
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Karhu, Kimmo; Gustafsson, Robin; Lyytinen, Kalle
Exploiting and defending open digital platforms with boundary resources

Published in:
Information Systems Research

DOI:
10.1287/isre.2018.0786

Published: 01/06/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-SA

Please cite the original version:
Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and defending open digital platforms with boundary
resources: Android's five platform forks. Information Systems Research, 29(2), 479-497.
https://doi.org/10.1287/isre.2018.0786

https://doi.org/10.1287/isre.2018.0786
https://doi.org/10.1287/isre.2018.0786

This article was downloaded by: [130.233.216.209] On: 12 July 2018, At: 01:44
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Information Systems Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Exploiting and Defending Open Digital Platforms with
Boundary Resources: Android’s Five Platform Forks
Kimmo Karhu, Robin Gustafsson, Kalle Lyytinen

To cite this article:
Kimmo Karhu, Robin Gustafsson, Kalle Lyytinen (2018) Exploiting and Defending Open Digital Platforms with Boundary
Resources: Android’s Five Platform Forks. Information Systems Research 29(2):479-497. https://doi.org/10.1287/
isre.2018.0786

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2018, The Author(s)

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/isre.2018.0786
https://doi.org/10.1287/isre.2018.0786
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMATION SYSTEMS RESEARCH
Vol. 29, No. 2, June 2018, pp. 479–497

http://pubsonline.informs.org/journal/isre/ ISSN 1047-7047 (print), ISSN 1526-5536 (online)

Exploiting and Defending Open Digital Platforms with Boundary
Resources: Android’s Five Platform Forks
Kimmo Karhu,a Robin Gustafsson,b Kalle Lyytinenc

aDepartment of Computer Science, Aalto University, FI-00076 Aalto, Finland; bDepartment of Industrial Engineering and Management,
Aalto University, FI-00076 Aalto, Finland; cDepartment of Design and Innovation, Weatherhead School of Management, Case Western
Reserve University, Cleveland, Ohio 44106
Contact: kimmo.karhu@aalto.fi, http://orcid.org/0000-0002-0026-4466 (KK); robin.gustafsson@aalto.fi (RG); kalle@case.edu (KL)

Received: September 1, 2016
Revised: June 22, 2017; December 18, 2017;
January 31, 2018
Accepted: February 13, 2018
Published Online in Articles in Advance:
May 14, 2018

https://doi.org/10.1287/isre.2018.0786

Copyright: © 2018 The Author(s)

Abstract. Digital platforms can be opened in two ways to promote innovation and value
generation. A platform owner can open access for third-party participants by establishing
boundary resources, such as APIs and an app store, to allow complements to be developed
and shared for the platform. Furthermore, to foster cooperation with the complementors,
the platform owner can use an open-source license boundary resource to open and share
the platform’s core resources. However, openness that is too wide renders the platform
and its shared resources vulnerable to strategic exploitation. To our knowledge, plat-
form strategies that promote such negative outcomes have remained unexplored in past
research. We identify and analyze a prominent form of strategic exploitation called plat-
form forking in which a hostile firm, i.e., a forker, bypasses the host’s controlling boundary
resources and exploits the platform’s shared resources, core and complements, to cre-
ate a competing platform business. We investigate platform forking on Google’s Android
platform, a successful open digital platform, by analyzing the fate of five Android forks
and related exploitative activities. We observe several strategies that illustrate alterna-
tive ways of bundling a platform fork from a set of host, forker, and other resources. We
also scrutinize Google’s responses, which modified Android’s boundary resources to curb
exploitation and retain control. In this paper, we make two contributions. First, we present
a theorization of the competitive advantage of open digital platforms and specifically
expose platform forking as an exploitative and competitive platform strategy. Second, we
extend platform governance literature by showing how boundary resources, which are
mainly viewed as cooperative governance mechanisms, are also used to combat platform
forking and thus sustain a platform’s competitive advantage.

History: Panos Constantinides, Ola Henfridsson, and Geoffrey Parker, Special Issue Editors; Rikard
Lindgren, Associate Editor. This paper has been accepted for the Information Systems Research Special
Issue on Digital Infrastructure and Platforms.

Open Access Statement: This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. You are free to download this work and share with others for
any purpose, except commercially, if you distribute your contributions under the same license as the
original, and you must attribute this work as “Information Systems Research. Copyright © 2018 The
Author(s). https://doi.org/10.1287/isre.2018.0786, used under a Creative Commons Attribution
License: https://creativecommons.org/licenses/by-nc-sa/4.0/.”

Funding: This work received partial support from the Digital Disruption of Industry project that the
Strategic Research Council [grant 292889] of Finland funded.

Keywords: boundary resources • competitive advantage • digital platform • exploitation • open platform • platform competition • platform forking

Introduction
Digital platforms can be opened in two ways to pro-
mote innovation andvalue generation (Boudreau 2010).
Aplatformowner cangrant access to third-partypartic-
ipants byestablishingboundary resources (Ghazawneh
and Henfridsson 2013), such as APIs and an app store,
to allow complements to be developed for the platform.
Furthermore, to foster cooperation with the comple-
mentors, the platform owner can use an open-source
license boundary resource to open its core platform
resources (West 2003). An open digital platform (ODP)
can thus be defined as an extensible digital core that is
opened for third parties to contribute improvements or

add complements (de Reuver et al. 2017). The comple-
ments can be physical resources (such as a new device)
or digital and intangible resources (such as a newappli-
cation, hereafter referred to as apps). When comple-
ments are combinedwith the platform’s core, the value
of the platform “bundle” to the user becomes greater
than its separate parts (Gawer and Henderson 2007,
Nalebuff and Brandenburger 1996). Google Android is
a great example of a successful ODP. It currently has,
depending on the estimate, a dominant 80%–90% share
of the mobile phone market and its app store features
over 3 million apps that generate more than 100 billion
downloads per year.

479

http://pubsonline.informs.org/journal/isre/
mailto:kimmo.karhu@aalto.fi
http://orcid.org/0000-0002-0026-4466
mailto:robin.gustafsson@aalto.fi
mailto:kalle@case.edu
https://doi.org/10.1287/isre.2018.0786
https://creativecommons.org/licenses/by-nc-sa/4.0/

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
480 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

However, just as shared resources are exploited in
alliances (Lavie 2006), an ODP’s openness can render
the platform and its shared resources vulnerable to
outside exploitative activities. An ODP that has been
opened in two ways has two kinds of shared resources:
complements that are shared for distribution and plat-
form core resources whose intellectual property rights
(IPR) are shared. Because of their digital nature, these
resources can be easily copied, reverse engineered or
breached and can invite competitors to exploit them
as part of a hostile strategy. For example, Amazon has
created its proprietary Fire OS platform, which appro-
priated the open platform core of the Android Open-
Source Project (AOSP). Furthermore, Amazon has not
only copied Android’s core but has expanded the
exploitation to its app complements that are shared for
distribution. We conceptualize this form of platform-
level exploitation as platform forking and call the result-
ing competing platform stack a platform fork. In man-
agement research, the term “exploitation” commonly
refers to an organization’s mode of learning related
to efficient use of resources (March 1991), but we use
the term “exploit” in its literary meaning (Merriam-
Webster): “to make use of meanly or unfairly for one’s
own advantage.”
Technically, a platform fork “forks” the platform’s

core, but strategically the technical fork is a means to
create a new platform that directly competes with the
host platform while maintaining compatibility with it.
Compatibility offers a means to exploit the host plat-
form’s complementarities, especially its apps. Because
of maintained compatibility, developers’ multi-homing
costs are marginal and they are, therefore, motivated
to “multi-home” (Armstrong 2006, Rochet and Tirole
2003) to the fork. Overall, platform forking allows one
to “jump-start” the platform with an existing devel-
oper community and to forgo high start-up costs and
risks associated with igniting a new platform. Platform
forking is a hostile, competitive strategy because the
forker contributes little or nothing back to the host plat-
form, does not provide monetary rewards to the host,
and does not add value to the host platform’s users. By
contrast, a platform fork potentially transfers the host’s
value-generating assets, including the complementary
apps, the user base, and data assets, to the fork without
accruing significant investments, risks or penalties.

Platform forking is a relatively recent phenomenon
and is largely unique to ODPs. It has become com-
mon since the emergence of widely used open digital
platforms such as Android. Smartphones that use a
forked Android platform comprise between 15% and
25% of Android’s market share. Apart from gaining
market share, forkers can profit financially. Some esti-
mates (Barnett 2011) suggest that creating a fork of the
platform core saves at least between $1 and $2 billion
in initial development cost and provides significant
additional savings in each subsequent version if the

forker manages to maintain compatibility. Moreover,
because forks promote app multi-homing, a forker can
quickly boost its app store and accrue additional rev-
enues from the apps.

Despite growing evidence of hostile, exploitative
activities around ODPs, research on open platform
strategies (Boudreau 2010) and open innovation (West
and Bogers 2014) has focused primarily on the pos-
itive effects of openness. However, Dahlander and
Gann (2010, p. 706) have called for research into act-
ing “opportunistically in bad faith,” while Yoo et al.
(2012, p. 1406) has noted the need for firms “to
learn how to compete and thrive” with ODPs. Earlier
research has reported exploitation by complementors,
such as the creation of meta-platforms (Ghazawneh
and Henfridsson 2013) or jailbreaking (Eaton et al.
2015). Separately, it has also discussed multiple poten-
tially exploitative activities, such as copyright infringe-
ment (e.g., Lemley and Reese 2003), hacking (e.g.,
Boudreau and Jeppesen 2015), and forking (e.g., Lerner
and Tirole 2002, Simcoe and Watson 2016). However,
to our knowledge, it has not considered these activities
as elements of orchestrated strategies to build a substi-
tute platform that seeks to threaten the host’s overall
platform business. Pon et al. (2014, p. 988) recognized
the “emergence of new proprietary platforms built on
the Android operating system,” but their focus is on
shifts in control points rather than the overall exploita-
tive strategy of platform forking. As a result, we know
little of how exploitation is exercised, why and under
what conditions platform forks are likely to emerge,
how successful forks are constructed or how hosts can
successfully respond to platform forking. Specifically,
what are the different kinds of shared and boundary
resources involved and what is their role in exploita-
tion? To address this research gap, we pose the follow-
ing research question: How do openness and related
governance decisions render an ODP and its resources
vulnerable to platform forking and how can the host
use its resources to defend against it?

Because of a lack of explicit theorizing and empir-
ics in addressing the research question, we conduct an
exploratory multiple case study of Google’s Android
platform and its forks. In particular, we examine the
emergence and evolution of five Android forks and
Google’s subsequent responses. In analyzing the plat-
forms, we focus on shared and boundary resources
to understand their role in platform forking and
in defending against it. The study covers a period
between November 2007 and March 2017 and relies on
an extensive web-based data set, which captures the
technical and market evolution of the Android plat-
form and its five platform forks and contains recorded
interpretations and rationales for platform changes.
The public data set is augmented with executive inter-
views and an opinion poll solicited from case firms.

