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Abstract: The photo-sketch matching problem is challenging because the modality gap between a
photo and a sketch is very large. This work features a novel approach to the use of an intermediate
latent space between the two modalities that circumvents the problem of modality gap for face
photo-sketch recognition. To set up a stable homogenous latent space between a photo and a sketch
that is effective for matching, we utilize a bidirectional (photo → sketch and sketch → photo)
collaborative synthesis network and equip the latent space with rich representation power. To provide
rich representation power, we employ StyleGAN architectures, such as StyleGAN and StyleGAN2.
The proposed latent space equipped with rich representation power enables us to conduct accurate
matching because we can effectively align the distributions of the two modalities in the latent space.
In addition, to resolve the problem of insufficient paired photo/sketch samples for training, we
introduce a three-step training scheme. Extensive evaluation on a public composite face sketch
database confirms superior performance of the proposed approach compared to existing state-of-
the-art methods. The proposed methodology can be employed in matching other modality pairs.

Keywords: face photo-sketch recognition; face photo-sketch synthesis; GAN

1. Introduction

The goal of this work is to find the best matching photos for a given sketch in a face
database, especially for software-generated composite sketches. An important application
of such systems is to assist law enforcement agencies. In many cases, a face photo of a
suspect is unavailable for criminal investigation. Instead, the only clue to identify suspect
is a software-generated composite sketch or a hand-drawn forensic sketch based on a
description by an eye-witness. Therefore, an automatic method that retrieves the best
matching photos from a face database for a given sketch is necessary to quickly and
accurately identify a suspect.

Successful photo-sketch matching depends on the solution to how to effectively deal
with large modality gap between photo and sketch modalities. Moreover, the insufficiency
of sketch samples for training makes photo-sketch recognition an extremely challeng-
ing task.

Regarding classical photo-sketch recognition, generative approaches [1–3] bring both
modalities into a single modality by transforming one of the modalities to the other (either
a photo to a sketch, or vice versa) before matching. The main drawback of these methods is
their dependency on the quality of the synthetic output, which most of the time suffers due
to the large modality gap between photos and sketches. On the other hand, discriminative
approaches attempt to extract modality-invariant features or learn a common subspace
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where both photo and sketch modalities are aligned [4–12]. Although these methods formu-
late photo-sketch recognition through modality-invariant features or a common subspace,
their performances are not satisfactory because (1) the distributions of the two modalities
are not well aligned in the common feature space and (2) their feature vectors or common
spaces fail to provide a rich representation capacity. Recent deep learning-based face photo-
sketch recognition methods [6,9,13–19] perform well compared to classical approaches.
However, employing deep learning techniques for face photo-sketch recognition is very
challenging because of insufficient training data.

Recently, Col-cGAN [20] proposed a bidirectional face photo-sketch synthesis network.
They generated synthetic outputs by using a middle latent domain between photo and
sketch modalities. However, their middle latent domain does not provide enough repre-
sentational power of both modalities. On the other hand, StyleGAN [21] and its updated
version, StyleGAN2 [22], produces extremely realistic images by proposing a novel genera-
tor architecture. Instead of feeding the input latent code z directly into the generator, they
first transform it into an intermediate latent space, W, via a mapping network. This disen-
tangled intermediate latent space, W, offers the generator more control and representational
capabilities. Noting the strong representation power of the latent code space of both Style-
GAN and StyleGAN2 versions, we take advantage of their architecture in a bidirectional
way to set up an intermediate latent space for our photo-sketch recognition problem.

In this paper, we propose a novel method that exploits an intermediate latent space,
W, between the photo and sketch modalities, as shown in Figure 1. We employ a bidirec-
tional collaborative synthesis network of the two modalities to set up the intermediate
latent space where the distributions of those two modalities are effectively aligned. Addi-
tionally, the aforementioned StyleGAN-like architectures enable the intermediate latent
space to have strong representational power to successfully match the two modalities. In
an earlier version [23] of this work, we only considered the StyleGAN generator. In this
work, we extend our work to include StyleGAN2. While StyleGAN applies styles to an
image by modulating mean and standard deviation using adaptive instance normalization
(AdaIN), StyleGAN2 only modulates standard deviation with weight demodulation. We
have experimented on StyleGAN2 in our network and compared it with the performance
of StyleGAN.

