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Abstract: The concrete realization of topological quantum computing using low-dimensional quasi-
particles, known as anyons, remains one of the important challenges of quantum computing. A
topological quantum computing platform promises to deliver more robust qubits with additional
hardware-level protection against errors that could lead to the desired large-scale quantum computa-
tion. We propose quasicrystal materials as such a natural platform and show that they exhibit anyonic
behavior that can be used for topological quantum computing. Different from anyons, quasicrystals
are already implemented in laboratories. In particular, we study the correspondence between the
fusion Hilbert spaces of the simplest non-abelian anyon, the Fibonacci anyons, and the tiling spaces of
the one-dimensional Fibonacci chain and the two-dimensional Penrose tiling quasicrystals. A concrete
encoding on these tiling spaces of topological quantum information processing is also presented by
making use of inflation and deflation of such tiling spaces. While we outline the theoretical basis for
such a platform, details on the physical implementation remain open.

Keywords: topological quantum computing; anyons; quasicrystals; quasicrystalline codes;
tiling spaces

1. Introduction

While quantum computers have been experimentally realized, obtaining large-scale
fault-tolerant quantum computation still remains a challenge. Since qubits are very sensitive
to the environment, it is necessary to solve the problem of decoherence [1]. Software
algorithms have been proposed by researchers in the field [2–6]. A comparative study with
the pros and cons of various quantum computing models is reviewed in [7]. The reviews
mentioned highlight the difficulty with scalable quantum error corrections and point out the
need for different approaches. A different seminal solution is to add hardware-level error
correction via topological quantum computation (TQC) [8,9]. In particular, non-abelian
anyons can provide universal quantum computation [8]. Theoretically, low-dimensional
anyonic systems are a hallmark topological phase of matter, which could be used for
TQC if a concrete implementation could be achieved. While abelian anyons have been
experimentally realized [10], concrete evidence of non-abelian anyons still remains elusive.
Interestingly, if topological quantum computer hardware can be implemented, additional
software-level error correction can be added [11].

The Chern–Simons theory, when applied to the fractional quantum Hall effect and
lattice models such as the toric code, constitutes theoretical frameworks for using anyons
for TQC [8,9]. These systems support emergent quasiparticle excitations that show anyonic
or fractional statistics. The fusion rules and braid properties of anyons are useful for
implementing TQC. The quasiparticles that encode the topological information define the
structure of the fusion Hilbert space. In the Chern–Simons theory, anyons are classified by
an integer parameter called the level k, which appears in the action of the theory. There
are infinite levels; k = 2 defines Abelian anyons, while greater levels define non-Abelian
anyons. The Fibonacci anyon is the quintessential and simplest non-abelian anyon at
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the level k = 3 [8,9]. For our purposes, the fusion Hilbert space for Fibonacci anyons is
described by the Fibonacci C∗-algebra [12].

Due to the potential of TQC and the experimental difficulty of implementing non-
Abelian anyons, it is worth understanding what forms of TQC are possible in general.
Previously, we co-authored a non-anyonic proposal of TQC from three-dimensional topol-
ogy [13] and discussed their associated character varieties [14]. Here, we study quasicrystals
described by the geometric cut-and-project method [15]. The aim is to show that tiling
spaces associated with quasicrystals exhibit anyonic behavior, which can lead to TQC
implementations. More specifically, we aim to establish lower-dimensional quasicrystals as
a new candidate to implement TQC.

Although crystallographic materials have well-developed theories, mainly Bloch and
Floquet’s theories, these theories do not work properly for the topological aspects of
quasicrystals due to the lack of translational symmetry [16]. Nevertheless, the connection
between lower-dimensional quasicrystals with higher-dimensional lattices allows us to
adapt and to use aspects of the known crystallographic theories considering the subspaces
of the higher-dimensional Hilbert spaces. The physics of aperiodic order is a growing and
active field of research [16–32]. Topological superconductors have been investigated in
quasicrystals, suggesting that they can exhibit topological phases of matter [33–43].

We present a connection between anyons and one- and two-dimensional quasicrystals,
such as the 5-fold Penrose tiling, by the isomorphism between the anyonic fusion Hilbert
space and the subspaces of lattices Hilbert spaces describing quasicrystal tiling spaces.
Both spaces have dimensions that grow with the Fibonacci sequence. A theorem from
functional analysis says that two Hilbert spaces are isomorphic if, and only if, they have
the same dimensions. We propose that these subspaces are fusion Hilbert spaces and
show an isomorphism between the Fibonacci C∗-algebra of Fibonacci anyons and a C∗-
algebra associated with the tiling spaces of quasicrystals. The C∗-algebra of interest allows
for the implementation of representations of the braid group necessary for topological
quantum computing. It is worth mentioning that, within the Bloch theory for periodic
atomic structures, the energy level quantization maps to the periodic point group symmetry.
As with similar approaches that go beyond the periodic structures, e.g., [44], quasicrystal
approaches make use of this by restricting to subspaces of the crystalline structures.

