CORBA, and En-
terprise JavaBeans [19]. These infrastructures support the
development of applications composed of several, possibly
distributed, components and provide mechanisms to enable
communication among components and to hide their distri-
bution. Also, they offer a number of predefined components
that provide well-defined classes of operations. For instance,
CORBA defines a set of service components that support
transactional communication, event-based interaction, secu-
rity, etc. [171.

We argue that, despite the fact that architectures and middle-
ware address different phases of software development, the
usage of middleware and predefined components can influ-
ence the architecture of the system being developed. Con-
versely, specific architectural choices constrain the selec-
tion of the underlying middleware used in the implementa-
tion phase. A similar observation has been presented in [5],
in which the architectural mismatches generated by the as-
sumptions reusable parts make about the architecture of an
application are identified.

For a system to be implemented in a straightforward manner
on top of a middleware, the corresponding architecture has
to be compliant with the architectural constraints imposed
by the middleware. Sullivan et al. in [23] corroborate this

13

claim by demonstrating that a style, that in principleiseems
to be easily implementable using the COM middleware, is
actually incompatible with it. This view has been stated also

in [181, in which the authors discuss the importance of com-
plementing component interoperability models with explicit

architectural models. Regis [9] and C2 [24] are middlewares
for which ADLs have been specifically defined (Darwin [lo]
and C2SADEL [131, respectively). These ADLs support the
definition of architectures compliant with the corresponding
middleware. From a different viewpoint, the ADL UniCon
[22] proposes a conceptually similar approach. It predefines
in the language a set of connectors that have an associated
implementation. These connectors support the definition of
an architecture and are part of the implementation of the cor-
responding system.

While Regis, C2, and UniCon define an architectural defi-
nition environment strictly tied to the implementation envi-
ronment, we aim at developing a more general approach. In
particular, we aim to capture the architectural assumptions
induced by middlewares in terms of middleware-induced
styles. In essence, we say that a class of related forms of
middleware induces the definition of an architectural style,
with each specific middleware of the class defining a varia-
tion of that style. We use a number of general-purpose ADLs
to describe these styles and variations. Our attempt aims at
demonstrating that the explicit availability of middleware-
induced styles is extremely useful in guiding the architect in
the definition of the architecture of an application and in se-
lecting the most suitable middleware, independently of any
special purpose development environment.

Unfortunately, our experience in using ADLs has not been
fully satisfying. In particular, many available ADLs’ them-
selves introduce specific architectural assumptions, ‘which
can conflict with the ones embodied in existing middleware.
In this paper we discuss our experience in using ADLs to
define middleware-induced styles. We provide an evalua-
tion of the ADLs we used, identify new requirements, and
highlight the importance of existing capabilities. Although
our experimentation starts from an attempt to solve a spe-
cific problem, the results we have obtained provide general
lessons about ADLs, learned from defining the architecture
of existing, complex, distributed, running systems.

The rest of the paper is structured as follows: Section12 pro-
vides a brief introduction to ADLs. Section 3 presents two
event-based middlewares that we have selected for our case
studies. Section 4 describes our experience in using existing
ADLs to specify the styles implemented by these middle-
wares. Section 5 provides an evaluation of our experience
and summarizes the requirements we expect from ADLs.
Section 6 provides some conclusions and discusses.future
work.

2 MAIN CHARACTERISTICS OF ADLs
ADLs have been thoroughly surveyed and classified in [121.

In this section we present their salient features.

ADLs usually define three main entities as primitive con-
cepts: components, connectors, and configurat,ions. A com-
ponent represents a unit of computation and interacts with
other components through connectors. A configuration rep-
resents the way components and connectors are composed to
define a specific architecture. These basic concepts are inter-
preted by different ADLs in different ways. This variety in
the expressive power of ADLs can make descriptions of the
same architecture in different languages substantially differ-
ent. In general, these differences are symptoms of a more se-
rious disagreement on what architectural descriptions should
express and what the right level of abstraction is for them.

For the purposes of our work, a middleware-induced style
can be specified by describing the “characteristics” that com-
ponents, connectors, and configurations of instances of the
style must have to be compliant with the corresponding mid-
dleware. The characteristics to be represented have been
selected according to our experience with different middle-
ware. As we will discuss in the following sections, these
characteristics encompass dynamic behavioral properties,
constraints on single components or connectors or on the
way they interact, and topological constraints on the way
components and connectors are attached to compose a sys-
tem.

3 CASE STUDIES
We chose as case studies two representative middlewares of
the event-based paradigm: JEDI [3] and C2 [24.]. In general,
event-based middlewares support the implementation of sys-
tems in which components communicate by generating and
receiving events. Events published by a source are notijed
to all components that have declared an interest in receiv-
ing them. The middlewares themselves take ‘care of event
observation and notification, thus guaranteeing a complete
decoupling between sources and recipients of events.

The two case studies present interesting and complementary
characteristics. JEDI is a typical representative of the event-
based middleware category (including technologies such as
the CORBA Event Service). The style it implies is easily
generalizable and tailorable for other event-based middle-
wares. C2 imposes several constraints on the topology of
architectures. In the following, we informally describe these
two middlewares by highlighting the capabilities they offer
to application developers and the rules they impose.

The C2 Runtime Infrastructure
The C2 middleware provides an object-oriented class frame-
work and implements a specific architectural style that con-
strains the design of applications [24]. C2 was initially cre-
ated to support the flexible development of GUI-based sys-
tems, but it has proven to be suitable as a general-purpose
middleware.