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 481

Our study shifts attention on open platform strate-
gizing from a cooperative to a competitive perspective
and fromwithin a platform ecosystem to between com-
peting platforms. Wemake two contributions. First, we
present a theorization for a resource-based view of an
ODP’s competitive advantage and specifically expose
platform forking as an exploitative platform-level com-
petitive strategy in which a forker directly exploits the
host’s shared resources. Second, we extend platform
governance literature by exposing how governance
that is too loose causes an ODP to become vulnera-
ble to platform forking and how the host can combat
this activity. As to governance means, we show in par-
ticular how boundary resources are not only versatile
resources for cultivating a multitude of complemen-
tors within an ODP but also offer means with which to
defend against exploitation. As such, we expose how
boundary resources are critical in extracting (or inhibit-
ing) all four types of rents and are therefore a key
determinant of an ODP’s competitive advantage.

Openness in Digital Platforms and
Platform Forking
Platform openness is about easing the restrictions on
the use, development, and commercialization of plat-
form technologies (Boudreau 2010). Decisions concern-
ing platform openness are key to deciding on any ODP
architecture and governance. The initial decisions on a
platform’s openness form part of the ODP’s architec-
ture, while the continued adjustment of a platform’s
openness constitutes part of governance (Schreieck
et al. 2016). Next, we briefly review the main elements
of ODP architecture and conceptualize two forms of
platform openness: access openness and resource open-
ness. This allows us to synthesize how platform gover-
nance influences different forms of platform openness.
We conclude by reviewing the consequences of exploit-
ing platform openness as part of a hostile platform
forking strategy.

ODP Architecture
An ODP relies on a modular design (Baldwin and
Clark 2000); it consists of a set of modules with stan-
dardized interfaces that can be combined in multiple
ways to generate alternative products or platform fea-
tures. Baldwin and Clark (2000) present six modular
operators for creating alternative designs. These oper-
ators (including their combinations) are splitting, sub-
stituting, augmenting, excluding, inverting, and port-
ing. For example, Android is built on top of the Linux
kernel by integrating additional functions via ker-
nel header files (i.e., augmenting the platform). Each
device manufacturer has further adapted the Android
stack by introducing additional features. For exam-
ple, Samsung has integrated its TouchWiz module into
its Android stack to differentiate it from competitors’
products. Apart from being a modular design with

fixed product boundaries, an ODP is also a layered
modular architecture that allows fluid product bound-
aries in which innovation can independently spark
at any layer (Yoo et al. 2010). Generally, an ODP’s
architecture can be modeled as a “stack” (i.e., a lay-
ered structure) consisting of three primary compo-
nents that all involve possibly multiple modules. These
components are a (stable) digital core, assets of (vary-
ing) complements on top of and around it, and inter-
faces connecting the two (Baldwin and Woodard 2008,
Tiwana et al. 2010).

Two Forms of Platform Openness:
Access and Resources
ODP’s openness assumes that new modules can be
added or existing modules modified within the cur-
rent platform stack. Openness is multidimensional in
that it can be granted to multiple participant groups
in varying ways. Traditionally, platform openness has
been approached as an activity carried out by the plat-
form host to share the platform’s resources, i.e., its
IPR. The most common example of such activity is
the open-source licensing of the platform’s core (West
2003). Eisenmann et al. (2008) broaden the concept of
openness by recognizing that a platform host, such
as Google, can separately open its platform to dis-
tinct participant groups, including users, complemen-
tors, and platform providers. In this definition, open-
ness toward complementors focuses on opening access
through interfaces, while openness toward platform
providers, such as Samsung in the case of the Android
platform, is more concerned with openness toward the
platform’s core resources. In line with this, Boudreau
(2010) distinguishes two forms of openness: (1) grant-
ing access and (2) devolving control. We adopt his con-
cept and define two forms of ODP openness as follows.
Access openness refers to the granting of access to exter-
nal complementors to participate and conduct busi-
ness on a platform by providing them with dedicated
resources to interact with the platform. For example,
a host can provide interfaces, such as APIs, to allow
outside developers to create new apps on top of the
platform. Here, access refers to the access to partici-
pate. By contrast, resource openness refers to opening the
platform’s valuable resources by forfeiting the IPR of
the resource. For example, a platform owner can open-
source a platform’s codebase. These two forms are not
mutually exclusive and can be used in combination and
in distinct ways toward different participant groups.

The rationale for access openness is to spark innova-
tionwithin the platform ecosystem and induce comple-
mentors to use the platform to create additional value
that invokes positive network effects (Parker and Van
Alstyne 2005, Rochet and Tirole 2003). In access open-
ness, the platform host can extract part of the created
value through revenue sharing (such as the percentage
of sales or service use) or through other mechanisms

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
482 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

(such as selling in-app ads). Such access can also be sep-
arately opened to each participant group (Karhu et al.
2014). For example, on the smartphone platforms, the
platformhost, in addition to granting access to develop-
ers, can separately grant access to third-party app store
providers. To open access, a platform host can create
multiple interfaces that range from technical to regula-
tory (Baldwin and Woodard 2008, Farrell and Saloner
1992, West and O’Mahony 2008). For example, in addi-
tion toAPIs, theAndroid platform contains a hardware
abstraction layer (HAL) interface for integrating device
complements.
In resource openness, the host sees it as advanta-

geous to open the platform’s core resources by forfeit-
ing related IPR (Boudreau 2010, West and Gallagher
2006). For example, in 2007, Google made the Android
platform’s core open source under the AOSP. Barnett
(2011) refers to this form of openness as strategic for-
feiture because the platform host voluntarily forfeits
the platform core’s IPR while seeking to retain control
of other parts of the platform to recover the costs of
developing the core. In line with this, Google gener-
atesmost of its revenueswithin the Android ecosystem
from advertisements powered through the use of its
search engine, YouTube, and other Google services.

The two forms of platform openness create two dis-
tinct types of shared resources between the host and
other platform participants. In access openness, the
platform host grants access to outside complementors
who can then submit complements, such as apps, to
be run on the platform. Complements become the first
type of shared resources that are shared for distribu-
tion on the platform. They are shared for distribution
only because the complementors grant the platform
host a restricted right to “possess” and distribute the
appswhile holding the IPR over the resource. Resource
openness creates a second type of shared resource that
comes with shared IPR. Here, the host forfeits the IPR of
the platform’s resources by using, for example, open-
source licensing. This conceptualization of two types
of shared resources is consistent with the use of shared
resources “that are intentionally committed and jointly
possessed” in alliance studies (Lavie 2006, p. 645).

Governance of ODP
Platform governance refers to themechanisms through
which a platform owner exerts influence over other
actors in the ecosystem, such as app developers
(Tiwana 2013). It consists of a plethora of hosts’ activi-
ties, such as the stipulation of decision rights, the selec-
tion of formal and informal control mechanisms, and
decisions about pricing schemes (Tiwana 2013). The
goal of platform governance should be to orchestrate,
rather than direct (Williamson and Meyer 2012), and
cultivate an ecosystem of complementors for innova-
tion (Wareham et al. 2014). In our study context, which
involves the platform host and forkers, governance

centers on the host’s activities to open the platform and
manage its resources and participants within the over-
all ecosystem.

A central question in platform governance is how
to manage the tension between control and open-
ness (Tilson et al. 2010, Wareham et al. 2014). In
the ODP context, a platform host needs to balance
stability and quality requirements with a need to
promote innovation and invite outside contributions
(Eaton et al. 2015, Ghazawneh and Henfridsson 2013).
Ghazawneh and Henfridsson (2013) present bound-
ary resources as concrete tools and regulations that
can govern participants’ behaviors and contributions
at arm’s length. Boundary resources include access-
openness-related software tools, such as APIs and soft-
ware development kits (SDKs), as well as dedicated
regulations that govern resource openness, such as
open-source licenses. Boundary resources are essen-
tial in resourcing and controlling outside contribu-
tions on the platform (Ghazawneh and Henfridsson
2013) and, as such, form control points (Tilson et al.
2010, 2012). To promote platform growth, the plat-
form host must proactively engage with the ODP’s
boundary resources to create leverage while reactively
responding to outsiders’ diversifying or even compet-
itive approaches to using the resources (Ghazawneh
and Henfridsson 2013). Several studies have noted
the importance of the host’s control of the platform’s
boundary resources compared to just controlling the
platform’s core (Baldwin and Woodward 2009, Pon
et al. 2014, Schilling 2000). Because of shared use of
the platform’s boundary resources, the host can never
fully control them and their use can be contested by
complementors or other actors (Eaton et al. 2015).

Overall, we can extend Ghazawneh and Henfrids-
son’s (2013) developer-focused analysis of boundary
resources with a competitive aspect and consider
boundary resources as the software tools and regula-
tions that serve as the interface for resourcing contribu-
tions and complements and for governing the resultant
shared resources and their producers and consumers at arm’s
length, including the competitive actions within and between
platforms. Hence, we distinguish between boundary
resources, i.e., a means or mechanism that enables re-
source sharing and permits contributions on the plat-
form, and shared resources, i.e., the valuable resources
that provide the contribution. Table 1 summarizes our
discussion of the two forms of openness, boundary
resources, shared resources, and the host’s rationale for
promoting them within an ODP.

Platform Forking
In line with Lavie’s (2006) theorization in alliance set-
ting, opening an ODP and sharing resources leaves
the platform potentially vulnerable to hostile exploita-
tion. Software forking (Robles and González-Barahona
2012) becomes a threat for an ODP if its core resources

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 483

Table 1. Two Forms of Platform Openness and Related Resources

Platform Boundary Shared Actor Type of Platform owner’s
openness resources resources who shares sharing rationale

Access API, app store Complement, Complementor Shared for Generate network effects, and extract
openness e.g., apps distribution value from complementarities

Resource Open-source Platform core, Platform owner Shared IPR Strategic forfeiture of IPR while
openness license e.g., AOSP recovering costs from somewhere else

have been open sourced. Past research provides mul-
tiple, somewhat conflicting, assessments of forking.
Technically, a fork is defined as an independent line
of development (Robles and González-Barahona 2012)
or as a separate pathway that “might remain similar
in the code but under control by different program-
ming groups” (Vetter 2016, p. 175). A wealth of eco-
nomics literature views forking negatively, as it leads
to incompatible code bases (Barnett 2011, Lerner and
Tirole 2002, Simcoe and Watson 2016, Yoo 2016) and
fragments the platform (Parker and Van Alstyne 2009).
Wheeler (2015) further clarifies this by pointing out
that the intent of creating a competing project defines
a fork. From the governance perspective, code forks
manifest a challenge (von Krogh and von Hippel 2006)
or a failure of cooperation (Viseur 2012), calling for
stronger leadership (Fleming and Waguespack 2007).
Another, and smaller, stream of research views fork-
ing as a means to create derivative works and portrays
it positively because it improves the long-term sus-
tainability of the codebase (Gamalielsson and Lundell
2014, Nyman et al. 2012, Nyman and Lindman 2013).
In our study, we combine the technical perspective

of forking with the competitive and strategic intent
and define platform forking as a process that creates
two competing platforms from the same resource base,
and which are controlled by different and competing
hosts. The definition extends the forking concept into
the platform level in that platform forking produces
alternative configurations of the full platform stack, not
just the technical codebase. On the module level, plat-
form forking involves the forking of software modules,
such as the platform’s core. However, as Amazon’s Fire
OS example illustrates, in addition to forking the plat-
form’s core, the forker also seeks to “fork” complemen-
tary assets. Through these operations, Amazon has
built an alternative, competing platform to Android. In
this regard, platform forking differs significantly from
the reciprocal use of shared resources within alliances.
For example, members of the Open Handset Alliance
(OHA) use AOSP to build Android variants, but in
this setting Google accrues the app store and search
revenues generated through all of these variants. By
contrast, Google does not receive app revenues from
Amazon’s Fire, nor does Google have access to users
or user-generated data originating within Fire, unless
a Fire user uses a Google browser (e.g., Chrome) or

launches a dedicated Google search. To prevent such
access, the default search engine in Fire has been set to
Microsoft’s Bing and the default browser is Amazon’s
Silk. As a result, in terms of business logic and a rev-
enuemodel, Amazon’s Fire platform competes directly
with Google’s main platform businesses built around
Android while, at the same time, Amazon unilaterally
exploits Android’s core and complementary resources.