This paper is organized as follows: in Section 2, we review and discuss elements of
anyonic fusion Hilbert spaces and the Fibonacci C∗-algebras to establish the correspondence
with the tiling spaces of quasicrystals. In Section 3, we discuss aspects of information
processing in tiling spaces. We present discussions and implications in Section 4.

2. Correspondence between Anyons and Quasicrystals

The quintessential and simplest non-abelian anyon is the Fibonacci anyon [8,9]. We
will show the isomorphism between anyonic fusion Hilbert spaces and quasicrystalline
Hilbert spaces at the level of the Fibonacci anyons and Fibonacci quasicrystals, namely
the one-dimensional Fibonacci chain and the 5-fold two-dimensional Penrose tiling. The
name Fibonacci in Fibonacci anyons is due the dimensions of their Hilbert spaces being
a well-known Fibonacci number, and, in the case of the mentioned quasicrystals, we will
show that they have the same behavior, justifying the name Fibonacci.

2.1. Fibonacci Anyons and Fibonacci C∗-Algebra

There are different ways to describe anyons, including the Chern–Simons (CS) theory
and lattice Hamiltonian approach [8,9]. For CS theory, it is well known that there is an
additional gauge-invariant term that can be added to the Maxwell or Yang–Mills Lagrangian
in (2 + 1) dimensions. This CS term is topological, as it does not depend on the metric [8,45].
At low temperatures, this term dominates. In the non-abelian case, the action is invariant
under SU(2) ∼= Spin(3) and can be written as a Gauss constraint on a wave function of the
gauge fields.
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In the presence of sources (representations of a Lie algebra), anyonic behavior, such as
fusion and braid dynamics, can be found with sufficient control of the low-temperature
Hamiltonian, Lagrangian, or Gaussian constraints. The degenerate ground state of the
effective theory is associated with the CS sources form the so-called fusion Hilbert space,
which is proposed as a fault-tolerant topological quantum computing substrate. In the case
of Fibonacci anyons, the sources can only be in the two lower-dimensional representations
of SO(3), the spin-0 and spin-1 representations, with the fusion rules

1⊗ 1 = 0⊕ 1

0⊗ 1 = 1

1⊗ 0 = 1. (1)

If we have N spin-1 representations as sources and start to fuse them, they can
build different fusion paths that can lead to either spin-1 or spin-0 representations with
certain probabilities. The different paths to fuse the N spin-1 sources to only one spin-1
or spin-0 source can be seen as states in a fusion Hilbert space HN , where its dimension
grows with the number of original spin-1 sources and is given by the Fibonacci sequence,
((0, 1, )1, 2, 3, 5, 8, 13, . . . , Fib(N + 1)) [46], i.e., HN = CFib(N+1), where Fib(N + 1) is the
N + 1th Fibonacci number.

Rotating one physical source around the other is equivalent to an operation in the
fusion Hilbert space described by the so-called braid operators (higher-dimensional rep-
resentations of the braid group), which leads to non-trivial statistics given the necessary
quantum evolution for topological quantum computation. The explicit construction of
braid operators, B, is given as examples in ([46], Sections 2.4 and 2.5) through the so-called
F-matrices and R-matrices operating in the fusion Hilbert space. For the case of fusing two
anyons into a third one, this process is a five-dimensional space, and the explicit matrices
in a suitable base can be given by

R = diag(e4πi/5, e−3πi/5, e−3πi/5, e4πi/5, e−3πi/5),

F =


1

1
1

φ−1 φ−1/2

φ−1/2 −φ−1

, (2)

with B = FRF−1 and φ = 2 cos(π
5 ) ≈ 1.618, the golden ratio.