As we have mentioned in the introduction, the: C2 develop-

14

componmt 1

Bus, I

campo”Mt 2

Bus2

compoEe”* 3

Figure 1: An example of system structure in C2.

ment environment is currently being enriched with a special-
purpose ADL that supports the definition of architectures
compliant with the C2 style [131. However, it is still possible
to implement a C2 system by using the framework provided
by the middleware independently of the architectural defini-
tion environment. In the context of this paper we disregard
this architecture definition environment. Our goal, in fact, is
to assess the ability of ADLs developed independently of C2
to represent the style C2 endorses.

In the C2 style an application is composed of components
that communicate through buses (see Figure 1). The commu-
nication is event-based. In particular, a component can send
(receive) events to (from) the buses to which it is attached.
Buses are in charge of delivering these events to components
according to a policy that will be explained later on. Compo-
nents and buses can be composed in several ways, provided

that the following topological rules and constraints hold:’

1. Each component and bus has two connection points,
one called top and the other called bottom.

2. The top (bottom) of a component can be attached to the
bottom (top) of only one bus.

3. It is not possible for components to be attached directly
to each other; buses always have to act as intermediaries
between them.

4. Conversely, buses can be attached together. In this case
each bus considers the other as a component as far as
the publication and forwarding of events is concerned.

5. It is not possible to attach the top (bottom) of a compo-
nent (or of a bus) to the top (bottom) of a bus.

6. It is not possible to have cycles. That is, a component
can never receive a notification generated by itself. The
meaning of this constraint will be clarified by the defi-
nition of the behavior of a C2 architecture given below.

The behavior of components and buses can be summarized
as follows: A component can send request events to the bus
attached to its top (if any). Also, it can send noti$cation
events to the bus attached to its bottom (if any). When a bus
receives a request from its bottom, it forwards this request
to all the components (and buses) attached to its top that can

‘The rationale for these rules is presented in [24].

15

handle this request.2 When a bus receives a notification from
its top, it forwards this notification to all the components (and
buses) that are attached to its bottom.

JEDI
JEDI [3] is an event-based middleware developed to sup-
port lightweight and decoupled communication among dis-
tributed components called active objects. An active object
can dynamically subscribe/unsubscribe to events and pub-
lish them. An event dispatcher stores the subscriptions in its
internal state. Moreover, it forwards published event notifi-
cations to all the active objects that have previously issued
a subscription matching these notifications. When the event
dispatcher receives an unsubscription, it deletes the corre-
sponding subscription. An active object can temporarily dis-
connect (move-out) from the event dispatcher and reconnect
(move-in), either from the same location or from another lo-
cation. The event dispatcher keeps track of all the notifi-
cations directed to a temporarily disconnected active object

and delivers them when the active object reconnects again.
The only constraint imposed on the topology of architectures
is that active objects have to be connected to the event dis-
patcher in order to generate and receive notifications.

JEDI can be considered as an evolution of the CORBA Event
Service, in which notifications are delivered not to all the re-
ceivers, as in CORBA, but only to the components that have
explicitly subscribed them. A similar approach is also en-
dorsed by commercial products like TIB/Rendezvous. For
these reasons we decided to use JEDI as a case study instead
of CORBA. Moreover, as we will discuss in Section 5, the
usage of JEDI allows us to discuss some issues related with
the refinement of architectures. In particular, since at a lower
level of abstraction the JEDI event dispatcher is implemented
as a set of event servers, we want to specify the attachments
between active objects and these lower-level servers.

4 SPECIFYING THE CASE STUDIES IN SOME EX-
ISTING ADLs

In this section we show how the two case studies presented
in Section 3 can be specified using the ADLs ARMANI,
Rapide, Darwin, Wright, and Aesop. For space reasons we
focus mainly on ARMANI and Rapide, while we discuss
only the most interesting features of the other ADLs. We se-
lected ARMANI and Rapide from among the others for two
main reasons: first, they endorse two opposite approaches,
with ARMANI supporting the definition of topological prop-
erties and Rapide providing mechanisms for defining behav-
iors; second, both of them provide a relatively stable toolset
for defining and analyzing architectures.

ARMANI
ARMANI [151 is an extension of ACME [6]. It is still under
definition, but its basic principles seem well established, and
the main functionality of its toolset appears to be robust and

‘At instantiation time, each component communicates to its bottom bus
the requests that it is able to handle.

stable. It focuses on the definition of the structural properties
of an architecture (e.g., how components and connectois are
attached together) and disregards the: definition of behaiioral
properties. The ARMANI toolset provides a checker that

verifies the consistency of an archite.ctural specification.

In ARMANI a component is defined in terms of a set of
ports. A port represents a point of interaction with the iother

elements of the architecture. Similarly, a connector is de-
fined in terms of its roles. Each role identifies a participant
in the interaction represented by the connector itself. Corn-
ponents and connectors can be grouped in a system. In the
system, components and connectors form a bipartite draph,
with ports and roles attached in a one-to-one relation&p.

ARMANI supports the definition of component and connec-
tor types and provides specialization and instantiation mech-
anisms for these types. Also, it supports the definition of ar-
chitectural constraints through the invariant construct. Com-
ponent types, connector types, and invariants can all be col-
lected in a style. A system can be defined either as an in-
stantiation of a specific style or as an independent architec-
ture. The ARMANI checker checks whether an architecture
is compliant with the corresponding style declaration.

Definition of the C2 Style in ARMANI
The natural way of describing the C2 style in ARMANI is
to define a component type representing C2 components; a
connector type representing C2 buses, and a number of in-
variants that represent the topological constraints imfiosed
on C2 architectures. Behavioral rules must be disregarded
since they cannot be expressed by the ADL.