In Figure 1, the mapping networks, Fp and Fs, learn the intermediate latent codes
wp, ws ∈ W. To form a homogeneous intermediate space, W, we constrain the intermediate
features to be more symmetrical using the `1 distance between the intermediate latent codes
of the photo and the sketch. The intermediate latent space also makes use of feedback from
the style generators that conduct translation from photo to sketch and from sketch to photo.
This enables the intermediate latent space to have rich representational capacity for both the
photo and the sketch that previous methods fail to provide. Once this intermediate latent
space is successfully set up, we can then directly take advantage of any state-of-the-art face
recognition methods. In our case, we employ AdaCos loss [24].

Moreover, we use a three-step training scheme to resolve the problem of having a very
limited number of training sketch samples. In the first step, we only learn image-to-image
translation without AdaCos on paired photo-sketch samples. This serves the purpose of
learning an initial intermediate latent space. Then, in the second step, we pre-train the
photo mapping network, Fp, only with AdaCos, using a publicly available large photo
dataset. This helps our model overcome the problem of insufficient sketch samples to train
our deep network robustly for the target task. Lastly, we fine-tune the full network on a
target photo/sketch dataset. More details of the model training are discussed in Section 3.

The main contributions of our work are summarized as follows.

• We propose a novel method for photo-sketch matching that exploits an intermediate
latent space between the photo and sketch modalities;

– We set up the intermediate latent space through a bidirectional collaborative
synthesis network;
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– This latent space has rich representational power for photo/sketch recognition
by employing StyleGAN-like architectures such as StyleGAN or StyleGAN2;

• A three-step training scheme helps overcome the problem of insufficient sketch train-
ing samples;

• Extensive evaluation on challenging publicly available composite face sketch databases
shows the superior performance of our method compared with state-of-art methods.
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Figure 1. Our proposed framework takes advantage of a bidirectional photo/sketch synthesis
network to set up an intermediate latent space as an effective homogeneous space for face photo-
sketch recognition. We employ StyleGAN-like architectures such as StyleGAN and StyleGAN2 to
make the intermediate latent space be equipped with rich representational power. The mapping
networks, Fp and Fs, learn to encode photo and sketch images into their respective intermediate
latent codes, wp and ws. We learn AdaCos [24] to enforce the separability of latent codes of different
identities in the angular space for the photo-sketch recognition task.

The source code is available at https://github.com/seho-bae/face-photo-sketch-
recognition-bidirectional-network (accessed on 12 July 2022). The rest of the paper is
organized as follows. Section 2 states related works. We elaborate details of our method in
Section 3. Section 4 shows experimental results.

2. Related Work

The face photo-sketch recognition problem has been extensively studied in recent
years. Researchers have studied sketch recognition for various face sketch categories such
as hand-drawn viewed sketches, hand-drawn semi-forensic sketches, hand-drawn forensic
sketches, and software-generated composite sketches. Compared to hand-drawn viewed
sketches, other sketch categories have much larger modality gaps due to the errors that
come from forgetting (semi-forensic/forensic), understanding the description (forensic),
or limitations of the components of the software (composite). Recent studies focus on more
challenging composite and forensic sketches.

Trivial recognition methods can be categorized into generative and discrimina-
tive approaches.

https://github.com/seho-bae/face-photo-sketch-recognition-bidirectional-network
https://github.com/seho-bae/face-photo-sketch-recognition-bidirectional-network
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Generative methods convert images from one modality into another modality, usually
from a sketch to a photo, before matching. Then, a simple homogeneous face recognition
method can be used for matching. Various techniques have been utilized for synthesis,
such as a Markov random field model [1], local linear embeding (LLE) [2], and multi-task
Gaussian process regression [3]. However, the recognition performance of these approaches
is strongly reliant on their synthesis results, which most of the time suffer due to the large
modality gap between the two modalities.

Discriminative methods attempt to learn a common subspace or extract particular
features in order to reduce the modality gap between photos and sketches of the same
identity while increasing the gap between different identities. Representative methods
in this category include partial linear squares (PLS) [4,5], coupled information-theoretic
projection (CITP) [6], local feature-based discriminant analysis (LFDA) [7], canonical corre-
lation analysis (CCA) [8], and self-similarity descriptor (SSD) dictionary [9]. Han et al. [10]
computed the similarity between a photo and composite sketch using a component-based
representation technique. Multi-scale circular Weber’s local descriptor (MCWLD) was
utilized in Bhatt et al. [11] to solve the semi-forensic and forensic sketch recognition prob-
lem. Using graphical representation-based heterogeneous face recognition (G-HFR) [12],
the authors graphically represented heterogeneous image patches by employing Markov
networks and designed a similarity metric for matching. These methods fail when the
learned feature/common subspace do not have enough representational capacity for both
photo and sketch modalities. In contrast, our method projects photos and sketches on a
homogeneous intermediate space, where the distribution of the two modalities is better
aligned with rich representational power.