More details on Fibonacci anyons are well known and can be found in Ref. [46] and
references therein. Less known is the isomorphism of the fusion Hilbert spaces with
representations of certain C∗-algebras, in particular, the so-called Fibonacci C∗-algebra [12].
In [12], it is shown that the fusion rules determine the data of a Bratteli diagram [47], which
specifies an approximately finite-dimensional (AF) C∗-algebra with a representation on a
Hilbert space, which is isomorphic to the anyonic fusion Hilbert space. An AF C∗-algebra
A is given by a direct limit A = lim−→An of a finite-dimensional C∗-algebra An, where An

is a direct sum of matrix algebras over C, An = ⊕Nn
k=1Mrk (C). Similarly, a Hilbert-space

representation of A, HA, is obtained as a direct limit of a system of finite-dimensional
Hilbert spaces HAn , HAn = ⊕Nn

k=1C
rk . A Bratteli diagram yields a unique C∗-algebra and

allows for a simpler computation of the dimension of the Hilbert-space representations of
this algebra by counting the number of paths to a certain node. For the Fibonacci C∗-algebra,
see ([48], Example III.2.6) and ([12], Section 3.2), for the Bratteli diagram illustration and the
dimension of the Hilbert-space computation. The isomorphism between the representations
of Hilbert spaces and the anyonic-fusion Hilbert spaces is given in ([12], Lemma 3.3), where
the dimensions of Fibonacci anyons and the Fibonacci C∗-algebra both grow with the
Fibonacci sequence.



Symmetry 2022, 14, 1780 4 of 13

2.2. Fibonacci Quasicrystals and the Fibonacci C∗-Algebra

In analogy with the anyonic case, we will provide a physical description of the anyonic
behavior of quasicrystals to allow for concrete physical implementation and then the associ-
ated effective fusion Hilbert space to deal with topological quantum information processing.
It is more common to deal with quasicrystals from the point of view of Bloch theory for
periodic many-body atomic quantum systems, but even within this point of view there are
different implementations. While the quasicrystal literature is fast growing, we mention the
quasicrystalline extension of the Bloch theory in context of the gap-labelling theorem [16]
and the discovery of a few exact solutions for quasicrystal Hamiltonians [17–19,25,28,32].
We also highlight more developments in terms of computations of the spectrum and band
structure [20–24,26,27] and the study of topological properties [33–39]. Finally, quasicrys-
tals have been actively studied in recent years [29–31,40–43,49]. From our understanding,
the different approaches have convergent results, including the self-similar structure of
the energy spectrum, band structure, and topological protected phases. The geometric
cut-and-project method, or its more general form, called model sets, describes this structure.

The starting point is the periodic Bloch theory considering the Schrodinger equation
for a particle over the atomic structure with a periodic potential V(r + R) = V(r) for all
lattice vectors R of a given lattice L. With this setup, the Hamiltonian commutes with the
translation operators, and the Bloch theory diagonalizes both simultaneously. For this, one
introduces the reciprocal lattice L∗ with primitive translation vectors K, where the scalar
product R · K is an integer multiple of 2π. The eigenfunctions are such that k exists as

ψk+K(r + R) = eik·Rψk(r), (3)

in which ψk(r) the Bloch wavefunctions on Rn ×Rn (r in the Voronoi cell V and k in its
dual V∗, also called Brillouin zone). The curves of the spectrum are periodic in a dual
reciprocal space, and the entire band structure is defined by the band structure inside the
first Brillouin zone.

Our idea is to study the Hilbert space of ψ’s satisfying Bloch’s theorem, such that
||ψ||2 < ∞. We then introduce, for each k ∈ V∗, the Hilbert space Hk of the functions u on
Rn, such that

u(r + R) = eik·Ru(r), (4)

and ||u||2 < ∞, with HL = ⊕Hk, and the dimension grows with the number of points on
the lattice. The Hilbert spaces for a particle over an aperiodic potential from a quasicrystal
will be seen as a subspace of the lattice Hilbert space HL, and we will need to review the
cut-and-project method to obtain the quasicrystal from the lattice L.

We consider a cut-and-project scheme (CPS) to be a 3-tuplet G =
(
Rd,Rd′ ,L

)
, where

the parallel space Rd and the perpendicular space Rd′ are real euclidean spaces, L is
the lattice in E = Rd ×Rd′ , and is the embedding space with two natural projections π:
Rd ×Rd′ → Rd and π⊥: Rd ×Rd′ → Rd′ subject to the conditions that π(L) is injective,
and that π⊥(L) is dense in Rd′ . With L = π(L), this scheme has a well-defined map called
the star map ? : L→ Rd′ :

x 7−→ x? := π⊥(π
−1(x)). (5)

For a given CPS G and a window W, quasicrystal point sets (4λ
γ(W)) can be generated

by setting two additional parameters: a shift γ ∈ Rd ×Rd′/Lwith γ⊥ = π⊥(γ) and a scale
parameter λ ∈ R. The projected set

4λ
γ(W) := {x ∈ L | x? ∈ λW + γ⊥} = {π(y) | y ∈ L, π⊥(y) ∈ λW + γ⊥}, (6)

gives the quasicrystal point set.
Another important concept is the tiling of the Euclidean space from the point set.