We define a C2 component as follows:
Component Type C2-compT = {

port topPort : portTopT;
port bottomport : portBottomT;
invariant size(self.ports) == 2;);

The two ports represent the ways C2 components interact
with their top and bottom buses.3 The invariant indicates
that a C2 component can have only two ports.

C2 buses cannot be represented as ARMANI connectors,
since otherwise architectures like the one in Figure 1 could
not be represented (because of the connector-connector links
allowed by C2). Therefore, we are forced to define a C2 bus
as an ARMANI component. Also, we must define a new
connector type whose instances are used to connect C2 com-
ponents and C2 buses. This is due to the fact that ARMANI
does not allow direct attachments between components. This
results in the following two definitions:

Component Type C2-busT = {
invariant size(self.ports) >= 1;
invariant forall p : port in self.ports I
declaresType(p,portTopT) OR declaresType(p,portBottomT););

Connector Type intermediary = (
role top: roleTopT; role bottom: roleBottomT;
invariant size(self.roles) == 2; };

3P~rtand roletypesarenotshownforspacereasons.

In the C24usT definition, no ports are specified, so that ar-
chitectures where buses are connected to different numbers
of top and bottom components can be created. The invari-
ant ensures that the ports declared in any instance of type
C24usT are either of type portTopT (the type of the top
ports) or of type portBot t omT (the type of bottom ports).

The ARMANI definition of C2 buses and components de-
scribes the topological constraints identified as number 1 and
2 in Section 3. The other topological constraints can be de-
fined as global invariants. For instance, constraint number 3
can be expressed as follows:

invariant forall compl: C2-compT in self.components I
forall comp2: C2-compT in self.components I
!connectad(compl, cornpa);

self. components is the set of all the components belong-
ing to any instantiation of the C2 style in which ibe invariant
is defined. The predicate connected is provided by the AR-
MAN1 constraint language. It is true when the components
it receives as parameters are attached to the same connector.
The character “! ” denotes logical negation while the charac-

ter “ I ” stands for “such that”.

ARMANI provides limited support for the definition of con-
straints whose checking requires the entire graph represent-
ing an architecture to be traversed. For instance, consider the
definition of constraint number 6. It can be expressed by the
following formula:

Invariant
forall camp: C2-camp in self.components I

!ReachableFromTop(comp, camp, self);

where ReachableFromTopis a CZspecific predicate we de-

fined that accepts as parameters two components and the
system that contains them. This predicate returns true if
the second component can be reached from the first com-
ponent, by traversing the C2 architecture in the upward di-
rection. In ARMANI, the design analysis construct supports
the definitiori of new predicates and can be uoed to define
ReachableFromTop as follows:

Design Analysis ReachableFromTop (compl: C2_compT,
comp2: C2_compT, sys: C2Style): boolean =

(Exists bus: CZ-busT in sys.components I
Exists camp: C2-compT in sys.components I
Exists medl, med2: intermediary in sys.connectors I
Exists portl: portBottomT in bus.ports I
Exists port2: portTopT in bus.ports I

attached(compi.topPort, medi.bottom) and
attached(bus.port.1, medl.top) and
attached(bus.port:!, med2.bottom) and
attached(med2.top, comp.bottomPort) and
(comp==comp2 or ReachableFromTop(comp,comp2,sys)));

This design analysis is supposed to return true when the
two components passed as parameters are attached to oppo-
site sides (bottom and top, respectively) either of the same
bus or of a chain of C2 buses and components. Unfor-
tunately, the recursion introduced in this definition is not
currently handled by the ARMANI toolset. A way to cir-
cumvent this problem is to define the implementation of

16

ReachableFromTop as a Java function. ARMANI, in fact,
allows Java functions to be made visible in the architecture
definition environment as predicates. However, this solution
is quite limiting and inelegant. First, an architect is forced
to use a different (programming-level) language. Second,
the definition of the predicate is no longer analyzable by the
ARhUNI toolset.

Assuming that C2Style is the name of the style that groups
all the definitions above, the architecture of Figure 1 is de-
scribed by the following specification:

System Example: C2Style = new C2Style extended with (

Component Cl, C2, C3: C2-compT;
Component Bi: C2-busT = new CZ-busT extended with (

port topi: portTopT;
port bottomi: portBottomT;port bottom2:portBottomT;);
// Component B2 has a similar structure
Connector ml, m2, m3, m4, m5: intermediary;
Attachments (

Cl.bottomPort to ml.top; Bl.topi to ml.bottom;
CZ.topPort to m2.bottom; Bl.bottoml to m2.top;
CZ.bottomPort to m3.top; BZ.topl to m3.bottom;
Bl.bottom2 to m4.top; B2.top2 to ml.bottom;
CJ.topPort to mS.bottom; B2.bottomlto m5.top;);)

In the instances of C24usT, ports must be explicitly de-
clared. Notice that the introduction of the fictitious inter-
mediaries makes the Attachments part quite cumbersome.

Definition of the JEDI Style in ARMAiVI
The ARh4ANI specification of the style defined by JEDI is
quite simple since it does not require the definition of com-
plex topological constraints:

Style JEDI-sty = (
role type BotifyR = t);
//other role and port type declarations
Connector Type JEDI-ED = (

invariant forall r : role in self.roles I
declaresType(r, BotifyR) OR
//enumeration of the other legal types
//((Un)SubscribeR, Hove-inR/Hove-outR));

Component Type ActiveObj = (
port Notify: BotifyP;
//enumeration of all the other legal ports);

invariant forall camp : ActiveObj in self.components I

forall corm : JEDI-ED in self.connectors 1
forall p : port in comp.ports I

forall r : role in conn.roles I
attached(r,p) -> ((declaresType(r,BotifyR) ABD

declaresType(p,HotifyP))
OR //other legal types 3

The connector type JEDIED defines the topological char-
acteristics of the JEDI event dispatcher, while the compo-
nent type Act iveOb j represents the active objects. We have
chosen to explicitly represent each kind of interaction be-
tween active objects and the event dispatcher as a pair of
role and port types. The invariant ensures that each active
object port is connected with a proper role (e.g., port of type
SubscribeP with role of type SubscribeR, etc.).