Over the past few years, deep learning-based algorithms have been developed for face
photo-sketch recognition [6,9,13–18]. Kazemi et al. [13] and Iranmanesh et al. [14] proposed
attribute-guided approaches by introducing attribute-centered loss function and a joint loss
function of identity and facial attribute classification, respectively. Liu et al. designed an
end-to-end recognition network using a coupled attribute guided triplet loss (CAGTL). It
plausibly eliminates defects of incorrectly estimated attributes [15] during training. Iterative
local re-ranking with attribute guided synthesis based on GAN was introduced in [16].
Peng et al. proposed DLFace [17], which is a local descriptor approach based on deep
metric learning, while in [18], a hybrid feature model was employed by fusing traditional
HOG features with deep features. The largest obstacle to utilizing deep learning techniques
for face photo-sketch recognition is the scarcity of sketch data. Even the largest publicly
viewed sketch database [6] has only 1194 pairs of sketches and photos, and the composite
sketch database [9] has photos and sketches of 123 identities. To overcome this problem,
most approaches employ relatively shallow networks, data augmentation, or pre-training
on a large-scale face photo database.

Recently, cosine-based softmax losses [24–27] have achieved great success in face photo
recognition. SphereFace [25] applied a multiplicative penalty to the angles between the deep
features and their corresponding weights. Follow-up studies improved the performance
by changing the penalising measure to an additive margin in cosine [26] and angle [27].
AdaCos [24] outperforms previous cosine-based softmax losses by leveraging an adaptive
scale parameter to automatically strengthen the supervision during training. However, the
direct application of these methods to photo-sketch recognition is not satisfactory because
they have not properly dealt with the modality gap.

3. Proposed Method

Our proposed framework takes advantage of a bidirectional photo/sketch synthesis
network to set up an intermediate latent space as an effective homogeneous space for face
photo-sketch recognition. The mutual interaction of the two opposite synthesis mappings
occurs in the bidirectional collaborative synthesis network. The complete structure of our
network is illustrated in Figure 2a. Our network consists of mapping networks Fp and Fs,
style generators Gp and Gs, and discriminators Dp and Ds. Fp and Fs share their weights.
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Figure 2. (a) The overall architecture of the proposed network. Mapping networks, Fp and Fs, map
photo and sketch images to intermediate latent codes wp and ws. These latent codes are then fed into
the two opposite style generators Gs and Gp. Gs generates a sketch from a photo, yp→s, while Gs

generates a photo from a sketch, ys→p. The collaborative loss Lw, which is `1 distance between wp and
ws of a same identity, constrains the intermediate modality features to be more symmetrical. Through
this strategy, we learn an intermediate latent space, W, that retains the common and representational
information of the photo and sketch. We apply AdaCos loss, LAdaCos, to the intermediate latent
space, W, directly to perform photo-sketch recognition by comparing the cosine distance between
intermediate latent features, wp and ws. (b) The internal structures of style blocks in our networks:
StyleGAN (left) and StyleGAN2 (right). Symbol A is an affine transformation that tranfers latent
code to the style form. StyleGAN2 replaces AdaIN with weight demodulation. Unlike [21,22], we do
not use noise input because it does not serve for recognition.

The mapping networks, Fp and Fs, learn to encode photo and sketch images into
their respective intermediate latent codes, wp and ws. Then, wp and ws are fed into the
two opposite style generators Gs and Gp to perform photo-to-sketch and sketch-to-photo
mapping, respectively. We employ a StyleGAN-like architecture to make the intermediate
latent space be equipped with rich representational power. We also introduce a loss function
to regularize the intermediate latent codes of two modalities, enabling them to learn a same
feature distribution. Through this strategy, we learn a homogeneous intermediate feature
space, W, that shares common information of the two modalities, thus producing the best
results for heterogeneous face recognition. To enforce latent codes in W separable in the
angular space, we learn AdaCos [24] for the photo-sketch recognition task.