Consider that a pattern T in Rd (T @ Rd) is a non-empty set of non-empty subsets of
Rd. The elements of T are the fragments of the pattern T . A tiling in Rd is a pattern
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T = {Ti | i ∈ I} @ Rd, where I is a countable index set, and the fragments Ti of T are
non-empty closed sets in Rd subject to the conditions

1. ∪i∈I Ti = Rd,
2. int(Ti) ∩ int(Tj) = Ø for all i 6= j, and
3. Ti is compact and equal to the closure of its interior Ti = int(Ti).

While this is trivial for lattices with unique unit cells, quasicrystals have more than
one unit cell. Multiple quasicrystals with the same number of points N from L projected to
the parallel space can lead to different tilings depending on the shift parameter γ.

The construction above identifies the quasicrystal point set as a subset of the original
lattice in the embedding space and its Hilbert space H4 as a subspace of the lattice Hilbert
space HL. An explicit example is given in ([16], Section 3.2) for the one-dimensional Fi-
bonacci chain derived from the Z2 lattice. This provides access to the physical properties
of quasicrystals, such as their electronic structure. However, the full tiling structure is not
properly captured by these descriptions. To address the different tiling configurations of
quasicrystals, it is standard to consider the associated C∗-algebra structures ([50], Sections
II.3 and V.10) and the notion of tiling spaces [51]. A simple way to look at this is to decom-
pose the quasicrystalline Hilbert space H4 further according to tile configurations. The
one-dimensional Fibonacci chain and the two-dimensional Penrose tiling can be described
by only two tiles. For the Fibonacci chain, they are called long (L) and short (S) edges. For
the Penrose tiling, they can be given either by a fat rhombus (F) and a thin rhombus (T) or
two quadrilaterals called kites and darts.

We can then consider the Hilbert spaces H4L,F and H4S,T associated with the two different
tiles. The frequency of the appearance of these tiles in some tiling is constant and grows
with the Fibonacci sequence, given, at some step, as F(N) for L or F to F(N − 1) for S or T.
From the Bloch theory, the number of states depends on the number of points in the lattice,
which translates to the number of tiles. A lattice trivially has only one tile. For quasicrystals,
the number grows differently depending on the tiling considered. Both the Fibonacci
chain and the Penrose tiling contain two fundamental tiles that grow with the Fibonacci
sequence. As such, the Hilbert spaces H4L,F and H4S,T subspaces of a quasicrystalline Hilbert
space (which are subspaces of lattices Hilbert spaces) have dimensions that grow with
the number of tiles added to the quasicrystal in the same way that the dimensions of the
anyonic fusion Hilbert spaces grow with the addition of anyons. Following the discussion
from the previous section, we conclude that these quasicrystalline subspaces are candidates
for the implementation of representations of the Fibonacci C∗-algebra associated with
Fibonacci anyons. We see the tiles emerging from the Bloch theory playing the same role of
the non-abelian SO(3) sources in the Chern–Simons theory.

Another perspective is to consider the tiling space, which leads to Hilbert spaces that
are isomorphic to the ones considered above with dimensions growing with the Fibonacci
sequence. Basically, we start with a quasicrystal point set4γ and associates a tiling with
it. Then, we can shift the point set by shifting the window in perpendicular space using
γ⊥. Each shift generates a new tiling with the same tiles but with a different configuration,
where these tiles can be seen in both parallel and perpendicular spaces due to the star map.
The difference is that, in parallel space, there is a growth of the quasicrystal with tiles of
fixed length, while, in the perpendicular space, each point added rescales the tiles and
reorganizes the configuration leading to a rescaling of the space, which is usually called
inflation or deflation for the inverse process. Each tiling is a point in the so-called tiling
space, which encodes all possible tilings that can be made with a fixed CPS and window.
To encode this information, we can fix a point x inside the window in the perpendicular
space. As the points are projected, with π⊥(L), we can track the tile type around x after
a new point is projected. Then, we can generate different tilings from different shifts and
track the sequence of tiles around that point x over the different sequence of projections.

Equivalently, one can use only one projection and track the evolution of different
positions inside the window. Each tiling is described by a sequence that encodes the
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evolution of tiles around x in the perpendicular space as the quasicrystals grow in parallel
space. By labelling the Fibonacci-chain and Penrose-tiling letters L or F as the symbols
1, and S or T as 0 we can associate different sequences (xi)n of 0s and 1s with x, where i
indexes the different sequences of projections, and n ∈ N is the level in one sequence of
projections. The only constraint on these sequences, which arises from the geometry of the
CPS with fixed window, is that, if (xi)n = 0, then (xi)n+1 = 1. We illustrate this for the
Fibonacci chain in Figure 1, where x1 = 1111101 . . ., and x2 = 011011 . . ., for example.