Rapide
Rapide is an event-based ADL that has been specifically de-
signed to support the prototyping of architectures [8]. Its

toolset, in fact, supports the execution of architectural de-
scriptions. The result of an execution is given in terms of the
events that are generated and observed by each element of
an architecture. These events are organized in a graph that
defines the causal relationships among them.

In Rapide a component is defined by an intelface that spec-
ifies: a) the functions and the data provided and required by
the component, b) the events it is able to observe and gen-
erate, c) its behavior, and d) constraints on its behavior. An
architecture specifies how the functions, data, and events de-
fined for a component are connected to the corresponding
functions, data, and events defined for other components;
these connections are established dynamically during the ex-
ecution of the architecture. Also, the architecture can define
constraints on the interaction among components. The defi-
nition of styles is not explicitly supported in Rapide. How-
ever, as we will show later in this section, some simple styles
can be defined as parametric architectures. A component can
be associated with an implementation called a module. A
module must conform to the corresponding interface. When
an architecture is executed, its components wait for the oc-
currence of some events and react to them according to the
behavior specified in the corresponding interface or, if it ex-
ists, the behavior implemented by the corresponding module.

Rapide does not provide a construct to explicitly define con-
nectors as architectural elements. Thus, a connector has to
be specified either as a connection between component con-
stituents (functions provided and required or events gener-
ated and observed) or as an additional component (an inter-
face). This choice depends on the complexity of the connec-
tor to be represented.

Rapide is a powerful but huge language. In our experimenta-
tion we have mostly limited ourselves to using the subset of
the language that is supported by the toolset. This allowed us
to actually execute and assess the specifications we defined.

Dejinition of the C2 Style in Rapide
As in the case of ARMANI, we define the C2 style in Rapide
by specifying the properties of C2 components and buses and
the way they are combined. In Rapide we can also define be-
havioral properties. Conversely, there is limited expressivity
for the definition of topological constraints.. In Rapide a C2
component is defined as an interface that is able to respond
to the occurrence of two events, ReceiveFromBottom and
ReceiveFromTop, and to generate two events, SendToTop
and SendToBottom. C2 does not make any assumption on
how components react to the occurrence of a notification or
of a request. Therefore, the corresponding Rapide descrip-
tion does not contain any behavioral specification of such
reaction.

A C2 bus is defined as follows:
type C2Bus is interface
action in ReceiveFromBottom(R : Request),

ReceiveFromTop(B : Notification);
out SendToTop(R : Request),

17

SendToBottom(B : Botification);
behavior begin
(?R: Request) ReceiveFromBottom(?R) I I> SendToTop(?R);;
(?B:Botification)ReceiveFromTop(?B) II>SendToBottom(?B);;
end CPBus;

A C2 bus observes and generates the same events handled
by a C2 component. This is defined in the action section
of the specification. The in events are the ones that the C2
bus is able to observe, while the out events are the ones it
can generate. The behavior part of the specification indicates
that a C2 bus forwards all the requests and notifications it
receives from one end (top or bottom) to the opposite end, by
generating a SendToTop or a SendToBottom event. Events
preceding and following the symbol I I > are, respectively,
the ones generated and observed by C2Bus components. For
simplicity, we assume that all the components attached to the
top of a C2 bus observe the requests coming from its bottom.

Notice that the events in the Rapide specification do not cor-
respond to the events (requests and notifications) that are ac-
tually generated or received by a C2 component. Instead,
requests and notifications in C2 are parameters of the Rapide
events.

As in ARMANI, the definition of the attachment between

components is defined separately from the definitions of
components. In this case, these attachments are defined
by connection rules that establish the relationships between
generated and observed events. The following specification
describes these connection rules for the particular architec-
ture shown in Figure 1:

architecture CZExampleo is
Cl, C2, C3: CZComp; Bl, B2: CZBus;

connect
Bl.SendToTopo I I> Ci.ReceiveFromBottom();
Ci.SendToBottomO II> Bl.ReceiveFromTop();
B2.SendToTopo II> C2.ReceiveFromBottomo;
Bi.SendToBottomO II> C2.ReceiveFromTopo;
C2,SendToTopO II> Bi.ReceiveFromBottom();
C2.SendToBottomo I I> B2.ReceiveFromTopo;
B2.SendToTopo II> Bl.ReceiveFromBottom();
Bl.SendToBottomo II> B2.ReceiveFromTopo;
B2.SendToBottomo II> CJ.ReceiveFromTop();
C3.SendToTopO II> B2.ReceiveFromBottomo;

end C2Exemple;

Notice from the connect section that events produced by a
component can be notified to multiple architectural elements.
For instance, since the event SendToBottom generated by
bus Bl is connected to ReceiveFromTop of both C2 and B2,
both C2 and B2 will be notified of its occurrence.