Fp and Fs employ a simple encoder architecture that contains convolution, max pooling
and fully connected layers. The style generators, Gp and Gs, consist of several style blocks
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and transposed convolution layers as in [21]. StyleGAN [21] and StyleGAN2 [22] use
different style block architectures, as shown in Figure 2b. The details are described in
Section 3.1. The discriminators, Dp and Ds, distinguish generated photo/sketch and real
samples by taking corresponding concatenated photo and sketch. We use a PatchGAN
architecture [28] of 70× 70. Unlike the discriminator in [20], our discriminator uses instance
normalization instead of batch normalization.

3.1. StyleGAN and StyleGAN2 Generators

Both StyleGAN [21] and StyleGAN2 [22] transfer learned constant input to an output
image by adjusting the style of an image at each style block using the latent code, w,
as illustrated in Figure 2. The difference between the two versions is in the internal structure
of the style blocks.

The style block of our StyleGAN based ganerator is depicted on the left of Figure 2b.
The latent code defining a style is applied to an image through adaptive instance normaliza-
tion (AdaIN). AdaIN first normalizes the feature maps, then modulates mean and standard
deviation with the latent code. Unlike [21], we do not use noise inputs and progressively
growing architecture because the sole purpose of our style generators is to help the homo-
geneous intermediate latent space retain common representational information of the two
modalities for reducing the modality gap between them. Our style generators are very light
as compared to that of [21] due to the limited number of training samples.

The StyleGAN2 version of our style block is shown on the right of Figure 2b. Style-
GAN2 [22] replaces AdaIN with weight modulation to remove blob-shaped artifacts in
the original StyleGAN. Weight demodulation, first, scales the weights of the convolution
layer using latent code to modulate the standard deviation of the convolution outputs
(mod block in Figure 2b). Then, the outputs are scaled by the `2 norm of the corresponding
weights before the next style block. This scaling is baked into the convolution weights
directly (demod block in Figure 2b). The crucial difference from the StyleGAN’s style block
is that StyleGAN2 modulates standard deviation only. In StyleGAN2, mean of the feature
maps is changed by bias after modulation.

Furthermore, ref. [22] also proposes a skip connection-based generator and residual
network discriminator with path length regularization in order to synthesize very clear
high-resolution images (1024× 1024). However, we do not use these techniques because our
target image resolution is low (256 × 256), and the number of training data is very small.

Both versions of the generator improve the recognition performance by providing
more representation capacity to the intermediate latent space. We compare the StyleGAN
and StyleGAN2 versions of our network in Section 4.3.

3.2. Loss Functions

To learn the identity recognition, we use AdaCos loss [24], LAdaCos, which measures
the angular distance in the W space. It minimizes the distance of intra-class features while
maximizing the distance of inter-class features. LAdaCos is defined as

LAdaCos = −
1
N

N

∑
i=1

log
es·cos θi,yi

es·cos θi,yi + Bi
, Bi = ∑

k 6=yi

es·cos θi,yi ≈ C− 1, (1)

where yi is the corresponding label of the i-th face image in the current mini-batch with size
N, and C is the number of classes. s is the adaptive scaling parameter. At the t-th iteration
of the training process, the scaling parameter is formulated as

s(t) =


√

2 · log(C− 1) t = 0,

log B(t)
avg

cos (min(π
4 , θ

(t)
med))

t ≥ 1,
(2)
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where θ
(t)
med is the median value of θi,yi in the current mini-batch.

To train the bidirectional photo/sketch synthesis part of the whole network, we use
the GAN loss function, LGAN [29], along with the similarity loss, Ls, as follows.

LGAN = min
G

max
D

E[log Ds(xs)] +E[1− log Ds(Gs(xp))]

+E[log Dp(xp)] +E[1− log Dp(Gp(xs))],
(3)

Ls = E[|xs − yp→s|+ |xp − ys→p|]. (4)

LGAN helps to generate real and natural-looking synthetic outputs, while the similarity
loss, Ls, measures the pixel-wise `1 distance between generated and real photo/sketch images.

In addition, to regularize and enforce the same distribution for a photo, wp, and
a sketch, ws, in the intermediate latent space, we introduce a collaborative loss,

Lw = E[|wp − ws|]. (5)

It minimizes the `1 distance between wp and ws of the same identity.
Thus, the joint loss function used to train our network is as follows:

L = LAdaCos + λGAN LGAN + λsLs + λwLw. (6)

λGAN , λs, and λw in Equation (6) control the relative importance of each loss function
in the bidirectional photo/sketch synthesis task. We used λGAN = 1, λs = 10, and λw = 1 in
our experiments.