We can summarize our argument so far as follows:
AnODP can use two forms of openness by establishing
boundary resources, which help invite and contribute
complements to the platform.However, too-wide open-
ness combinedwith too loosely established governance
mechanisms can render a platform and its shared
resources vulnerable to exploitation.Under such condi-
tions, a hostile outside actor, a forker, may circumvent
the host’s boundary resources and build a competing
platform fork by exploiting the ODP’s shared resources
that cover the core and the complements.

Method, Data, and Analysis
Case Study Goals and Case Selection
To answer our research question, we conducted an
exploratory embedded case study (Yin 2009) where
the unit of analysis was the platform. Our aim is to
reveal platform-forking strategies, their key compo-
nents, motivations, and outcomes from the forker’s and
the host’s perspective. To this end, we analyzed the
original host platform and the resulting forked plat-
forms and their changes as embedded cases.

In selecting the cases, we followed replication logic
(Yin 2009) so that each case replicates the platform-
forking process and related outcomes. We analyzed
all five forks that originated from the Android plat-
form between 2007 and 2017. For each fork, the host
remained the same, i.e., the Android platform, whose
codebase has been opened through AOSP. None of
the studied forkers were members of OHA and did
not need to follow the alliance regulations. Thus,
each fork potentially imposed a threat and sought to
compete directly with Google’s business in one form
or another. The platform forks studied were (1) the
Amazon Fire OS platform, (2) the Xiaomi MIUI plat-
form (initially operating in China only, but which has
extended into other Asian markets with an interna-
tional version of the platform), (3) the Nokia X plat-
form (which was terminated in the spring of 2014, soon
after its initial commercial release), (4) CyanogenMOD

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
484 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

Figure 1. ODP and Platform Forking

Open digital platform

Non-shared

Shared IPR

Forker
Complementor A

(e.g., apps)

Complementor B
(e.g., device)

P
LA

T
F

O
R

M
 C

O
R

E

Boundary resources

Inbound
spillover rent

Outbound
spillover rent

Appropriated
relational rent

Internal rent

Extracting rents

INTERFACE

Shared for
distribution

C
O

M
P

LE
M

E
N

T
S

Shared Non-shared

PLATFORM
FORKING

NETWORK
EFFECTS

(a community-based platform that evolved into a start-
up firm in 2013), and (5) the Jolla Sailfish platform
(built on the Mer open-source project while exploiting
some elements of the Android platform).
To reach analytic generalization (Yin 2009), the in-

cluded cases feature different conditions and contrast-
ing approaches to forking. The cases differ with respect
to the economic regions and markets in which the
forkers operated (Asia, Europe, the United States).
They also differed with respect to the nature of the
forker. Somewere corporate (Amazon, Xiaomi, Nokia),
while others were strongly empowered by a commu-
nity (CyanogenMOD, Jolla). Finally, Jolla’s Sailfish fork
is a contrasting case in that it did not fork the whole
platform but, rather, only select parts.

ODP Model and Research Approach
We base our analysis on an idea that platform fork-
ing can be viewed as similar to the unilateral exploita-
tive use of shared resources among alliance partners
(Lavie 2006). A platform ecosystem around ODP can
be viewed as a loose alliance governed at arm’s length
using open-source licenses, APIs, and other boundary
resources. We can, accordingly, extend Lavie’s (2006)
model to the ODP context and platform forking, as
illustrated in Figure 1. At the center sits an ODP stack,
including the core, interfaces, and complements, where
the stack is subjected to access and resource openness.
On the left-hand side, we observe positive impacts of
these formsof openness as fostering innovationby com-
plementors and leading to network effects. In line with
Lavie (2006), the ODP host extracts positive appropri-
ated relational rents from the complements. We extend
Lavie’s (2006) model to the ODP context and note that
the use of two forms of openness generates two types
of shared resources: complements that are shared for
distribution and the platform corewhose IPR is shared.
In line with Lavie’s (2006) model of exploitation within
alliances, on the right-hand side, we observe platform

forking as a negative outcome in which the forker
unilaterally exploits shared resources of the ODP. In
the ODP context, this applies to both types of shared
resources. The forker achieves this by smartly using or
bypassing the boundary resources established by the
host. In Lavie’s terminology (2006), this generates neg-
ative outbound spillover rents for the host and, con-
versely, positive inbound spillover rents for the forker.

The above presented analytic model of ODP forking
provides us with the conceptual scaffolding to study
strategic exploitation of platform forking and defend-
ing against it. We operationalized the analytic model
to our research setting as follows: For each case, we
analyzed strategic activities related to different forms
of rent extraction with a focus on platform forking to
extract inbound spillover rents, and, correspondingly,
defending against it to curtail outbound spillover rent.
Our analysis of the platforms’ resources focused on
shared resources that were exploited and boundary
resources that were used as a means to exploit and
defend.

Data
The data set covers the evolution of the Android plat-
form, beginning with its launch in November 2007,
and its five platform forks from their respective ini-
tiation dates through March 2017. We screened pub-
lished documents on Android’s evolution and all five
platform forks. After screening the documents, we
focused on analyzing thick descriptions of platform
changes, their technical details, and legal and regula-
tory aspects. The available web-based material on the
evolution of forks was rich in detail and provided accu-
racy and reliability and, due to multiple sources, also
provided potential for data triangulation. The data set
included technology news, case companies’ websites
(technical information on the platform and company
data), developer discussion boards (for hackers’ per-
spective), platforms’ histories (e.g., reports on Android

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 485

Table 2. Research Process and Sources of Evidence

Data source/evidence
Analysis step (N � 178, 1,855 pages) Analysis outcome See

1. Explication of
activities

Longitudinal data (2007–2017):
• platform histories (N � 23)
◦ https://www.arstechnica.com
◦ http://www.androidcentral.com
◦ http://www.wikipedia.org, . . .

• technology news (60)
◦ http://www.cnet.com
◦ http://www.androidpolice.com
◦ http://techcrunch.com, . . .

• executive blog posts (10)
◦ http://officialandroid.blogspot.co.uk/
◦ https://blog.jolla.com/, . . .

• developer discussion boards (25)
◦ https://forum.xda-developers.com
◦ https://www.amazon.com/forum/
◦ https://together.jolla.com, . . .

Activities database
• 66 activities in total
• 22 core activities related to
exploitation and defense

Appendix A

2. Explication of
platform
resources
involved in
activities

Current data (as of 2017):
• company web pages (N � 37)
◦ https://developer.android.com
◦ https://developer.amazon.com, . . .

• legal docs (23)
◦ https://opensource.org/
◦ platform developer sites

Platform resources database
• 5+ 1 platform stacks
• 16 boundary resources with
five designed functions

Figure 2, Appendix B

3. Identifying
contextual
conditions

Using the data from earlier steps • condition for platform
forking

2nd ODP Governance section in findings

4. Identifying
mechanisms

• platform forking
• defense mechanisms

Figure 2

5. Executive
corroboration

Interviews (N � 3)
• CTO of a platform fork (∼45 min, face to face)
• technology director of a case firm (∼45 min, over phone)
• regional president of an OHA firm (∼45 min, secondary source)

Expert opinion poll (5 respondents out of 30 top executives from case platforms)

and the five platform forks), and legal documents that
include terms, conditions, andOSS licenses (see Table 2
for details). As Android is an open-source project
with a massive developer community, the technical
data and each activity occurring during its evolution
are critically monitored and commented on. Included
web-based data also cover executive blog posts that
comment or report on ongoing forking or defense oper-
ations. These documents were reviewed to reveal par-
ties’ policy reasoning. Our use of a web-based data
set overall recognizes Vesa and Vaara’s (2014) call to
take online strategizing seriously. Our final database
includes 178 documents totaling 1,855 pages, as well
as additional interview and survey data among case
platform firms. Our data set is similar to recent case
studies on iOS evolution and its boundary resources
(Eaton et al. 2015, Ghazawneh and Henfridsson 2013).

Data Analysis
Our data analysis consisted of five steps (see Table 2).
The first step involved explicating key development

and market activities. The resulting activity database
included all activities that were potentially impactful

in technical terms, had possible strategic implications,
and/or had business implications for the Android
platform. We started with open coding (Bryant and
Charmaz 2007). For each activity, we next coded the
date, the related boundary resource, and the tar-
geted platform-stack elements. We also created a short
description of the activity and its rationale. We specif-
ically coded activities that bore exploitative charac-
teristics and looked for subsequent host responses.
The database came to include platform and product
releases, changes in boundary resources (e.g., modified
policies), alliance and collaboration announcements,
and legal suits and threats across platforms. In total, we
identified 66 such activities. We confirmed the verac-
ity of each activity description by cross-checking the
information against another source. Next, we focused
on identifying those core strategic activities in which
a platform fork exploited the host, the host defended
itself or a platform fork accommodated the host’s
defense. This shortening of the activity list ended with
22 core strategic activities that illustrated the main
forms of strategic interplay between the platform host
and its forks.

https://www.arstechnica.com
http://www.androidcentral.com
http://www.wikipedia.org
http://www.cnet.com
http://www.androidpolice.com
http://techcrunch.com
http://officialandroid.blogspot.co.uk/
https://blog.jolla.com/
https://forum.xda-developers.com
https://www.amazon.com/forum/
https://together.jolla.com
https://developer.android.com
https://developer.amazon.com
https://opensource.org/

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
486 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

The second step pertained to the identification of
those platform resources involved in platform fork-
ing or in defending against it. The platform resources
database contained information on the platform stacks
including shared resources and boundary resources
for the host and each platform fork. We focused specif-
ically on identifying those boundary resources within
the host platform that were drawn upon by the plat-
form forkers. For each deployed resource in the forks’
platform stack, we identified the respective potential
source (shared resource) within the host stack and the
boundary resource that was potentially used.