The C2 topological constraints are not easy to specify in
Rapide, since the language does not provide explicit mech-
anisms for checking the attachments between components.
Instead, it provides a pattern language to define expressions
over the partial order of events that occur during the execu-
tion of an architecture. The pattern language can be used to
specify constraints on the behavior of an architecture. These
constraints implicitly impose some restrictions on the topol-
ogy of the architecture itself. For instance, constraint number
5 of Section 3 could be expressed as follows:

never (?C: ClComp; ?B: C2Bus; ?!I: Message)
?C.SendToTop(% I> ?B.ReceiveFromTop(?M);

never (?C: C2Comp; ?B: C2Bus; ?H: Message)
?B.SendToTop(?E)'I> ?C.ReceiveFromTop(?E);

-- equivalent expressions for the bottom sides

The expression with I> matches if the event on its left side
causally precedes the one on the right side and no, other event
is between the two in the causal order. This operator has been
defined in Rapide but not yet implemented in the toolset.

Although the constraints above are related to the topological
constraint we wanted to define, they do not model the desired
constraint explicitly. On the other hand, it is interesting to
note that the definition of constraint number 6 of Section 3
in Rapide is substantially simpler than in the ARlMANI case:

never (?B: Botification; ?C: CZComp)
?C.SendToTop(?B) -> ?C.ReceiveFromBottom(?II);

The operator -> is used to represent a causal sequence rela-
tion between events that allows other intervening, unspeci-

fied events.

Rapide does not provide an explicit construct for defining
styles. The constraints presented above must be defined in
an architecture specification. This means that they must be
physically copied in any other architecture that defines an

instance of the C2 style.

Dejinition of the JEDI Style in Rapide
The possibility of defining behaviors in Rapide allows the se-
mantics of the JEDI event dispatcher to be completely reified
at the architectural level:

type Subscription is interface
subExpr: var SubscrExpress; subscriber: var ActiveObj;

provides
Match: functioncl: Botification) return Boolean;

end Subscription;
type SubTable is arraycinteger] of Subscription;

type JEDI-ED (BumActiveObjs: Integer) is interface
action

in Publish(B : Ratification),
Subscribe@ : SubscrExpress; A: ActiveObj),
Unsubscribe(SE : SubscrExpress; A: ActiveClbj),
EoveIn(A: ActiveObj), HoveOut(A: ActiveObjo;

out Hotify(B: notification; A: ActiveObj);
behavior i: var integer := 0; ST: SubTable is

(i..BumActiveObjs, default is nea(Subscription));

begin
(?S: SubscrExpress; ?A: ActiveObj) Subscribe(?S, ?A) II>
i:=$i+l; ST[$i].subExpr:= 7s; ST[$il.subscriber:=?A;;

(?B: Botification) Publish(?B) II>
for j: integer in l..HumActiveObjs do

if ST[j].subscriber.Is-BilO=False and
ST[j].HEatch(?U)=True then

Botify(?B, $(ST[j].subscriber)); end if; end for;;
end JEDLED;

The JEDIBD interface describes the event dispatcher. The
behavior part defines the reaction of the event dispatcher to
the occurrence of events Subscribe and Publish. For the
sake of brevity, the reactions to MoveIn and MoveOut events
are not described. ST represents the table containing the in-
formation about the subscriptions issued by agents. Each

18

element of the table contains a subscription expression and
a reference to the active object that has issued it. Also, the
elements in the table define a function called MMat ch that
checks if notifications match the corresponding subscrip-
tion expression. The implementation of this function is not
shown for space reasons. When a component implement-
ing the JEDIED interface receives a Subscribe event, it
stores the corresponding subscription in the table ST. When
it receives a Publish event, it searches the ST table for the
agents that have issued a subscription compatible with the
published notification and forwards this notification to them.

By exploiting the Rapide construct for defining parametric
architectures, we can provide a general definition for the
JE!DI style:

architecture JEDI-St(lumActiveObjs: Integer)
return JEDI-Style is

A: array [Integer] of ActiveObj is
(1 . . BumActiveObjs, default is nea(ActiveObj));
ED: JEDI-ED(BumActiveObjs);

connect
(?A: ActiveObj; ?B: Uotification)

?A.Publish(?B) II> ED.Publish(?B);
(?A: ActiveObj; ?B: Notification)
ED.Botify(?B, ?A) 11) ?A.Botify(?B);

. . .
end JEDI-St;

In the definition above, the connection rules between the
events generated (received) by active objects and the ones
received (generated) by the event dispatcher are specified.
These rules work correctly independently of the number of

active objects that are actually instantiated. This number is
determined by the value of the parameter of the architecture.
Notice that for C2 it is not possible to specify in Rapide a
mapping between events of buses and components that is in-
dependent of the instances defining a specific architecture.
This is because in C2 the topology of an architecture is not
a “star” as in the IEDI case (every component connected to
the same event dispatcher).

The definition of a specific architecture based on the IBDI
style can be accomplished by instantiating JEDIStyle:

architecture JEDI-Insto is
System: JEDI-Style is JEDI-St(7);

end JEDI-Inst.;

In this case, an architecture with seven active objects is cre-
ated.

Darwin
Darwin [lo] is a a conjguration language that supports the
development of architectures implemented on top of Regis.
Darwin supports the definition of architectures in terms of
components, services, and bindings. Components can be ei-
ther primitive or composite. Composite components are de-
fined in terms of their internal subcomponents. A component
can require andprovide services. Required and provided ser-
vices are associated with each other through bindings. In
Darwin it is not possible to define the behavior of compo-
nents; these are supposed to be defined directly with Regis.