3.3. Training

To overcome the problem of an insufficient amount of paired photo/sketch training
data, we introduce a simple and effective three-step training scheme, as shown in Figure 3.
In step 1, we train the bidirectional photo/sketch synthesis network using paired photo-
sketch training samples to set up an initial homogeneous intermediate latent space, W. We
use our joint loss function in Equation (6), excluding the AdaCos loss function, LAdaCos.
In step 2, we pre-train the photo mapping network, Fp, using AdaCos loss only on the
publicly available large photo database CelebA [30] to overcome the problem of insufficient
sketch training samples. Then, we train our full network in step 3 using the whole joint loss
function in Equation (6) on target photo/sketch samples.

Learning an initial intermediate latent space,  

Angular 
space

Pre-train face photo recognition

on a large face photo database

Fine-tune the whole network by joint learning

Step 2 Step 1 Step 3 

CelebA real 
face photos

Real photos

...

Real sketches

...

Synthesized sketches

...

Synthesized photos

...

 

Angular 
space

 

Real photo

Real sketch

Synthesized sketch

Synthesized photo

Figure 3. A three-step training scheme to overcome the problem of an insufficient amount of paired
photo-sketch training samples. We employ three-step training. Step 1: Pre-train the bidirectional
photo/sketch synthesis network to learn an initial intermediate latent space, W, between photo and
sketch. Step 2: Pre-train the photo mapping network, Fp, on a large face photo database. Step 3:
Fine-tune the whole network on the target photo/sketch database.

4. Experiments

The recognition accuracies of our network presented in this section are average results
over five experiments with random partitions.
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4.1. Data Description and Implementation Details

We have conducted our experiments using the e-PRIP composite sketch dataset [9]. The
e-PRIP dataset consists of four different composite sketch sets of 123 identities. However,
only two of them are publicly available: the composite sketches created by an Indian user
adopting the FACES tool [31] and an Asian artist using the Identi-Kit tool [32]. We have
used 48 identities for training and the remaining 75 identities for testing.

To mimic a real law-enforcement scenario where multiple numbers of suspects are
selected from a large photo database, we have performed the experiments with extended
galleries. As some photos in the extended galleries of the previous works [12–15,17] are not
publicly available, we have mimicked their galleries as closely as possible using the photos
from the other publicly available databases for fair comparison. Two galleries of different
sizes were used in the previous studies. Following [13,14], we have constructed an extended
gallery of 1500 subjects including probe images by using photos from ColorFERET [33], the
Multiple Encounter Dataset (MEDS) [34], CUFS [35], and the IIIT-D sketch database [11].
To compare the performance with [12,17] and [15], we have built another extended gallery
of 10,075 subjects using face photos collected from the aforementioned photo databases
and the faces in the wild-a (LFW-a) [36] and Flickr-Faces-HQ (FFHQ) [21] datasets.

We aligned all photos and sketches by eye position and initially cropped them to
272 × 272. Then, they were randomly cropped to 256 × 256 during training. We optimized
our network using the Adam optimizer with a learning rate of 0.0002 and a batch size of
8 in steps 1 and 3 of training. We used a learning rate of 0.0005 and a batch size of 32 in
step 2. We trained our networks for 3000 epochs on the CUFS [35] viewed sketch database
in step 1 of training, for 50 epochs on CelebA [30] in step 2, and for 3000 epochs on the
target database in step 3.

4.2. Photo-Sketch Recognition Results

In this section, we compare the performance of our method with that of representative
state-of-the-art photo-sketch matching methods on the two subsets of the e-PRIP dataset [9].
Let us denote them as FACES (In) and Identikit (As), respectively.

In a real scenario, when matching forensic sketches with large galleries, law enforce-
ment officers consider the top R retrieval results as potential suspects [7]. Thus, we have
compared rank 50 accuracy, which is the most commonly used criteria.