Figure 1. The segment of the window in perpendicular space for the Fibonacci chain is shown at each
inflation/deflation level. The L tiles are in red and S tiles in blue. On the horizontal axis, we show
specific Fibonacci-chain configurations, where the number of tiles grows with the Fibonacci sequence.
The sequences (xi)n are given by vertical lines. For example, we show two possible sequences at x1

and x2.

The Penrose tiling is shown in Figure 2, where x1 = 110 . . ., and x2 = 111 . . .
Additionally, an equivalence relation is defined on this space of sequences. Tilings Ti

and Tj with some m, such that (xi)n = (xj)n for n ≥ m, are equivalent. This is presented
in detail in ([50], Sections II.3 and V.10) for the tiling space of the Penrose tiling with the
construction of a C∗-algebra A associated with this space. Remarkably, this algebra is the
same Fibonacci C∗-algebra; the Hilbert-space representations are isomorphic to the anyonic
fusion Hilbert spaces [12]. In the next section, we present detailed aspects of this algebra,
quasicrystal physics interpretations, and topological quantum computation.

Let us consider a concrete solution of a Hamiltonian for a quasicrystal. Despite
the difficulties with the generalization of the Bloch’s and Floquet’s theories, there are a
few known exact solutions for quasicrystal Hamiltonians. Some of the state solutions
of the so-called tight-binding model for the Fibonacci chain and the Penrose tiling are
known [17–19,25,28,32]. These states include zero-energy degenerate states and have a
similar form to the Bloch wave function, Equation (4), given by

ψ(i) = C(i)eκh(i) (7)

where κ ∈ R is a constant, C(i) are local site-dependent periodic functions given the
local amplitudes and h(i) is a non-local height field dependent on the geometry of the
specific tiling. For the Fibonacci chain in Equation (7), the zero-energy state takes the form
ψ(2i) = (−1)ieκh(2i) with κ = ln φ, and the field h(2i) given by

h(i) = ∑
0≤j≤i

B(2j→ 2(j + 1)), (8)

where B(LS) = 1, B(SL) = −1, and B(LL) = 0. For the Penrose tiling, both κ and C(i) are
computed numerically [28], but the ribbon description discussed above allows us to access
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the Fibonacci chain subspaces directly. Note that a flip LS→ SL, such as the the one for the
ribbon Rb in Figure 3, changes the state by a factor of φ−2, ψLS(i) = φ−2ψSL(i).

Figure 2. In (a), we show three inflations tracking two positions x1 = 110 and x2 = 111 over the
inflation levels with the fat rhombus in red and the thin in blue. In (b), we introduce the ribbon
description. The ribbons are constructed by straight lines (smooth for illustration purposes on the
image) going from the center of one tile to the center of an adjacent tile following the Fibonacci rules
on the same level as the inflations. For example, the ribbon Rb (the blue in the nth level) goes over the
following tiles in the three levels shown: TFFT, FTFFTF and FTFTFFTFTF. Note that a ribbon going
over an F in one level will go over an F and T in the next inflation level, and a ribbon going over an S
will always go to an F.

Figure 3. A tile flip that sends ribbons Rb from FTFTFFTFTF to FTFTFTFFTF given a factor of φ−2 on
the associated states. The Ribbon Ra has a change in orientation on the flip position.

3. Quasicrystalline Topological Quantum Information Processing

Following the Bloch theory, a quantum–mechanical quasicrystal is described by a
Hilbert space, which is a subspace of a Hilbert space describing a higher-dimensional
crystal (the lattice L from the previous section). In principle, this gives us a mechanism
to grow a quasicrystal while maintaining the quantum superposition of tilings in a tiling
space. This growth is described by the sequences of 0s and 1s (encoding the different two
tiles in the Fibonacci chain or Penrose tiling) (xi)n, such that, if (xi)n = 0, then (xi)n+1 = 1
and is subject to some equivalence relation, such as the one described in the previous
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section with one associated algebra A. A slightly different, but equivalent way to address
the tiling space is to consider finite sequences (xi)n, n = 1, . . . , N subject to the same rule
and, with a equivalence relation given by (xi)N = (xj)N , construct the algebra A as the
inductive limit of finite-dimensional algebras AN with AN as a direct sum of the matrix
algebras [52]. For the Fibonacci chain and Penrose tiling described by just two tiles, the set
of equivalence classes has only two elements, with the number of both tiles growing with
the Fibonacci sequence (for example L grows with F(N + 1) and S with F(N)), which gives
AN = Mdn

L
⊕Mdn

S
with dn

l = F(N + 1) and dn
S = F(N). The embedding of AN in AN+1 is

given by dn+1
L = dn

L + dn
S and dn+1

S = dn
L. To conduct the inverse process and merge tiles,

one can define a projection at the step N by means of the operation to forget that step,
remaining with sequences with n = 1, . . . , N − 1.