As a third step, we studied conditions for platform
forking, such as the type of openness exploited and
its dimensions. As an output, this step produced the
conditions in relation to the two forms of openness
and exposed the role of boundary resources in defin-
ing them. As a fourth step, we performed a cross-
case analysis to identify the common activities and
resources used across cases. This led to the iden-
tification of separate platform forking strategies. By
investigating the timelines of events for each case, we
exposed common concepts in the strategic interplay
between the host and forkers. During the compara-
tive process, we moved from open coding to selective
coding (Bryant and Charmaz 2007). Per this analysis,
we synthesized the types of boundary resources and
their functions (see Appendix B). The analysis also
resulted in the identification of three exploiting activi-
ties (“forking,” “cloning,” and “hacking”). These activ-
ities emerged from the data set as common actions
that targeted specific boundary resources to exploit
the shared resources. As an example of the evolution
of coding, our initial coding for boundary resources
involved phrases such as “be agnostic of,” “isolate
from,” and “be independent,” which were later syn-
thesized under the “loosen couplings” function related
to removing tight couplings between the stack layers
in question. Another example of coding is a forker
“becoming a partner” or “removing an app,” which
was later phrased, following terminology introduced
by Eaton et al. (2015), as “accommodating” the host’s
policies.

Finally, to validate our analysis findings for veracity
and plausibility, we conducted focused semistructured
interviews with executives in two of the case firms. To
complement the forker perspective, we also analyzed
oneOHA executive’s online interview about Android’s
future and related strategies. Finally, we conducted an
executive opinion poll by reaching out to technology
and strategy executives working for, or involved in,
case platforms to solicit interpretations of our tentative
findings. Using LinkedIn, we obtained five responses
for our poll (from requests sent to 30 top executives).
Together, these executive perspectives, referred to here-
after as executive corroboration, provided additional
substantiation and validation of our analysis.

Findings
We report our findings in four parts. The first sec-
tion presents the case narratives and the context
and exposes the “in vivo” strategic interplay between
Google and five forks. The second section disentan-
gles the functions and impact of boundary resources
in governing the ODP and identifies the conditions
for platform forking. The third section concentrates on
identifying successful platform-forking strategies. The
final section analyzes how the host can defend against
platform forking.

Strategic Interplay between Android and
Platform Forks
In total, 22 core strategic activities were identified that
illustrated exploitative, defensive or accommodating
activities between the host and the forkers or con-
stituted important antecedent activities. These activi-
ties are listed in chronological order in Appendix A,
which includes a unique identifier (A1–A22) and exact
date for each activity. In the Type column, we char-
acterize whether the activity was exploitation by a
forker (Hack, Fork, Clone, or generic Exploit), a host’s
defense (Defend) or a forker accommodating the host’s
defense (Accommodate). For each activity, when rele-
vant, we have marked the boundary resource(s) used
(see Appendix B). Furthermore, for each of Google’s
defensive responses, wemark, in parentheses, the asso-
ciated exploiting activity by the forker that prompted
the response.

On November 5, 2007 (A1), the OHA was an-
nounced, and an initial version of Android’s code-
base and its SDK were published under the AOSP
using the Apache open-source license as a boundary
resource. Following this announcement, September 23,
2008 (A2), was the official release of the API, SDK,
and the Android Market. The first Android phone,
HTC Dream/G1, became available on October 20, 2008
(A3). The developer community was quick to hack the
platform and the newly released phone. On Novem-
ber 4, 2008 (A4), some developers released instruc-
tions on how to root1 Android and build custom Read
Only Memory (ROMs)2 for it. This event was strate-
gically significant because it technically enabled the
subsequent build-up of platform forks. To have a full
stack including the apps, on September 21, 2009 (A5),
the CyanogenMOD developer community released a
hacked package of Google’s proprietary apps, includ-
ingGmail andAndroidMarket. This eventmade it pos-
sible to run Google apps on any rooted phone. Google
responded quickly to this event. By September 24, 2009
(A6), Google sent a cease-and-desist letter to the devel-
oper community and threatened legal action. Google
explained its legal action in a blog post (September
26, 2009): “Unauthorized distribution of this software
harms us just like it would any other business, even if
it’s done with the best of intentions.”

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 487

The community temporarily backedoff, but it quickly
found a way to circumvent the legal threat and sepa-
rately installed theGoogle apps package. Subsequently,
this became a common practice among custom ROM
users. Interestingly, this solution was jointly devel-
opedwithGoogle engineers. SteveKondik, the commu-
nity leader, revealed this in his blog post on Septem-
ber 30, 2009: “[a] lot of people are helping to work
many of these issues out, notably the guys fromGoogle
[anonymized]whomanage the open-source project.”
Xiaomi, a Chinese company, was the first commer-

cial fork that benefited from these hacking events. It
announced its MIUI platform in late 2010 (A8). Xiaomi
released its first phone using the fork in July 2011
(A10). Triggered by the first commercial exploitation of
Android outside OHA, Google started to transfer the
development of several of itsAndroid apps, e.g., search,
music service, calendar, and camera, to a closed-source
regime. It effectively ceased to forfeit its IPR related
to these apps. This change took place between the
release of Android’s Froyo onMay 20, 2010 (A7), and its
Gingerbread version onDecember 6, 2010 (A9). The lat-
ter release made Google’s new IPR practices transpar-
ent. Consequently, several AOSP versions of the closed-
sourced apps remain frozen to the Froyo state.

New threats of exploitation continued to emerge
for Android. On September 28, 2011 (A11), Amazon
released its first commercial Fire tablet, which runs on
a forked Android platform. From Google’s perspec-
tive, Amazon’s move differed significantly from the
earlier forks. Xiaomi, at that time, was only a Chi-
nese manufacturer of mobile handsets in a market that
Google had already lost due to the Chinese govern-
ment’s stringent policies. By contrast, Amazon oper-
ated in the same U.S. and Europeanmarkets as Google.
Moreover, one of Amazon’s core businesses is selling
content (such as Amazon Prime), which directly com-
petes with Google’s YouTube and Google Play busi-
ness. Furthermore, the default search engine in Fire has
beenMicrosoft Bing sinceAmazon’s FireHD release on
September 9, 2012 (A13). This hampers Google’s main
search and ad business, which increasingly relies on
the user data collected from mobile devices.

The subsequent changes in Android’s boundary re-
sources reveal Google’s response. On March 6, 2012
(A12), Google rebranded its app store, Android Mar-
ket, as Google Play. By doing this, Google effec-
tively claimed ownership of the boundary resource.
It rebranded the name for that service from a shared
Android domain to its own company brand, which
it could thereafter fully control. Furthermore, because
Amazon’s move threatened Google’s content busi-
ness, Google strengthened its competitive position
against Amazon, adding music and a bookstore (Ama-
zon’s core business) under the rebranded marketplace,
which it could now control.

Another defensive act, in the form of a legal
move, occurred on September 13, 2012, when Google
prevented one OHA member, Acer, from launching an
Aliyun phone (an incompatible fork) in partnership
with Alibaba (A14, A15). Google issued a related state-
ment (as quoted in Marketing Land): “Compatibility
is at the heart of the Android ecosystem and ensures
a consistent experience for developers, manufacturers
and consumers. Non-compatible versions of Android,
like Aliyun, weaken the ecosystem.” Alibaba, by con-
trast, described the exchange in a statement on Septem-
ber 13, 2015 (as quoted in CNET), as: “Our partner was
notified by Google that if the product runs Aliyun OS,
Google will terminate its Android-related cooperation
and other technology licensing with our partner.” As
Google had contractual power over Acer through the
alliance contract boundary resource, it could force Acer
(and Alibaba) to yield. Google’s swift response high-
lights how important it was for it to enforce control
over the Android ecosystem and ensure the compati-
bility of the complementors. This situation also reveals
hidden tensions within the OHA as to how far other
members can “expand” the official Android platform
and related resources without incurring a penalty.

Apart from licensing, branding, and legal moves,
Google also responded to the continued exploita-
tion through digital means. On September 16, 2012
(A16), Amazon published its clone of the Google Maps
API. Soon thereafter, on September 26, 2012 (A17),
Google released a new boundary resource, i.e., a client
library calledGoogle Play Services. Apart frommaking
Google’s own API updates more flexible for develop-
ers, this new boundary resource also served a defen-
sive purpose against Amazon’s cloned APIs. By using
the library, developers become dependent on a propri-
etary Google library that is only available on official
Android releases, making it more difficult for develop-
ers to migrate their apps to any forked Android plat-
form. Furthermore, by freeing API development from
official platform releases, Google could speed up the
development of its APIs. This has made it more diffi-
cult for API copycats, such as Amazon, to keep up. For
example, it took two years for Amazon to provide inter-
face parity3 for the Google Maps API v2 update (A22).

Lately, new developments have unfolded within the
strategic relationship between Google and a platform
forker, Xiaomi. Xiaomi recently launched its devices
internationally by making them available in Hong
Kong, Singapore, and India (A18). To secure the avail-
ability of Google’s services in international markets,
Xiaomi made a licensing deal with Google; its inter-
national devices now have a preinstalled set of Google
services, including Google Play and Gmail. This licens-
ing deal has not been confirmed by any formal pub-
lic announcement, but Hugo Barra, a Xiaomi director,
noted on March 3, 2015, at the Mobile World Congress
in Barcelona, Spain, that Xiaomi is indeed partnering

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
488 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

with Google (as quoted in Techcrunch): “We are a GMS
[Google Mobile Services] partner. We have been from
the very first day that we sold our first device outside
of China.”
A platform forkmay also sometimes inject its bound-

ary resources back into the host platform. On Septem-
ber 9, 2014 (A19), Amazon released the “Amazon App
for Android Phones” (essentially a shopping app and
an app store) on Google Play featuring Amazon’s tan-
gible offerings and intangible digital content, such as
the apps published for Fire OS. Google reacted swiftly
(A20), changing its developer distribution agreement
on September 25, 2014, from restricting only apps
“whose primary purpose is to facilitate the distribution
of software applications and games for use on Android
devices outside of the Market” to “any Product which
has a purpose...”. Amazon accommodated Google’s
new policy (A21), releasing a more limited “Amazon
Shopping App” between September 25 and December
11, 2014, and issued a statement saying (as quoted in
Android Police on December 11, 2014): “Google sub-
sequently changed their Developer DistributionAgree-
ment on September 25. As a result, we removed the app
from Google Play and published the Amazon Shop-
ping app.”