The results with a gallery with a size of 1500 are presented in Table 1, where the
accuracies for Kazemi et al. and Iranmanesh et al. are obtained from their CMC curves.
Both versions of our method outperformed the SOTA. In particular, the StyleGAN ver-
sion achieved 93.86% rank 50 accuracy on Faces (In), which was 13.86% higher than [14],
and 90.40% on Identikit (As), which was 7.4% higher than [14]. Table 2 shows the com-
parison results of our method with the previous state-of-the-art representative methods
with a gallery of size 10,075. As can be seen in the table, our StyleGAN version shows far
better performance of 92.78% and 88.26% rank 50 accuracies on Faces (In) and Identikit
(As), respectively, with large margins. Our StyleGAN2 version achieved 90.14% and 80.28%
rank 50 accuracies on Faces (In) and Identikit (As), respectively, while the previous SOTA
method CAGTL [15] yielded 78.13% and 67.20%. Although StyleGAN outperforms Style-
GAN2, the performance of StyleGAN2 version is still much higher than that of SOTA. These
results show that our bidirectional collaborative synthesis network based on StyleGAN or
StyleGAN2 learns an effective intermediate latent space with rich representational power
for the face photo-sketch recognition task.

Figure 4 shows the CMC curves of our method for StyleGAN and StyleGAN2. They
indicate the strength in the top R retrieval of both versions.
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Table 1. Rank 50 recognition accuracy (%) on the e-PRIP database with a gallery size of 1500.

Method Faces (In) Identikit (As)

Kazemi et al. [13] 77.50 81.50
Iranmanesh et al. [14] 80.00 83.00

Ours: StyleGAN 93.86 90.40
Ours: StyleGAN2 92.80 85.84

Table 2. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 10,075.

Method Faces (In) Identikit (As)

G-HFR [12] - 51.22
DLFace [17] 70.00 58.93
CAGTL [15] 78.13 67.20

Ours: StyleGAN 92.78 88.26
Ours: StyleGAN2 90.14 80.28

(a) (b)

(d)(c)

Figure 4. CMC curves of our StyleGAN and StyleGAN2 version models on different databases. (a)
Faces (IN) with gallery size 1500, (b) IdentiKit (As) with gallery size 1500, (c) Faces (IN) with gallery
size 10,075, and (d) IdentiKit (As) with gallery size 10,075.

4.3. Effect of Generator Architecture

In this section, to verify the power of the StyleGAN-like generators in our networks,
we compare our models of StyleGAN and StyleGAN2 generators with a traditional U-
net [37]-based generator. We designed a U-net version model which has an encoder of
seven convolution layers with a fully connected layer and a decoder of eight transposed
convolution layers. The decoder layers receive the information of encoder layers through
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skip connections. The latent code is of a 512-dimensional vector, the same as for the
StyleGAN and StyleGAN2 versions.

The results in Table 3 show the latent spaces from StyleGAN and StyleGAN2 for
recognition. Due to the representation capacity provided by the StyleGAN-like architecture,
our models achieved much higher rank 50 accuracies than the traditional U-net based gen-
erator, especially for the Identikit (As) dataset. The StyleGAN version network outperforms
the StyleGAN2 version with less margin compared to the U-net version. In StyleGAN2,
learned biases replace the mean modulation of StyleGAN. We think that the performance
gap between StyleGAN and StyleGAN2 models comes from these biases, which are not
perfectly trained. Though our three-step training scheme alleviates the data size problem,
48 training samples are still insufficient to fully train the whole synthesis networks. Thus,
learned biases fail to replace the mean modulation, and thereby, StyleGAN2 underperforms
the StyleGAN version network.

The original StyleGAN2 work [22] also proposed a generator and discriminator de-
sign for high-resolution image synthesis. We implemented these network designs in our
StyleGAN2 version network and compared the results in Table 3. As expected, the skip
connection-based generator and residual network-based discriminator design is not help-
ful for our face photo-sketch recognition. The recognition performance degraded as our
network became heavier in the architecture design. This is because our target image reso-
lution is very low (256 × 256) compared to the target resolution of 1024 × 1024, and the
number of training data is insufficient. We opt to not apply these architecture designs to
our StyleGAN2 version network.

Table 3. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 1500 for
different generator architectures.