One can then consider projections En acting on the associated Hilbert spaces defined by
AN , such that En maps the Hilbert space Hdn

L
to Hdn−1

L
or subspaces of Hdn

L
associated with

AN with the subspaces of Hdn−1
L

associated with AN−1 [53]. Following ([50], Lemma 5 in
section V.10), we consider a sequence of En orthogonal projections, known as Jones–Wenzl
projections, such that the following relations hold

E2
n = En (9)

EnEmEn = φ−2En, if |n−m| = 1 (10)

EnEm = EmEn, if |n−m| > 1, (11)

where, for more general quasicrystals, one could consider Equation (10) to be EnEmEn =
[2]−2

q En, with the so-called quantum numbers [n]q given by

[n]q =
qn − q−n

q− q−1 (12)

with q = e
πi
r . In the case of Equations (9)–(11), we have q, a fifth root of unity, r = 5, and

we call the algebra AN(q).
In the study of Fibonacci anyons, the Temperley–Lieb algebra with generators Fn is

typically used, such that En = φ−1Fn, see ([8], Section 8.2.2) and [54]. The algebra defined
by the projections En, Equations (9)–(11), is isomorphic to the Fibonacci C∗-algebra of the
Fibonacci anyons and Fibonacci quasicrystals, the proof can be seen by explicitly deriving
its Bratteli diagram [53]. The quasicrystal projections can be used to implement the braid
operations necessary for quantum evolution to implement topological quantum computing.
In the case of anyons, moving one anyon around the other is a non-trivial operation encoded
in the braid group operations on the fusion Hilbert space. For non-abelian anyons, these
operations are shown to be dense in SU(N), with N as the number of anyons in the system
to provide universal quantum computation. The braid group is generated by generators Bn
satisfying the relations

BnB−1
n = B−1

n Bn,

BnBmBn = BmBnBm, if |n−m| = 1

BnBm = BmBn, if |n−m| > 1. (13)

A representation of the braid group can be given from the algebra in Equation (11) by

ρA(Bn) = φAEn + A−1I
ρA(B−1

n ) = φA−1En + AI, (14)

with φ = −A2 − A−2, where unitarity is guaranteed if the projections En are Hermitian. A
contains four solutions, all with |A| = 1. The four solutions are A = e3πi/5, −e3πi/5, e2πi/5,
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and −e2πi/5. Note that the R-matrix for Fibonacci anyons in Equation (2) contains e3πi/5 on
some of the diagonals. With the solution of A provided, one can verify that

ρA(Bn)ρA(B−1
n ) = ρA(B−1

n )ρA(Bn)

ρA(Bn)ρA(Bm)ρA(Bn) = ρA(Bm)ρA(Bn)ρA(Bm) if |n−m| = 1

ρA(Bn)ρA(Bm) = ρA(Bm)ρA(Bn) if |n−m| > 1. (15)

Therefore, the quasicrystal projection operators can be used to construct a representa-
tion of the braid group.

The usual step from quantum computation to topological quantum computation can
now be performed with quasicrystals by finding an embedding e of an N-qubit space
(C2)⊗N into a subspace of the tiling space. The embedding does not need to be efficient,
because it is well known that the braid group can approximate any universal quantum gate
to any desired precision. The computational subspace of the tiling space can be given by
fixing one equivalence class (xi)n, n = 1, . . . , 2N + 1 and i = 1, . . . , d with d the number of
sequences with (xi)2N+1 = 1. We represent this subspace using TN,1 = (xi)n. Finally, to
simulate a quantum circuit, we can have(

C2
)⊗N

→e TN,1

U ↓ ↓ ρA(B)(
C2
)⊗N

→e TN,1. (16)

Explicit matrix representations of ρA(B) can be obtained from the algebra AN(q)
acting on the N-qubit Hilbert space (C2)⊗N , a subspace of the tiling space. Define E(q)
acting on C2 ⊗C2 as [55]

E(q) = [2]−1
q

(
q−1e11 ⊗ e22 + qe22 ⊗ e11 + e12 ⊗ e21 + e21 ⊗ e12

)
(17)

with eij the two-dimensional matrix units and Ei(q) = I⊗ . . .⊗ I⊗ E(q)⊗ . . .⊗ I, where
E(q) acts on the positions i and i + 1 of the tensor product.