ODP Governance Through Boundary Resources
and Conditions of Platform Forking
To understand how platform governance decisions
affect conditions of platform forking, we next focus on
the boundary resources, which are the practical gov-
ernance means. Overall, our analysis identified 16 dis-
tinct boundary resources that served five distinct func-
tions (for a full list, see Appendix A). Earlier research
has identified resourcing and securing as two generic
functions for boundary resources (Ghazawneh and
Henfridsson 2013). Based on our analysis, we further
decompose resourcing into four more specific func-
tions: define openness, facilitate, loosen couplings, and cap-
ture value. Here we term securing as control. Note that
one boundary resource may serve several functions.
Next, we review the boundary resources that we iden-
tified in the Android platform with respect to these
functions and show how the host’s choices with regard
to openness and control defined the condition for plat-
form forking.
Boundary resources are primary means that define

the level of openness, i.e., they open up specific parts
of the codebase or specific interfaces within the plat-
form. Under access openness, Android’s APIs offer a
set of dedicated interfaces that can be used by app
developers. Furthermore, Google has made Android
open to potential third-party app stores. To this end, it
comes with the Android Package (APK) format and a
manifest specification that defines the protocols for dis-
tributing Android apps through an app store. As to the
second form of openness, i.e., resource openness, the

open-source license attached to the code forms the pri-
mary boundary resource. It defines the rights related
to the use of the open-sourced code. For AOSP, Google
has chosen the Apache license. The choice of a specific
open-source license has crucial strategic consequences
for the ODP. By choosing a reciprocal copyleft license,
such as a General Public License (GPL) or a “Lesser”
GPL (LGPL), instead of a permissive license, such as
Apache, MIT or BSD, the platform owner can force
license beneficiaries to share their modifications and
improvements to the source code (West and O’Mahony
2008). In the ODP context, complements that link to
the platform core through APIs add another layer of
complexity to the licensing. For example, GPL’s “viral-
ity” feature may, under some conditions, enforce the
complements to be opened as well. Weaker reciprocal
licenses, such as LGPL, restrict enforcement solely to
the modifications made to the open-sourced code and
explicitly exclude software that links through APIs. As
evidence of the uncertainty about complements’ treat-
ment under GPL, Linus Torvalds states in the copy-
right notice for the Linux kernel: “This copyright does
not cover user programs that use kernel services by
normal system calls—this is merely considered nor-
mal use of the kernel, and does *not* fall under the
heading of ‘derivedwork.’ ” Google probably chose the
permissive Apache license due to uncertainty about
complements’ future treatment and to allow its alliance
partners to keep enhancements proprietary, thereby
increasing their interest in investing in Android.

Apart frommere opening, boundary resources facil-
itate complementors’ work, loosen couplings between
platform modules, and are involved in value cap-
ture. As to facilitation, Android comes with an SDK
that facilitates app development and provides an app
store for distributing andmonetizing apps onAndroid.
In addition, Android has a client-library bound-
ary resource called Google Play Services, which is
intended to address Android’s version-fragmentation
problem by facilitating more frequent Google service
and API updates independent of the rigid operating-
system releases. This client library also loosens cou-
plings, in this case, between the OS and APIs. Sim-
ilarly, the API and runtime environment boundary
resources loosen couplings between the OS and apps,
whereas HAL provides this function between the OS
and the hardware. Furthermore, because Google Play
Services wrap4 the APIs and their proprietary client-
side implementations, it has, over time, become a
critical boundary resource for Google’s value-capture
logic. All user data powering Google’s search and ad
business flow through them. Likewise, Android’s app
store is another boundary resource that serves a value-
capture function.

Boundary resources are also used to control the com-
plementor’s behaviors. Android comes with a devel-
oper distribution agreement that controls developers

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 489

and the distribution of their apps. Correspondingly,
the Compatibility Definition Document (CDD) and
Compatibility Test Suite (CTS) boundary resources are
used to control device complementors. They ensure
that devices remain compatible with the platform and
all of the software that runs on top of it. Google exerts
rigid control through these boundary resources by
requiring devices to pass all of the device tests before
Google services such as Google Maps and Google Play
are licensed for the device. Finally, Google uses the
Mobile Alliance Distribution Agreement (MADA) to
control how its business-critical apps, such as Search
and Google Play, will be placed on Android devices
sold by OHA partners.
How do Google’s choices for access and resource

openness within Android, by using specific boundary
resources, affect the conditions for platform forking?
First, by introducing resource openness, Google has
inevitably enabled platform forkers to leapfrog upfront
investments into the underlying platform technology.
Furthermore, by offering a permissive license, Google
has little visibility and few possibilities for benefiting
from changes made within the forks unless the forker
voluntarily shares them. Second, by simultaneously
introducing an open APK definition and permissive
terms in distribution agreements (i.e., not assuming
exclusivity in app distribution), Google has essentially
granted access for third-party app store providers.
Indeed, Android’s distribution policies for developers
(as of May 25, 2017) states: “You can distribute your
apps through any app marketplace you want or use
multiple marketplaces.”

Although such policies can be justified as a means
of fostering indirect positive network effects, under
these conditions, Google enables developers techni-
cally (through APK) and legally (due to distribution
terms) to submit their apps to any competing fork.
Because the app store boundary resource forms a cen-
tral control point of critical app complementors, to
avoid platform forking, it should not be opened to
third parties and should remain in exclusive host con-
trol. To summarize, simultaneously providing resource
openness and granting relatively wide access openness
for brokering functions creates conditions sufficient for
platform forks to emerge.

Platform-Forking Strategy
Our analysis illustrates varied approaches to achieve
platform forking and reveals how platform forking is
a platform-level strategic action that is distinct from
mere software forking. Forkers orchestrated multi-
ple combined activities to exploit Android’s shared
resources, at core and complement layers, to build a
complete competing substitute platform.

As to the platform core, whose IPR Google has
shared under AOSP, forkers have forked the code and

directly exploited it to avoid most up-front, and, later,
yearly, investments in platform technologies. Jolla has
followed an alternative approach by developing its
own core platform based on the open-source Mer plat-
form. However, to enter the platform business, in addi-
tion to the core, forkers need complementing apps.
Because app complements are shared for distribution
while their IPR remains proprietary, their exploita-
tion is not straightforward and needs to be carried out
indirectly. The CyanogenMOD community solved this
problem by hacking the Google Play app store and the
Google Play Services onwhich apps relied. In so doing,
the community simply enabled all Android apps on
its platform. Amazon and Nokia, which operate as
large legitimate businesses, cannot publicly promote
hacking and have, therefore, had to invent another
approach. They both replaced Google Play with an in-
house-developed app store. To get the actual apps into
their app store, they also meticulously cloned all of the
APIs on which developers for the Android platform
depend and substituted all proprietary implementa-
tions behind theseAPIs. Thesemoves enabled develop-
ers, who developed their original apps for Google Play,
to multi-home them on the competing forked platform.
For example, Amazon and Nokia use Here’s map ser-
vice, which comes with literal copies of Google’s ser-
vice APIs and makes it cost almost nothing for devel-
opers to migrate and multi-home apps to the fork. To
illustrate this point, Here’s documentation (as of May
25, 2017) states: “If you have an application already
utilizing Google Maps V1 or V2, porting is possible
with almost no changes in the code by using the wrap-
per libraries provided with the SDK.” Finally, Xiaomi
adopted a twofold strategy. In the mainland-China
market, with its local app economy, Xiaomi replaced
the APIs and services with local Chinese versions,
whereas in international markets, to secure access to
existing Google services and third-party apps, Xiaomi
struck a licensing deal with Google.

Platform forking can be conceptualized as a pro-
cess in which the forker deploys a sequence of mod-
ular operators generating an alternative, complete
modular platform design. However, platform fork
combines modular operators with the exploitative
activities of forking, cloning, and hacking that use
the host platform’s boundary resources to exploit its
shared resources. Platform-forking conceptualization
shifts the analytical perspective from code level fork-
ing to platform level. In software forking, the code is
branched andmodified, resulting in two separate code-
bases. However, in platform forking, instead of lines
of code, a forker can be viewed as operating on the
modules of the modular layered architecture to pro-
duce a forked platform. To achieve platform-level fork-
ing, a forker still forks individual modules, such as the
platform core that has been open sourced. In addition,

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
490 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

Figure 2. How Amazon Built Its Fire Platform by Forking Android

A

it needs to substitute other modules that are propri-
etary, further forking the layered modular architecture
at the platform level. It also invites ODP host comple-
mentors to fork their modules in the complement lay-
ers. As a complete example of the forking of a platform,
Figure 2 illustrates how Amazon configured the Ama-
zon Fire OS platform by substituting and exploiting
Android’s platform resources. In an orchestrated effort,
Amazon forked the AOSP, substituted Google’s propri-
etarymodules, and ensured that developer-facingAPIs
are an exact clone so that developers can multi-home
their apps on Amazon’s Fire OS platform.
From a strategic perspective, platform forking results

in a separate forked platform stack, competingwith the
ODP host’s entire platform business. Platform forking
can be viewed as an opportunistic strategy for rapid
market entry that permits leapfrogging, avoids heavy
up-front investments, and curtails technical and eco-
nomic risks. Furthermore, platform forking creates a
favorable situation in which complementors can multi-
home their complements on the fork. By doing this,
platform forking helps the forker solve the difficult
chicken-and-egg dilemma faced during platform igni-
tion. Orchestrating apps on your own from scratch is
not easy, as illustrated by the failed Windows Phone
platform backed up byMicrosoft and its vast resources.

Platform forking can also be partial. Among the plat-
form forks, Jolla is an unusual case: It did not exploit
the platform core; instead, it exploited complements
on app and device layers. Android relies on Java tech-
nology, which isolates apps from the underlying plat-
form core. As a result, the apps can be run on any
platform, such as Jolla Sailfish, provided that the plat-
form shares a compatible runtime environment. By
replacing the genuine Android Runtime Environment
(ART) with a substitute obtained from the company
Myriad, Jolla enabled the use of Android apps on its
Sailfish platform. Similar to the idea of cloning APIs,
Jolla has also cloned and portedAndroid’s device inter-
faces (HAL) using available open-source libraries (lib-
hybris and bionic), which provide HAL compatibility
for generic Linux distributions (such as Mer). Using
this approach, any Android manufacturer can use its
existing device design to produce a Sailfish phone, as
Sony has recently done. Jolla exemplifies an alternative
strategy of not forking the platform core but, rather,
of exploiting not just one but multiple complementor
sides of the Android platform.