An interesting characteristic of Darwin is the possibility of
defining dynamic architectures, in which it is possible to de-
scribe how components are dynamically created during the
execution of the system and how they are attached to the re-
maining architecture. Here is an example that describes a
dynamic version of a IEDI architecture:
component JEDI-Arch {

provide neaActive0bj;
inst ED: JEDI-ED;
bind nenActiveObj -- dyn ActiveObj;

ED.Subscribe -- ActiveObj.Subscribe; . . .)

The composite component JEDI_Arch allows a new active
object to be created each time the service newAct iveOb j is
invoked. This is expressed by the first binding shown in the
specification. The second binding associates the Subscribe
service provided by the event dispatcher to the correspond-
ing service required by active objects. ‘Ihe binding is ex-
pressed generically for the component type since the identity
of the active objects that will be created is unknown. For the
same reason, the bindings involving services provided (not
required) by active objects cannot be specified in the Darwin
description, since the binding rules require the identity of the
components that provide a service to be known. With this
restriction, the push semantics adopted by JBDI for the de-
livery of notifications cannot be expressed in Darwin, since
IBDI requires the active objects to provide a Not if y service
to the event dispatcher.

Darwin has been used also to describe CORBA-based appli-
cations [111. The approach is based on the idea of mapping

each component identified in a Darwin architecture to a cor-
responding CORBA object. A tool has been implemented
that supports the translation from the Darwin description of
a component to CORBA IDL.

Wright
Wright has been presented in [I], with some extensions pro-
posed in [2]. Wright shares several characteristics with AR-
MANI. In particular, it provides the same basic constructs
(components, connectors, ports, roles, attachments). More-
over, the extensions support the definition of styles. Differ-
ently from ARMANI, Wright supports the definition of the
behavior of both components and connectors. To this end, a
subset of the language CSP is adopted. In CSP, behaviors are
expressed algebraically in terms of patterns of events.

The following specification defines the structure of C2 buses
as a connector type:

connector C2-bus(nt : 1 .., nb : 1 ..) =

role topl,,,,t = receive + top 0 send + top 0 J

role bottom~...,b = receive + bottom 0 send --t bottom 0 ,/

glue = top.receive + (; i : 1.. . nb . bottom.send) + glue 0

bottom.receive + (; i : 1 . . . nt . top.send) + glue 0 ,/

The connector has two role types, top and bottom. The in-
dexes indicate that the number of roles actually created de-
pends on the parameters of the connector. For both role types
the events they can receive/produce are specified. The glue

19

describes the behavior of the connector. In the example, the
glue specifies that whenever the bus receives a request from
its bottom or a notification from its top, it forwards this re-
quest or notification to all the roles on the opposite side.

Thanks to its capability of describing behaviors and to the re-
cent introduction of constructs for supporting the definition
of styles, Wright seems to be suitable for our purposes (ex-
cept for its connector semantics, as discussed in Section 5).
However, since it currently does not provide a toolset to sup-
port the definition and analysis of styles and architectures,
we could not assess its features in greater detail.

Aesop
Aesop [4] is not properly an ADL. It is an environment
for defining style-dependent architecture definition environ-
ments. It allows a programmer to define a style in terms of
component, connector and connection rule types. In general,
these building blocks are quite similar to the ones provided
by ARMANI and Wright. However, Aesop does not provide
an architectural language for defining styles. Instead, a de-
veloper of styles must work at the programming language
level to customize the environment on the basis of the rules
defined by the style. The programming environment that is
used is an extension of Tcl/Tk. Aesop also provides a tool
integration environment that makes it possible to integrate
analysis tools developed for specific styles. We argue that
the main limitation of Aesop is that styles are not defined in
an ADL. This means that it is difficult to reuse and specialize
styles, or to communicate them to architects.

5 EVALUATION OF THE EXPERIENCE AND NEW
REQUIREMENTS FOR ADLs

Our experimentation started with the goal of identifying the
proper set of ADLs to support the definition of libraries of
reusable middleware-induced styles. In this experience, we
have realized that while many of our needs are addressed by
different ADLs, no ADL fully addresses all of them. In this
section we focus on the evaluation of our experience and on
the identification of the characteristics that an ADL should
have in order to be suitable for our needs.

Style Definition
ADLs should be able to define styles, that is, a coherent
collection of component types, connector types and stylis-
tic constraints. Moreover, they should provide a mechanism
for exploiting a style in the definition of an architecture. AR-
MANI, the extended version of Wright, and Aesop explicitly
support the definition of styles. In ARMANI, an architecture
can extend a style by defining new architecture-specific con-
straints. The ARMAJYI constraint checker is able to check
if the constraints defined in a style are satisfied by instanti-
ated architectures. Conversely, Rapide and Darwin provide
quite limited support for the definition of styles. Both lan-
guages provide a construct to define parametric architectures
that, as we have shown in Section 4, can be used to describe
styles in limited cases. Even in these cases, this solution

introduces some restrictions. For instance, the definition of
the JEDI style in Rapide (see Section 4) does not enable the
corresponding architectures to be composed of different co-
existing specializations of type Act iveObj . In fact, active
objects are instantiated directly in the style definition which
is only aware of the definition of type Act iveOb j. The only
way to specialize the generic definition of this type is to over-
write it.