For TQC with a quantum–mechanical quasicrystal, suppose that researchers in the
future could have complete control of how the quasicrystal is inflated or deflated. The
number of possible inflation/deflation paths in the tiling space, which gives the Hilbert-
space dimension, is tied to the number of physical tiles, analogous to how the number
of physical anyons define the fusion Hilbert-space dimension. This allows us to obtain
a dictionary between concepts related to Fibonacci anyons and TQC with a quantum-
mechanical quasicrystal. For concreteness and simplicity, consider the Fibonacci chain,
which has two inflation rules

Rule A: {L→ LS, S→ L}
Rule B: {L→ SL, S→ L}. (18)

To clarify, our conventions are that the inflation rules apply an inflation. It can be
verified that the successive application of Rule A seeded by S leads to the reverse of the
chain found by the successive application of Rule B. If n arbitrary combinations of Rule A
and Rule B are applied from the seed, then 2n states can be found. However, these lead
to various duplicate tilings, such that Fib(n + 2) unique tilings are found. For example,
with seed L, for n = 2 we have {{L, SL, LSL}, {L, SL, LLS}, {L, LS, SLL}, and {L, LS, LSL}}
resulting in three unique states {LSL, LLS, SLL}, or, in terms of the (xi), i = 1, 2, 3, describing
the associated tiling space, we have {LSL, LLS, LLL}. The associated Bratteli diagram is
shown in Figure 4, which is equivalent to the Fibonacci anyon diagram [12] and the AN(q)
diagram for the Jones–Wenzl projections [53].
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Figure 4. A Bratteli diagram for the Fibonacci chain (similar for the Penrose tiling with fat (F) and
thin (T) rhombus), where each path, i, to a node gives a xi, and the different inflation levels n are
shown. The number in parentheses is the number of paths to that node at level N, n = 1, . . . , N,
which gives the Hilbert-space dimension for the associated subspace with sequences (xi)N = L or S.

The analogue of an anyonic fusion process is given by the operation to forget the
Nth step in (xi)n, n = 1, . . . , N, leaving the sequences (xi)n with n = 1, . . . , N − 1. This
sends the system from level N to N − 1 or the Hilbert space of dimension from F(n) to
F(n− 1) and is equivalent to a deflation of the physical quasicrystal. Since L is a fixed
length, this operation acting on the Hilbert space associated with the two tiles LS would
lead to L as a deflation, which decreases the length of the chain. When performing the
analogue of braiding in the quasicrystal, one specifies a basis given by inflation/deflation
paths (xi)n and decomposes the projection En in a direct sum of projections acting in
lower-dimensional subspaces. From Equation (14), the subspace acted in by En reaches a
different phase, which relates to A and a rescaling by φ. In usual anyonic systems, the braid
operations involve a basis transformation. This selects two anyons to be fused and applies
an operation to these two anyons, which gives a phase R and then applies an inverse basis
transformation. In quasicrystals, the projection En directly selects the subspace to be acted
on by a phase and rescaling. Table 1 summarizes a dictionary that compares the aspects of
Fibonacci anyons and quantum–mechanical Fibonacci chains for TQC.

Table 1. A dictionary comparing concepts related to Fibonacci anyons and TQC with a quantum–
mechanical Fibonacci chain is provided.

Fibonacci Anyons Quantum Fibonacci Chain

Anyon Tile
0, 1 S, L

d-fold degeneracy # of tiles
Fusion with 1 (anyon destruction) Deflation (tiles merging)

Braid B = FRF−1 ρA(Bn) = AφEn + A−1I

We have already noted that crystallographic theories, mainly Bloch’s and Floquet’s
theories, do not extend directly to quasicrystals due to the lack of translational symmetry.
We also discussed an isomorphism between anyonic and quasicrystalline Hilbert spaces.
In this context, it is tempting to import well-developed techniques from anyonic systems
for applications in quasicrystals to implement TQC. One example is the so-called golden
chain [56], which models Fibonacci anyons in one dimension. The golden chain has a natu-
ral realization in terms of the Fibonacci-chain quasicrystal. The local Hamiltonian Hi acting
on the ith Fibonacci anyon on the chain discussed in [56] is immediately identified with
the projections En, acting on the inflation level n, (x)n of the Fibonacci-chain quasicrystal,
allowing access to the quantum quasicrystal growth and shrinkage. A detailed analysis
of this Hamiltonian (and other anyonic Hamiltonians) in the context of quasicrystals and
their relationship with quasicrystal Hamiltonians could be discussed in future work.
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4. Implications