Defending Against Platform Forking Using
Boundary Resources
The host can actively use boundary resources to de-
fend against platform forks. We identify six ways in

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 491

which Google strategically responded to the emerging
exploitation of its Android platform. First, with regard
to theexploitationof resources shared through resource
openness, Google used the open-source license bound-
ary resources by retracting from openness to close the
further development of the selected parts of the core.
Second, Google used the alliance contract as a bound-
ary resource to bring unfriendly OHA members back
in line. Google also defended itself against exploitation
of the complements shared for distribution through
access openness. The app-store boundary resource was
defended in three ways: by threatening legal action,
by claiming ownership of the service through rebrand-
ing it and strengthening its role in the ecosystem, and
by modifying the developer distribution agreements.
Finally, a client-library boundary resource was intro-
duced tomakeAPI cloningdifficult and to raise barriers
against multi-homing.
In three of the responses, the boundary resources

used had a direct connection to the exploiting events
that prompted the response. For example, when
Xiaomi drew upon the open-source license boundary
resource, Google reacted by using the same bound-
ary resource and moved its development into a closed
source. Similarly, when Amazon threatened to steal
Android’s app-store business, Google increased its
control over this boundary resource. Finally, when
Amazon copied the API boundary resource, Google
increased its control by wrapping it inside a client
library (a new kind of boundary resource). The exec-
utive corroboration of the logic and rationale of
these responses produced mixed results as to their
expected effects and salience. Our interview with a
platform forker’s CTO (chief technology officer) sup-
ported the conclusion that API cloning is harmful, and
that Google’s creation of Google Play Services was a
clever move to defend against it. Some respondents
within the executive poll, however, classified Google’s
responses as a normal means of controlling the ecosys-
tem. Only Google’s sending of a cease-and-desist letter
was classified as a strategic defense against a fork.

Our longitudinal analysis reveals that Google has,
in many ways, been successful in protecting its com-
petitive advantage by curtailing competitive duplica-
tion among most forks. CyanogenMOD was the first
platform fork, but despite its commercialization effort,
it did not succeed. This caused the hacker commu-
nity to resurrect the related codebase into a new Lin-
eageOS moniker. Another largely failed attempt was
Nokia X, which lasted less than a year. Although
Xiaomi has been successful in China, Google has con-
strained its competitive duplication in Western mar-
kets by making it a licensor of its services. Amazon
Fire is the only platform that has maintained success
as a forked platform. Despite Amazon’s less success-
ful smartphone release, the company (as of Novem-
ber 2017), with its Fire platform and tablet, was the

third-largest tablet manufacturer in the world with
10.9% market share.5 As to the duplication of comple-
ments, Amazon Appstore (as of March 2017)6 featured
600,000 apps, whereas Google Play had 2.8 million.

Discussion
Our study contributes to the ongoing research stream
on open-platform strategies and their effects (Boudreau
2010, Eisenmann et al. 2008, Parker and Van Alstyne
2009). Previous research on the topic has followed a
cooperative perspective, which assumes that collabo-
ration between platform participants promotes plat-
form growth and value generation. Exceptions include
Parker and Van Alstyne (2009), who present six chal-
lenges that platformowners face, and Eaton et al. (2015)
and Ghazawneh and Henfridsson (2013), who identify
complementors’ competitive actions that challenge the
host’s control of theplatform’sboundary resources. Pon
et al. (2014) recognize proprietary platforms built using
open platforms, but their focus is on shifts in control
points and not the overall exploitative strategy of plat-
form forking. Our study shifts attention on open plat-
form strategizing from a cooperative to a competitive
perspective and from within a platform ecosystem to
between competing platforms. We theoretically frame
this competition in light of the competitive advantage
literature that has studied interfirm alliance networks
(Lavie 2006), and we adapt it into the ODP context.
We present a resource-based view of an ODP by dif-
ferentiating between two types of shared resources
and boundary resources, and we expose their distinct
role in creating and sustaining competitive advantage.
Competitive advantage is created not only through
the leveraging of network effects for growth but also
through opportunistic and exploitative strategies, such
as platform forking.We also contribute to the platform-
governance literature by revealing how openness that
is too wide and too loosely governed shared resources
render an ODP vulnerable to strategic exploitation. As
to governancemeans, we show not only how boundary
resources are versatile resources for cultivating a mul-
titude of complementors within an ODP but also how
they offermeanswithwhich to defend against exploita-
tion to sustain an ODP’s competitive advantage.
Competitive Advantage of an ODP and
Platform Forking
In line with the relational view of competitive advan-
tage (Dyer and Singh 1998) and with the exten-
sion of the resource-based view to interfirm networks
(Lavie 2006), we note that in the ODP context, com-
petitive advantage is primarily achieved by extract-
ing relational rents. This is by contrast to sticking
with valuable, rare, inimitable, and non-substitutable
(VRIN) resources (Barney 1991) or information sys-
tems (IS) capabilities (Bharadwaj 2000, Wade and
Hulland 2004) as sources of competitive advantage. To
understand competitive advantage in the networked

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
492 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

setting, Lavie (2006) distinguishes between shared
resources and non-shared resources. The focal firm
endows shared resources to the alliance, expecting
that this will generate common benefits. We extend
shared resource conceptualization in the ODP con-
text by suggesting that platform complements, such as
apps, should be viewed as a second type of shared
resources. The above model remains consistent with
the dominant cooperative perspective of platform strat-
egy (e.g., Boudreau 2011, Eisenmann et al. 2006) and
with recent theorization on how competitive advan-
tage relies on complementarities and network effects
(Koch and Windsperger 2017, Sun and Tse 2009).
From this standpoint, our research presents bound-
ary resources, such as an app store and an API, as
means with which to extract appropriated relational rents
(Lavie 2006) from the complementarities of the shared
resources. Furthermore, as APIs are used to collect user
data, boundary resources also play a central role in
extracting internal rents. An example of this is Google’s
use of proprietary machine-learning algorithms in its
advertising business, which relies on data collected
through various platform APIs.
Furthermore, as Lavie (2006) points out, shared

resources can generate unilateral accumulation of
spillover rents, where one party gains private bene-
fits. This is an even greater risk in the ODP context,
where the audience for sharing is larger, the audience
is at arm’s length, and is therefore more difficult for
the platform owner to control. Our study exposes, for
the first time (to our knowledge), how platform forking
by exploiting the host’s shared resources forms a uni-
lateral rent-extraction mechanism that generates neg-
ative outbound-spillover rents for the host and positive
inbound-spillover rents for the forker.Aswithcooperative
rent extraction, boundary resources constitute the pri-
mary target through which the platform fork exploits
the shared resources that the host controls. Instead of
its own boundary resources, a forker relies on use of the
host platform’s boundary resources. Correspondingly,
to counter this move, the host can modify its boundary
resources or create newones to protect against platform
forking.
To summarize, we advance a resource-based view

of an ODP and contribute to the competitive advan-
tage research in two ways. First, we explicate two
types of shared resources for an ODP and expose
their vulnerability to exploitation through an oppor-
tunistic platform forking strategy. Earlier research on
platform competition has assumed that each platform
creates its own resource base, and in line with this
assumption, has suggested platform strategies, such as
platform envelopment (Eisenmann et al. 2011), mar-
ket entry with a higher quality platform (Zhu and
Iansiti 2012), and distinctive positioning (Cennamo
and Santalo 2013). By contrast, platform forking forms
a competitive platform strategy that directly attacks

and diminishes the host platform’s competitive advan-
tage by opportunistically exploiting the platform core
and the complementary resources. Second, we con-
tribute by exposing how boundary resources are criti-
cal in extracting (or inhibiting) all four types of rents,
and are, therefore, a key determinant of an ODP’s com-
petitive advantage. As the parallel success of Google’s
Android and Apple’s iOS in the samemarket illustrate,
balancing between extracting positive and inhibiting
negative rents can be accomplished in many ways.
Apple has maximized internal rents from its propri-
etary resources. By avoiding openness, except while
tapping into critical appropriated relational rents from
app complements, it has protected itself against out-
bound spillover rents. Google, by contrast, following a
more open platform strategy, has sought to maximize
appropriated relational rents but at the same time has
exposed itself to the threat of outbound spillover rents
realized though platform forks.

Our analysis of platform forking as a competitive
strategy provides additional insights for research on
modular designs. Whereas Baldwin and Clark (2000)
concentrate on economizing designs within vertical
organizations by using modular operators, platform
forking and the exploitative bundling of platformmod-
ules can be seen as an extension of the set of modular
operators that operationalize the platform composition
logics of ODPs and their ecosystems. Furthermore, our
study extends past research on forking that has focused
on processes of software forking (Robles andGonzález-
Barahona 2012) and their outcomes, such as fragmen-
tation challenges (Parker and Van Alstyne 2009). Our
study exposes, for the first time (to our knowledge),
platform forking as an exploitative platform-level strat-
egy, where a competing, hostile organization creates a
forked alternative version of the entire platform.

Defending Against Platform Forking Using
Platform Governance
ODP settings are hostile competitive environments
that require hands-on active defending. The host must
actively engage in platform governance to combat the
exploitation of its shared resources. Previous platform-
governance literature has predominantly focused on
the positive outcomes of cultivating complementors
(Wareham et al. 2014) through such means as control
and the division of decision rights (Tiwana 2013). We
expand this view by exposing the competitive threat
posed by platform forking and by identifying its condi-
tions resulting from ODP governance that is too loose.
In terms of governancemeans, we extend the dominant
cooperative perspective of boundary resources (e.g.,
Ghazawneh and Henfridsson 2013) to a fuller articu-
lation of how they can be defensively used to respond
to exploitation. Eaton et al. (2015) show how comple-
mentors often contest platform control, resulting in a
distributed tuning of boundary resources between the

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 493

host and its complementors. Our findings extend this
kind of control mechanism for defending against com-
peting platforms.
Platform forking can happen when the ODP host

grants both access and resource openness and remains
too flexible in governing the access, for example, by
allowing complements to be distributed on any digital
distribution service. In VRIN parlance (Barney 1991), it
is in the host’s best interest to keep its complements rare
in relation to other platforms. Thus, the host must pro-
tect not only its own resources but also the resources
that the complementors share. Although the comple-
ments’ IPR is protected, due to loosened couplings
through API and APK boundary resources, comple-
ments (as black-boxed modules) are easily “trans-
ferrable” and can be multi-homed to a competing com-
patible platform. In addition, although the platform
owner can use isolating mechanisms (Rumelt 1984),
such as withdrawing from openness or mounting a
contractual enforcement, our study suggests that soft-
ware designs, in the form of boundary resources, are
novel means with which to protect the complements.
For example, using a client-library boundary resource
the platform host can speed up its development of
the API boundary resources on which complements
depend, thereby achieving a temporal advantage over
the forker, who must constantly synchronize. Alto-
gether, our research has illustrated six ways to use
boundary resources to combat the competitive actions
of forkers. In line with distributed tuning (Eaton et al.
2015), ensuing competitive interplay between the host
and the forkers occurs over time. Our results illustrate
that, over nineyears, theplatform’s boundary resources
became the constant center of strategic activity involv-
ing the platform host and its forkers. This resonates
with Koch and Windsperger’s (2017, p. 22) claim that
“the higher the degree of digitization, themore the firm
creates competitive advantage by actively shaping the
digital environment.” The strategic interplay between
Google’s Android and its forks highlights the strategic
role of identifying and using specialized and dedicated
digital assets to launch offensive or defensive actions.
We also contribute to the research on the coopera-

tive mechanisms associated with boundary resources.
Whereas previous research has examined the role
of developer complementors (Eaton et al. 2015,
Ghazawneh and Henfridsson 2013), our study posits
boundary resources as an essential component in gov-
erning any complementor’s operations. In the case of
Android, HAL as well as CDD and CTS formed unique
boundary resources for controlling device manu-
facturers. Ghazawneh and Henfridsson (2013) iden-
tify resourcing and securing functions for boundary
resources. Our analysis expands resourcing tomultiple
separate functions. Boundary resources define openness
(for access and resources) and facilitate complementors’
work. Furthermore, boundary resources are not only

used to jointly capture value with complementors but
also act as critical intermediary resources through
which valuable user data can flow to the platform
host. Finally, our findings illustrate how the constant
“digitizing” (Tilson et al. 2010, p. 749) of boundary
resources, such as introducing the runtime environ-
ment and HAL in the case of Android, continually
loosens couplings between the platform stack’s layers,
thus fostering complementors’ activities but at the
same time posing new threats to the platform host.