It is also useful to specialize styles as substyles. The defi-
nition of substyles, on the one side, enables the. reuse of ex-
isting architectural descriptions and, on the other side, pro-
vides an organization of styles that can guide the architect in
selecting the proper paradigm for a particular application do-
main. For instance, it is intuitive that most event-based mid-
dlewares specialize a general event-based style, in which the
components and connectors interact through thie basic pub-
lish, subscribe, and notify operations. Each specialization
can introduce new operations (for instance, JEDI adds mech-
anisms to support the temporary disconnection of a compo-
nent) or can redefine the semantics of existing operations
(for instance, each middleware defines its own specific se-
mantics for matching notifications with subscrilptions). AR-
MAN1 fully supports the definition of substyles. In Rapide,
defining substyles could be accommodated by subtyping the
components of the superstyle. However, while some subtyp-
ing conditions between interface definitions are defined, the
behavioral part of interfaces cannot be inherited (see below
for more on behavior). Moreover, the connection rules de-
fined in a Rapide architecture for a supertype do not seem to
apply to any specialization of this supertype.

Topological Constraints
In a style definition, we do not want to specify the attach-
ments or connections of specific components. Instead, we
would like to provide some general topological constraints
that must be respected by any specific instantiation of the
component and connector types defined in the style. In AR-
MANI and the extended Wright, invariants support the def-
inition of such constraints in a powerful way. As we have
mentioned in Section 4, a limitation of ARMANI is the fact
that it does not currently support the definition of constraints
that contain recursive rules. In Rapide it is possible to define
constraints on the sequence in which events are generated

and/or received by components. We have shown that this
kind of constraint can be used to establish certain restrictions
on the structure of the architecture, albeit implicitly.

Behaviors
Topological constraints are not enough to define styles. The
description of the behavior of components and connectors is
at least equally important. If this description is not available,
architects cannot have a clear idea of how the elements of the
style (and in our case the corresponding implementations in
the middleware) work and how they can be used. ARMANI,
Aesop, and Darwin do not address this aspect. Rapide pro-
vides powerful linguistic constructs for specifying behaviors.

20

Still, it has some limitations when a component is special-
ized or when it is implemented in terms of a module. In both
these cases, the behavior of the original interface definition
is not guaranteed to be preserved. Compatibility checks are
performed only as far as the static part of the definitions is
concerned. An approach to checking the behavioral confor-
mance between supertypes and subtypes is discussed in [141.

Connectors
The importance of explicitly describing the connectors of
an architecture has been stated in several seminal papers on
software architectures (see for instance [20, 71). Surpris-
ingly, the languages that provide an explicit construct for
defining connectors associate with them a semantics that is
too restrictive. For instance, in ARMANI, each connector
role can be attached to only one component port. This means
that to create a multicast connector, we need to define a num-
ber of roles equal to the number of components to be attached
to that connector. This approach is more cumbersome than
the one adopted in Rapide, in which generated events can be
connected to more than one observed event. Another impor-
tant limitation of explicit connector languages discussed in
Section 4 is that connectors (and also components) cannot

be attached together.

This model for connectors seems influenced by the char-
acteristics of sockets, pipes, and (remote) procedure calls.
More modern kinds of connectors, such as event dispatch-
ers, ORBS (Object Request Brokers), and multicast channels,
highlight the limitation of this semantics. It could be ar-
gued that these connectors can be described as components.
However, we believe that architectural definitions are more
readable and clear when the special purpose of these archi-
tectural elements for component interoperability is made ex-
plicit. Also, as we have discussed in Section 4, where we
present the definition of the C2 style in ARMANI, the def-
inition of these connectors as components adds a new level
of indirection. In fact, we needed to define an intermediate,
artificial connector type to attach the “real” connectors to the
actual components of a C2 architecture.

Refinement of Components and Connectors
An important requirement for both connectors and compo-
nents is the possibility of refining their internal structure in
terms of the composition of other components and connec-
tors. Such refinement supports the co-existence of different
levels of abstraction in an architecture. In general, for a re-
finement to be valid, all the elements that belong to the public
interface of a component/connector must be offered by some
component/connector defined in any refinement.

As an example of refinement, consider the case of the JEDI
event dispatcher. So far, we have defined the event dispatcher
as a simple connector. However, its implementation is dis-
tributed. In particular, it is composed of a hierarchy of event
servers. At the architectural level, the internal structure of
the event dispatcher can be represented by a refinement in

which the operations defined in the event servers are repli-
cas of the operations belonging to the interface of the event
dispatcher. Having defined this refinement, the attachments
between active objects and the event dispatcher should be re-
fined as well, by specifying to which event server each active
object is attached. This refinement of attachments, in fact,
would be extremely useful for evaluating the performance of
an architecture as a function of the distribution of the active
objects over the hierarchy of servers.

While all the languages we considered, except ARMANI,
support the refinement of components and connectors, none
of them supports the refinement of the corresponding attach-
ments. We argue instead that, in conjunction with the refine-
ment of a component (connector), it should be possible to re-
fine the attachments of this component (connector) with the

other architectural elements to which it is attached. This re-
finement should be conservutive in the sense that the refined
attachments should preserve the characteristics of the origi-
nal ones (e.g., if a port A is attached to a role B in the original
architecture, then, in the detailed architecture, A should be
attached to some element of the refinement of B). Powerful
linguistic constructs to express generic mappings between
the elements of an architecture and their refinements are pro-
vided by SADL [161. The limitation of such approach is that
it does not provide explicit guidelines on how to perform this
refinement.

6 CONCLUSION
The general lesson we learned from our experience is that
the top-down approach adopted by the software architec-
ture community in the development of languages and tools
seems in many ways to ignore the results that practitioners
have achieved (in a bottom up way) in the definition of mid-
dlewares. Middlewares have demonstrated their usefulness
and effectiveness in a number of practical cases. The soft-
ware architecture community has now the potential to for-
malize these achievements in expressive and usable ADLs
and, more generally, to coordinate the definition of support
technology for the development of middleware-based appli-
cations.