Generator Architecture Faces (In) Identikit (As)

U-Net 83.2 54.14
StyleGAN 93.86 90.40
StyleGAN2 92.80 85.84

skip G and residual D 84.26 81.84

4.4. Effect of Bidirectional Collaborative Synthesis of Photo-to-Sketch and Sketch-to-Photo

To show the effectiveness of our bidirectional collaborative synthesis network ap-
proach on the recognition task, we provide a comparison with three different variants
from the full network. In the first variant, we removed the style generators, Gs and Gp,
from the network in Figure 2 and trained the mapping networks, Fp and Fs, using the
AdaCos loss function. That is, the first variant could not take any advantage of the synthesis
network. For this variant, the mapping networks were pre-trained for 50 epochs on the
CelebA photo database [30], then fine-tuned for 3000 more epochs on the target database.
For the second and third variants, we trained a unidirectional synthesis-based photo-sketch
recognition network by using only one of the style generators, either Gs or Gp. These two
variants employed the three-step training scheme as in the full network. We have tested
these variants for both StyleGAN and StyleGAN2 versions.

The comparison results in Table 4 indicate that the addition of either a photo or sketch
generator improves the recognition accuracy. For both StyleGAN and StyleGAN2 versions,
the unidirectional sketch-to-photo network shows better performance than the unidirec-
tional photo-to-sketch network. This is because the sketch-to-photo network translates the
information-poor input to information-rich output, thus providing better representational
feedback to the intermediate latent space as compared to the photo-to-sketch network. For
unidirectional synthesis variants, StyleGAN2 achieved higher rank 50 accuracies than Style-
GAN. However, it still cannot provide enough representational power. Our full network,
which exploits the bidirectional collaborative synthesis network, dramatically improved
the recognition performance. This is because our bidirectional synthesis network warrants
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the intermediate latent space to have important representational information by utilizing
the mutual interaction between the two opposite mappings.

Figure 5 shows examples of synthesis results generated by our networks. The re-
sults show that bidirectional networks produce better synthesis results than the unidirec-
tional networks regardless of style generator architecture. Utilizing the mutual interaction
between opposite mappings helps make the intermediate latent space have important
representational information.

Unidirectional 

(with  removed) 

Input 
Bidirectional 

(with both  and ) 

Unidirectional 

(with  removed) 

Bidirectional 

(with both  and ) 

P
h
o
to
-to

-sk
e
tch

S
k
e
tch

-to
-p
h
o
to

StyleGAN2StyleGAN

Figure 5. Synthesis results of unidirectional and bidirectional collaborative synthesis networks with
StyleGAN/StyleGAN2-based generators. The first and third rows are for Faces (In), and the second
and fourth rows are for Identikit (As). For both StyleGAN and StyleGAN versions, bidirectional
networks produce better synthetic images as compared to unidirectional networks (please view
in color).

4.5. Effect of Three-Step Training Scheme

To validate the effectiveness of the proposed three-step training scheme, we compared
three different training settings in Table 5. For this, we trained our StyleGAN and Style-
GAN2 version models (1) using only step 3, that is, without pre-training, (2) using step 2
and step 3, and (3) using all the three steps.

We can see that there is significant improvement in recognition accuracy when using
pre-training (step 2) which enhances our encoders, especially for the Faces (In) dataset.
This shows the power of large-scale pre-training in solving the data scarcity problem.
The combination of all the three training steps further boosts the recognition performance.
Step 1 provides an effective initialization of the intermediate latent space between a photo
and a sketch for large-scale training in step 2. As the last row in Table 5 shows, our three-step
training strategy effectively overcomes the problem of insufficient sketch training samples.
Compared to the StyleGAN version, the StyleGAN2 version network takes greater benefit
from the three-step training scheme. We can see that without pretraining, it is not even
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possible to train the StyleGAN2 version network (Table 5). This shows that the StyleGAN2
version requires more training data than the StyleGAN version.

Table 4. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 1500 for the
synthesis networks.

Generator Method Faces (In) Identikit (As)

None Only mapping networks 19.74 43.72

StyleGAN
Photo-to-sketch (with Gp removed) 68.54 61.58
Sketch-to-photo (with Gs removed) 73.84 73.88

Our full network (with both Gp and Gs) 93.86 90.40

StyleGAN2
Photo-to-sketch (with Gp removed) 87.48 79.22
Sketch-to-photo (with Gs removed) 88.52 82.40

Our full network (with both Gp and Gs) 92.8 85.84

Table 5. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 1500 for
training scheme.