Managerial Implications
To prevent platform forking, ODP managers must
pay closer attention to how they design boundary
resources. Although firms often seek to maximize the
generative effect of digital resources that are essential
for platform growth, minimizing the effects of weak
points that allow for continued platform forking is
critical. Therefore, it is advisable to design boundary
resources in ways that leave room for maneuvering at
a later time. Preventing platform forking is extremely
tricky because boundary resources aremostly designed
in the initial stages when the entire platform ecosystem
doesnot yet exist andwhen thedesire andneed for igni-
tion are pressing. Hence, additional critical assump-
tions must be made about relevant actors’ likely behav-
iors toward boundary resources when the platform
resources eventually become valuable. For example,
if Google had restricted app distribution on Android
for third-party app stores, Amazon would have been
unable to create a forked platform with its own app
store. To counter exploitation, the host can also use
boundary resources to combat exploiters. Furthermore,
additional boundary resources can be introduced to
control exploitation instead of engaging in resource-
and time-consuming legal interventions. Digital strate-
gizing offers additional benefits, such as rapid deploy-
ment, customizability, and precise targeting.

Finally, due to the strategic importance of bound-
ary resources, their ownership may be contested. The
ongoing legal case of Oracle versus Google illustrates
this (see Menell 2016 for details). So far, the U.S.
Supreme Court has confirmed that the sequence, struc-
ture, and organization (SSO) of a large enough API
(such as Java API) can receive a copyright. Recently, the
U.S. Court of Appeals for the Federal Circuit also ruled
that Google’s reuse of the APIs does not constitute fair-
use and remanded the case to the lower district court to
determine damages. As our findings illustrate, copying
(i.e., cloning) the API is a central operation in platform
forking. For this reason, the final rulings of ongoing
court proceedings are of utmost importance for any
ODP manager and for the future of platform forking.

Conclusions
Overall, our results expose the ODP ecosystem not
only as a cooperative environment but also as a hostile

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
494 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

competitive environment demanding proactive strate-
gizing. The current study has been limited to plat-
form forking as it pertains to the Android platform.
We assume that similar exploitation approaches have
been taken toward other ODPs and will also be taken
in the future as access and resource openness are
increasingly used together as part of platform strate-
gies. We expect the emergence of the Internet of things,
autonomous vehicles, and other embedded digital sys-
tems to form the next fertile battleground for such
activities. In this regard, the growing phenomenon of
sharing and exploiting digital resources in multiple
ways should provide ample opportunities for repli-
cating and refining our findings. Overall, our study
indicates that a more granular model of platforms,
including their various forms of openness, boundary
resources, and shared resources, is required to under-
stand strategic phenomena in today’s digital age.
Although our study has focused on anODP inwhich

software is shared, our generic model should also
apply to ODPs in which the resource being shared
and complemented is data. Furthermore, the concept

Appendix A. Strategic Interplay Between Host and Forks Using Boundary Resources

Boundary
No. Date Strategic action Type resource used

A1 Nov. 5, 2007 OHA announced and Android published (prerelease) BR1, BR3, BR9
A2 Sept. 23, 2008 API, SDK, and Android Market published (official release) BR3, BR8, BR9, BR10
A3 Oct. 20, 2008 HTC Dream/G1, first Android phone released in the U.S.
A4 Nov. 4, 2008 Community published instructions to root HTC Dream/G1

device with Android and installed custom ROM on it
Hack (A3) BR1

A5 Sept. 21, 2009 CyanogenMOD hacked Android Market into its custom ROM Hack BR8
A6 Sept. 24, 2009 Google sent cease-and-desist letter to CyanogenMOD

community
Defend (A5)

A7 May 20, 2010 Android 2.2 Froyo released
A8 Aug. 16, 2010 Xiaomi MIUI commercial fork released Fork BR1
A9 Dec. 6, 2010 Android 2.3 Gingerbread: Google’s new policy of closing source

code became evident as selected AOSP apps were frozen to
Froyo state (A6)

Defend (A8) BR1

A10 July 13, 2011 Xiaomi M1 phone released in China (A8) Fork
A11 Sept. 28, 2011 Amazon Fire: serious challenge to Android in U.S. and

European markets
Fork BR1, BR8

A12 March 6, 2012 Books, music added to Android Market and rebranded as
Google Play

Defend (A11) BR8

A13 Sept. 9, 2012 Amazon announced a new Fire HD tablet with Microsoft Bing
as the default search engine instead of Google Search

Exploit

A14 Sept. 13, 2012 Acer (OHA member) and Alibaba announced forked Aliyun
phone

Fork BR1

A15 Sept. 13, 2012 Google successfully threatened Acer to back off from releasing Defend (A14) BR16
Aliyun phone →Accommodate

A16 Sept. 16, 2012 Amazon announced Map API (a clone of Google Maps) Clone BR3
A17 Sept. 26, 2012 Google released proprietary Google Play Services wrapping

APIs
Defend (A16) BR3, BR7

A18 March 31, 2014 Xiaomi Redmi (int.) announced, with Google services
preinstalled

Accommodate BR7, BR8

A19 Sept. 9, 2014 Amazon released Amazon app (capable of selling Amazon’s
digital content, including forked apps) in Google Play

Exploit BR8, BR11

A20 Sept. 25, 2014 Google prohibited apps in Google Play that sell apps or games Defend BR11
A21 Sept. 25-Dec. 11, 2014 Amazon removed Amazon app and replaced it with a new

Amazon Shopping app that does not include apps or games
Accommodate (A20) BR8, BR11

A22 Dec. 16, 2014 Amazon published updated Maps API v2 Clone BR3

of sharing requires further research. In addition to for-
feiting IPR or handing over possession of a resource,
what are other ways of sharing, i.e., forfeiting the VRIN
properties (Barney 1991) of a digital resource? Con-
sequently, what are distinct ways in which to protect
against the possible exploitation of varied forms of
sharing? We invite further research to elaborate on
and evaluate our model and to advance a more com-
plete resource-based view of competitive advantage for
an ODP. Finally, our study highlights that IS research
rooted in a deeper understanding of digital technolo-
gies’ roles and functions has much to contribute to
research on platform strategies. We hope our initial
exposure to theorizing on the competitive dynamics
of ODPs can grow to a substantial topic in strategic-
management research, andwe invite researchers across
these diverse fields to join us and explore this fascinat-
ing and dynamic topic.

Acknowledgments
This work has greatly benefited from constructive comments
from three anonymous reviewers as well as the special issue’s
guest editors. All faults, however, remain the authors’.

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 495

Appendix B. Boundary Resources and Their Strategic Functions for ODP

Function

Boundary resourcea
Control aspect

 Examples in our
cases

D
ef

in
e

op
en

ne
ss

 BR1: Open-source
license

Defines resource openness for software, for
example, allows third parties to study the software,
contribute improvements, or make their own
derivatives

Choose between
licenses/families to reach
desired effect

ASL 2.0 for
AOSP

BR2: End-user
license agreement
(EULA)

For proprietary software, defines contract between
licensor and purchaser

Fully modifiable Sailfish EULA

L
oo

se
n

co
up

lin
gs

BR3: Application
programming
interface (API)

Grants access openness for app complementors.
Provides generic libraries and services for
developers so that they can focus on the specific
functionality of the app

Extend/remove functionality
from the API. Use API key,
signing, and authentication
mechanisms to restrict access

Location API
Java API

BR4: Hardware
abstraction layer
(HAL)

Grants access for device complementors. It is the
standard interface that device manufacturers need
to implement for the OS

Limit API to ease adaptation Android HAL

BR5: Application
packaging definition

Indirectly grants access for the alternative app store
by providing the specification for distribution of
apps through any channel

Use digital signing for
identification and to integrate
with API key mechanisms

APK and
application
manifest

BR6: Runtime
environment

Loosens the coupling between platform and apps
by running apps in a sandboxed runtime
environment on top of the platform

Build proprietary
implementation/ be compatible
with standard

Android Runtime
(ART)

Fa
ci

lit
at

e

C
ap

tu
re

 v
al

ue

BR7: Client library Bypasses manufacturer-controlled OS updates to
distribute APIs and service updates more
efficiently. A value-capture mechanism for user
data flowing to the platform

Can be made proprietary and
available only for official
platform users

Google Play
Services

BR8: App store Provide a distribution and monetization channel for
complementors and for the platform owner

Keep exclusive, or allow
alternative app stores

Google Play

 BR9: Software
development kit
(SDK)

SDK lowers threshold by providing APIs and
developer tools necessary for building, testing,
and debugging apps for the platform

Restrict access to registered
developers or to specific
development platforms

Android SDK

C
on

tr
ol

BR10: SDK license Defines terms and conditions for using SDK Fully modifiable SDK license

BR11: Distribution
agreement

Govern and control collaboration for distribution of
complements

Fully modifiable Developer
Distribution
Agreement

BR12: Other service
agreements

Govern and control collaboration regarding various
services (including ads, mapping)

Here Terms and
Conditions

BR13: Policy
guidelines

Various policies and guidelines for complementors AdSense program
policies

BR14: Compatibility
definition document
(CDD)

Ensure compatibility among devices, the software
platform, and apps built on top of it

Limit scope to ease up
integration vs. extend to secure

platform unity

Android CDD

BR15: Compatibility
test suite (CTS)

Require passing the test suite to
join the platform.

Android CTS

BR16: Alliance
contract

Ensure and agree on own and other parties’
interests in the alliance

Fully modifiable Android MADA

Description

aWe present boundary resources as generalized complete artifacts. It is also possible to identify each subcomponent, for example, each
clause in the terms and conditions, as separate boundary resources (see Eaton et al. 2015).

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
496 Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s)

Endnotes
1This refers to gaining superuser rights and access within Unix plat-
forms.
2Custom ROM building commonly refers to the practice of replacing
the original system and its firmware (residing in the ROM with a
new, customized version.
3 Interface parity refers to equivalent APIs.
4Essentially, Google Play Services contains the APIs, but the term
“wrap” is used here to highlight the shielding purpose and packing
aspect that make APIs controllable by Google and upgradable as
an APK file. For further details, see https://developers.google.com/
android/guides/overview.
5https://www.idc.com/getdoc.jsp?containerId�prUS43193717.
6https://www.statista.com/statistics/276623/number-of-apps-available
-in-leading-app-stores/.