Our next step is to continue our exploration of linguistic
mechanisms and modeling techniques that allow architecture
models to capture middleware-induced architectural styles.
We are broadening our search space by looking at UML and,
in general, languages that are not strictly considered ADLs.
Our longer term objective is to implement an environment
that supports the definition of architectures by providing a
library of styles induced by specific middlewares. Given an
architecture defined according to such a style, this environ-
ment will be able to partially automate the implementation
of the architecture on the corresponding middleware.

ACKNOWLEDGEMENTS
We wish to thank Alfonso Fuggetta and Debra Richardson
who reviewed this paper and gave us useful suggestions on

21

its structure and content. Also, we t.hank Neno Medvidovic,
Peyman Oreizy, Arthur Reyes, and Alex Wolf who con-

tributed to the clarification of the issues we presented. Fi-
nally, we thank Bob Monroe who assisted us with ARMANI.

Elisabetta Di Nitto worked on this paper when she was vis-
iting University of California, Irvine. This effort was spon-
sored by the Defense Advanced Research Projects Agency,
and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-
2-0021; by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant number
F49620-98- l-006 1; and by the National Science Foundation
under grant number CCR-9701973. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Re-

search Projects Agency, Air Force Research Laboratory, Air
Force Office of Scientific Research or the U.S. Government.

REFERENCES

111

PI

[31

]41

]51

WI

[71

PI

]91

R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering and

Methodology, 6(3), July 1997.

R. J. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon University, 1997.

G. Cugola, E. D. Nitto, and A. Fuggetta. Exploting an Event-
Based Infrastructure to Develop Complex Distributed Sys-
tems. In Proceedings of the 20th International Conference on

Software Engineering (ICSE 98), Kyoto (Japan), April 1998.

D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in
Architectural Design Environments. In Proceedings of SIG-

SOFT ‘94 Symposium on the Foundations of Software Engi-
neering, December 1994.

D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mis-
match, or, Why it’s hard to build systems out of existing parts.
In Proceedings of the 17th International Conference on Soft-

ware Engineering, Seattle, WA, 1995.

D. Garlan, R. T. Monroe, and D. Wile. Acme: An Archi-
tecture Description Interchange Language. In Proceedings of

CASCON ‘97, November 1997.

D. Garlan and M. Shaw. An Introduction to Software Archi-
tectures. Advances in Software Engineering and Knowledge
Engineering, 1993.

D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and Analysis of System Architecture
Using Rapide. IEEE Transactions on Software Engineering,
21(4), April 1995.

J. Magee, N. Dulay, and J. Kramer. Regis: A Con-
structive Development Environment for Distributed Pro-
grams. IEE/IOP/BCS Distributed Systems Engineering, l(S),
September 1994.

22

[lo] J. Magee and J. Kramer. Dynamic Structure in Software Ar-
chitectures. In Proceedings of SIGSOFT ‘96 J,‘ymposium on

the Foundations of Sojtware Engineering, San Francisco, CA,
October 1996.

u11

]121

]131

r141

WI

1161

t171

]181

]191

]201

1211

WI

~231

1241

J. Magee, A. Tseng, and J. Kramer. Composing Distributed
Objects in CORBA. In Proceedings of ISADS’97, Berlin, Ger-
many, April 1997.

N. Medvidovic. A Classification and Comparison Framework
for Software Architecture Description Languages. Techni-
cal Report UCI-ICS-97-02, Department of Information and
Computer Science, University of California, Irvine, February
1997.

N. Medvidovic, D. Rosenblum, and R. Taylor. A Language
and Environment for Architecture-Based Software Develop-
ment and Evolution. In Proceedings of the 21st International

Conference on Software Engineering, Los Angeles (CA), May
1999.

N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Type
Theory for Software Architectures. Technical Report UCI-
ICS-98-14, Department of Information and Clomputer Sci-
ence, University of California, Irvine, April 1998.

R. Monroe. ARMANI Language Reference Mlanual. CMU
Technical Report in preparation.

M. Moriconi, X. Qian, and R. Riemenschneider. Correct Ar-
chitecture Refinement. IEEE Transactions on Software Engi-
neering, 21(4), April 1995.

Object Management Group. CORBA Services: Common
Object Services Specification. Technical report, OMG, July
1997.

P. Oreizy, N. Medvidovic, R. Taylor, and D. Rosenblum. Soft-
ware Architecture and Component Technologies: Bridging
the Gap. In Digest of the OMG-DARPA-MCC Workshop on

Compositional Software Architectures. Monterey, CA, Jan-
uary 1998.

OVUM. OVUM Evaluates Middleware. Technical report,
OVUM Ltd., 1996.

D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes, 17(4), October 1992.

M. Shaw and P Clements. Toward Boxology: Preliminary
Classification of Architectural Styles. In Proceedings of the
Second International Software Architecture Workshop (ISAW-
2), San Francisco (CA) USA, October 1996, !jan Francisco
(CA) USA, October 1996.

M. Shaw, R. DeLine, D. Klein, T. Ross, D..Young, and G. Ze-
lesnik. Abstractions for Software Architecture. and Tools to
Support Them. IEEE Transactions on Software Engineering,
21(4), April 1995.

K. Sullivan, J. Socha, and M. Marchukov. Using Formal
Methods to Reason about Architectural Standards. In Pro-
ceedings of the 19th International Conference on Software

Engineering, Boston, MA, 1997.

R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr.,
J. E. Robbins, K. A. Nies, P Oreizy, and D. L. Dubrow.
A Component-based Architectural Style for GUI Software.
IEEE Transactions on Sofnyare Engineering, 22(6), June
1996.