Generator Method Faces (In) Identikit (As)

StyleGAN
Without pre-training (step 3 only) 25.32 46.14
Two-step training (step 2 + step 3) 90.66 89.60

Three-step training (step 1 + step 2 + step 3) 93.86 90.40

StyleGAN2
Without pre-training (step 3 only) 5.34 20.00
Two-step training (step 2 + step 3) 89.6 81.6

Three-step training (step 1 + step 2 + step 3) 92.80 85.84

4.6. Collaborative Loss, Lw

In this section, we analyze the effect of collaborative loss, Lw, on the recognition
accuracy. We experimented with both the StyleGAN and StyleGAN2 versions of our
networks as we changed the value of λw. Table 6 shows the results for different values of
λw on the extended gallery setting of 1500 samples.

The performance of λw = 0 is poor. λw = 0 means that our network is not using
collaborative loss Lw. The network is unable to constrain the two mappings symmetrical.
The accuracy significantly improves when network use collaborative loss Lw for both
StyleGAN and StyleGAN2 versions. Through many experiments, we have found that
λw = 1 produces the best result for our task. These results show that our collaborative loss
helps regularize the intermediate latent representations of the two different modalities,
effectively aligning the two modalities in the intermediate latent space. However, as λw gets
too large, the performance degrades, as can be seen in Table 6. We think that a large value of
λw places too much emphasis on making latent codes symmetrical and breaks the learning
balance of the latent space between representational capacity and symmetrical mapping.

Figure 6 shows examples of synthesis results produced by our style generators for
different values of λw. There is a general trend that better synthesis results yield better
recognition accuracies. For λw = 10, the results collapsed to the same synthesis result for
most of the target samples. In particular, the output images of the StyleGAN2 version
collapsed from very early epochs, resulting in significant degradation of recognition per-
formance. This shows that too much weightage to the collaborative loss strongly enforces
the same latent distribution, while the representational capacity of the latent space is
relatively ignored.
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Table 6. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 1500 for λw.

Method StyleGAN StyleGAN2
Faces (In) Identikit (As) Faces (In) Identikit (As)

λw = 0 72.00 66.40 72.26 63.98
λw = 0.1 89.32 82.68 91.46 81.60
λw = 0.5 89.60 85.60 89.34 76.52
λw = 1 93.86 90.40 92.80 85.84
λw = 5 85.34 84.28 65.06 50.96
λw = 10 83.72 83.74 22.42 22.92
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StyleGAN2StyleGAN

Figure 6. Synthesis results of our style generators for different values of λw. In both photo-to-sketch
and sketch-to-photo synthesis, first and second rows are for Faces (In), while third and fourth rows are
for Identikit (As). Images collapse with high λw so that the network could not learn representational
information of the photo and sketch. λw=1 shows the best synthesis results (please view in color).

4.7. Similarity Loss, Ls

Figure 7 shows the results produced by our StyleGAN and StyleGAN2 generators for
three simple variations of Ls. First, we used pixel-wise `1 distance only as our Ls. Second,
we used only patch-wise structural similarity (SSIM) loss [38]. Third, we employed SSIM
loss along with `1 distance for Ls. Figure 7 shows that using only SSIM loss for Ls produces
the worst synthetic results, yielding the lowest recognition accuracy for both StyleGAN
and StyleGAN2 versions, as can be seen in Table 7. On the other hand, `1 produces the best
recognition results compared to the other two settings. Our observation is that SSIM loss
provides extra structural information for synthesis, but it does not help for recognition.
Thus, we opt to use only `1 distance as our Ls in the joint loss function in Equation (6).
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Table 7. Rank 50 recognition accuracy (%) on the e-PRIP dataset with a gallery size of 1500 for Ls.

Method Faces (In) Identikit (As)

StyleGAN
`1 93.86 90.40

SSIM 81.86 79.74
`1 + SSIM 91.98 89.34

StyleGAN2
`1 92.80 85.84

SSIM 88.00 80.80
`1 + SSIM 89.88 82.38
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+SSIM
Input

SSIM +SSIMSSIM

Figure 7. Synthesis results of our StyleGAN and StyleGAN2 generators for three different versions
of Ls. First and third rows are trained on Faces (In), while second and fourth rows are trained on
Identikit (As) (please view in color).

5. Conclusions

We have proposed a novel deep learning-based face photo-sketch recognition method
by exploiting a homogeneous intermediate latent space between photo and sketch modal-
ities. For this, we have explored a bidirectional photo/sketch synthesis network based
on a StyleGAN-like architecture in two versions: StyleGAN and StyleGAN2. In addition,
we employ a simple three-step training scheme to overcome the problem of insufficient
photo/sketch data. The experiment results have verified the effectiveness of our method.
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