References
Armstrong M (2006) Competition in two-sided markets. RAND J.

Econom. 37(3):668–691.
Baldwin CY, Clark KB (2000) Design Rules: The Power of Modularity

(MIT Press, Cambridge, MA).
Baldwin CY,Woodard CJ (2008) The architecture of platforms: A uni-

fied view. Working paper, Harvard Business School, Boston.
Baldwin CY, Woodard CJ (2009) The architecture of platforms:

A unified view. Gawer A, ed. Platforms, Markets and Innovation
(Edward Elgar Publishing, Cheltenham, UK) 19–44.

Barnett JM (2011) The host’s dilemma: Strategic forfeiture in plat-
form markets for informational goods. Harvard Law Rev. 124(8):
1863–1938.

Barney J (1991) Firm resources and sustained competitive advantage.
J. Management 17(1):99–120.

Bharadwaj AS (2000) A resource-based perspective on informa-
tion technology capability and firm performance: An empirical
investigation. MIS Quart. 24(1):169–196.

Boudreau K (2010) Open platform strategies and innovation:
Granting access vs. devolving control. Management Sci. 56(10):
1849–1872.

Boudreau KJ (2011) Let a thousand flowers bloom? An early look
at large numbers of software app developers and patterns of
innovation. Organ. Sci. 23(5):1409–1427.

Boudreau KJ, Jeppesen LB (2015) Unpaid crowd complementors:
The platform network effect mirage. Strategic Management J.
36(12):1761–1777.

Bryant A, Charmaz K (2007) The SAGE Handbook of Grounded Theory
(SAGE, London).

Cennamo C, Santalo J (2013) Platform competition: Strategic
trade-offs in platform markets. Strategic Management J. 34(11):
1331–1350.

Dahlander L, Gann DM (2010) How open is innovation? Res. Policy
39(6):699–709.

de Reuver M, Sørensen C, Basole RC (2017) The digital platform:
A research agenda. J. Inform. Tech., https://doi.org/10.1057/
s41265-016-0033-3.

Dyer JH, Singh H (1998) The relational view: Cooperative strategy
and sources of interorganizational competitive advantage. Acad.
Management Rev. 23(4):660–679.

Eaton B, Elauf-Calderwood S, Sørenson C, Yoo Y (2015) Distributed
tuning of boundary resources: The case of Apple’s iOS service
system.MIS Quart. 39(1):217–243.

Eisenmann T, Parker G, Van AlstyneM (2011) Platform envelopment.
Strategic Management J. 32(12):1270–1285.

Eisenmann T, Parker G, Van Alstyne MW (2006) Strategies for two-
sided markets. Harvard Bus. Rev. 84(10):92–101.

Eisenmann TR, Parker G, Van Alstyne M (2008) Opening platforms:
How, when and why?Working paper, Harvard Business School,
Cambridge, MA.

Farrell J, Saloner G (1992) Converters, compatibility, and the control
of interfaces. J. Indust. Econom. 40(1):9–35.

Fleming L, Waguespack DM (2007) Brokerage, boundary spanning,
and leadership in open innovation communities. Organ. Sci.
18(2):165–180.

Gamalielsson J, Lundell B (2014) Sustainability of open source soft-
ware communities beyond a fork: How and why has the Libre-
Office project evolved? J. Systems Software 89:128–145.

Gawer A, Henderson R (2007) Platform owner entry and innova-
tion in complementary markets: Evidence from Intel. J. Econom.
Management Strategy 16(1):1–34.

Ghazawneh A, Henfridsson O (2013) Balancing platform control and
external contribution in third-party development: The bound-
ary resources model. Inform. Systems J. 23(2):173–192.

Karhu K, Tang T, Hämäläinen M (2014) Analyzing competi-
tive and collaborative differences among mobile ecosystems
using abstracted strategy networks. Telematics Informatics 31(2):
319–333.

Koch T, Windsperger J (2017) Seeing through the network: Competi-
tive advantage in the digital economy. J. Organ. Design 6(1):6.

Lavie D (2006) The competitive advantage of interconnected firms:
An extension of the resource-based view. Acad. Management Rev.
31(3):638–658.

Lemley MA, Reese RA (2003) Reducing digital copyright infringe-
ment without restricting innovation. Stan L. Rev. 56:1345.

Lerner J, Tirole J (2002) Some simple economics of open source.
J. Indust. Econom. 50(2):197–234.

March JG (1991) Exploration and exploitation in organizational
learning. Organ. Sci. 2(1):71–87.

Menell PS (2016) API copyrightability bleak house: Unraveling and
repairing the Oracle v. Google jurisdictional mess. Berkeley Tech.
Law J. 31(3):1515–1595.

Nalebuff BJ, Brandenburger AM (1996) Co-Opetition (HarperCollins,
London).

Nyman L, Lindman J (2013) Code forking, governance, and sustain-
ability in open source software. Tech. InnovationManagement Rev.
3(1):7–12.

Nyman L, Mikkonen T, Lindman J, Fougère M (2012) Perspec-
tives on code forking and sustainability in open source soft-
ware. Hammouda I, Lundell B, Mikkonen T, Scacchi W, eds.
Open Source Systems: Long-Term Sustainability, IFIP Adv. Inform.
Comm. Tech., Vol. 378 (Springer, Berlin Heidelberg), 274–279.

Parker G, Van Alstyne M (2009) Six challenges in platform licensing
and open innovation. Working paper, Tulane University, New
Orleans.

Parker GG, Van Alstyne MW (2005) Two-sided network effects:
A theory of information product design.Management Sci. 51(10):
1494–1504.

Pon B, Seppälä T, Kenney M (2014) Android and the demise of oper-
ating system-based power: Firm strategy and platform control
in the post-PC world. Telecomm. Policy 38(11):979–991.

Robles G, González-Barahona JM (2012) A comprehensive study
of software forks: Dates, reasons and outcomes. Hammouda I,
Lundell B, Mikkonen T, Scacchi W, eds. Open Source Systems:
Long-Term Sustainability, IFIPAdv. Inform. Comm. Tech., Vol. 378
(Springer, Berlin Heidelberg), 1–14.

Rochet JC, Tirole J (2003) Platform competition in two-sidedmarkets.
J. Eur. Econom. Assoc. 1(4):990–1029.

Rumelt RP (1984) Toward a strategic theory of the firm. Lamb R,
ed. Competitive Strategic Management (Prentice Hall, Englewood
Cliffs, NJ), 556–570.

Schilling MA (2000) Toward a general modular systems theory and
its application to interfirm product modularity. Acad. Manage-
ment Rev. 25(2):312–334.

Schreieck M, Wiesche M, Krcmar H (2016) Design and gover-
nance of platform ecosystems-key concepts and issues for
future research.Working paper, Technical University ofMunich,
Munich.

Simcoe T, Watson J (2016) Forking, fragmentation and splintering.
Working paper, Boston University, Boston.

Sun M, Tse E (2009) The resource-based view of competitive advan-
tage in two-sided markets. J. Management. Stud. 46(1):45–64.

https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://www.idc.com/getdoc.jsp?containerId=prUS43193717
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1057/s41265-016-0033-3

Karhu, Gustafsson, and Lyytinen: Exploiting and Defending Open Digital Platforms
Information Systems Research, 2018, vol. 29, no. 2, pp. 479–497, ©2018 The Author(s) 497

Tilson D, Lyytinen K, Sørensen C (2010) Research commentary–
Digital infrastructures: The missing IS research agenda. Inform.
Systems Res. 21(4):748–759.

Tilson D, Sørensen C, Lyytinen K (2012) Change and control para-
doxes in mobile infrastructure innovation: The Android and
iOS mobile operating systems cases. Proc. 45th Hawaii Internat.
Conf. Systems Sci. (IEEE Computer Society, Los Alamitos, CA),
1324–1333.

Tiwana A (2013) Platform Ecosystems: Aligning Architecture, Gover-
nance, and Strategy (Morgan Kaufmann, Waltham, MA).

Tiwana A, Konsynski B, Bush AA (2010) Research commentary–
Platform evolution: Coevolution of platform architecture, gov-
ernance, and environmental dynamics. Inform. Systems Res.
21(4):675–687.

Vesa M, Vaara E (2014) Strategic ethnography 2.0: Four methods
for advancing strategy process and practice research. Strategic
Organ. 12(4):288–298.

Vetter GR (2016) Opportunistic free and open source software devel-
opment pathways. Harvard J. Law Tech. 30(1):S167.

Viseur R (2012) Forks impacts and motivations in free and
open source projects. Internat. J. Adv. Comput. Sci. Appl. 3(2):
117–122.

von Krogh G, von Hippel E (2006) The promise of research on open
source software.Management Sci. 52(7):975–983.

Wade M, Hulland J (2004) Review: The resource-based view and
information systems research: Review, extension, and sugges-
tions for future research. MIS Quart. 28(1):107–142.

Wareham J, Fox PB, Cano Giner JL (2014) Technology ecosystem
governance. Organ. Sci. 25(4):1195–1215.

West J (2003) How open is open enough?: Melding proprietary and
open source platform strategies. Res. Policy 32(7):1259–1285.

West J, Bogers M (2014) Leveraging external sources of innovation:
A review of research on open innovation. J. Prod. Innovation
Management 31(4):814–831.

West J, Gallagher S (2006) Challenges of open innovation: The para-
dox of firm investment in open-source software. RDManagement
36(3):319–331.

West J, O’Mahony S (2008) The role of participation architecture in
growing sponsored open source communities. Indust. Innovation
15(2):145–168.

Wheeler D (2015)Why open source software/free software (OSS/FS,
FOSS, or FLOSS)? Look at the Numbers!, https://www
.dwheeler.com/oss_fs_why.html#forking.

Williamson PJ, Meyer AD (2012) Ecosystem advantage: How to suc-
cessfully harness the power of partners. California Management
Rev. 55(1):24–46.

Yin RK (2009) Case Study Research: Design and Methods, 4th ed. (Sage,
Thousand Oaks, CA).

Yoo CS (2016) Open source, modular platforms, and the challenge
of fragmentation. Working paper, University of Pennsylvania,
Philadelphia.

Yoo Y, Henfridsson O, Lyytinen K (2010) Research commentary–The
new organizing logic of digital innovation: An agenda for infor-
mation systems research. Inform. Systems Res. 21(4):724–735.

Yoo Y, Boland RJ, Lyytinen K, Majchrzak A (2012) Organizing for
innovation in the digitized world. Organ. Sci. 23(5):1398–1408.

Zhu F, Iansiti M (2012) Entry into platform-based markets. Strategic
Management J. 33(1):88–106.

https://www.dwheeler.com/oss_fs_why.html#forking
https://www.dwheeler.com/oss_fs_why.html#forking

	Appendix A. Strategic Interplay Between Host and Forks Using Boundary Resources
	Appendix B. Boundary Resources and Their Strategic Functions for ODP