Conceptually, topological quantum computing is known to have advantages over
standard quantum computing for scaling due to hardware-level error protection. However,
the physical implementation of topological phases of matter is a big challenge. One main
line of research is to implement localized Majorana modes, which can behave as abelian
Ising anyons. This line of research has seen a major setback recently, with a main group of
researchers withdrawing papers that claimed experimental validation of abelian anyons,
in particular the Majorana fermion excitations [57,58]. Additionally, non-abelian anyons
need to be discovered to implement anyonic TQC. This opens the opportunity for new
approaches to topological quantum computing through the discovery of new hardware
platforms that can support the anyonic quantum information processing.

In this work, we investigated lower-dimensional quasicrystals as a platform for TQC.
In summary, we showed that quasicrystals exhibit anyonic behavior and that its tiling spaces
can encode topological quantum information processing. Consider two key ingredients.
First, note that the fusion Hilbert-space representations of the C∗-algebras associated
with anyonic systems possess a growing dimension equal to the tiling Hilbert spaces of
quasicrystals, which can be demonstrated through Bratteli diagram constructions. Second,
topological quantum information can be processed by finding a suitable computational
subspace of the tiling spaces where the necessary operations such as the braid group
transformations can be implemented, for example, using the explicit representations of the
projection’s Equation (17). A dictionary comparing information processing with Fibonacci
anyons and quantum-mechanical Fibonacci chain was provided in Table 1.

The novelty of our work is the proposal of quasicrystal materials as a natural platform
for topological quantum computing. These materials exhibit aperiodic and topological
order, and they are already implemented in laboratories around the world. More difficult
is the manipulation of the topological properties of tiling spaces of quasicrystals required
for the task of quantum information processing, to which our work adds further theoretical
understanding. A complete proposal for concrete experimental implementation remains
an open problem. One idea is to use graphene etching with an inner quasicrystal layer to
create the circuit connections, where inflation could be implemented by disconnecting a lot
of connections along the chain in line with recent advances in the field [59–62].
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44. Zhang, Y.; Liu, X.; Belić, M.R.; Zhong, W.; Zhang, Y.; Xiao, M. Propagation Dynamics of a Light Beam in a Fractional Schrödinger

Equation. Phys. Rev. Lett. 2015, 115, 180403. [CrossRef]
45. Elitzur, S.; Moore, G.W.; Schwimmer, A.; Seiberg, N. Remarks on the Canonical Quantization of the Chern–Simons-Witten Theory.

Nucl. Phys. B 1989, 326, 108–134. [CrossRef]
46. Trebst, S.; Troyer, M.; Wang, Z.; Ludwig, A.W.W. A Short Introduction to Fibonacci Anyon Models. Prog. Theor. Phys. Suppl. 2008,

176, 384–407. [CrossRef]
47. Bratteli, O. Inductive limits of finite-dimensional C∗-algebras. Trans. Am. Math. Soc. 1972, 171, 195–234. [CrossRef]
48. Davidson, K.R. C∗-Algebras by Example; Fields Institute Monographs; Fields Institute for Research in Mathematical Sciences:

Toronto, ON, Canada, 1996; ISSN 1069-5273.
49. Hannaford, P.; Sacha, K. Condensed matter physics in big discrete time crystals. AAPPS Bull. 2022, 32, 12. [CrossRef]
50. Connes, A. Non-Commutative Geometry; Academic Press: Boston, MA, USA, 1994.
51. Sadun, L. Tilings, tiling spaces and topology. Philos. Mag. 2006, 86, 875–881. [CrossRef]
52. Tasnadi, T. Penrose Tilings, Chaotic Dynamical Systems and Algebraic K-Theory. arXiv 2002, arXiv:math-ph/0204022.
53. Jones, V.F.R. Index for Subfactors. Invent. Math. 1983, 72, 1–26. Available online: http://eudml.org/doc/143011 (accessed on

1 January 2022). [CrossRef]
54. Kauffman, L.H.; Lomonaco, S.J. Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum

Inf. Process. 2018, 17, 201. [CrossRef]
55. Goodman, F.M.; Wenzl, H. The Temperley-Lieb algebra at roots of unity. Pac. J. Math. 1993, 161, 307–334. [CrossRef]
56. Feiguin, A.; Trebst, S.; Ludwig, A.W.W.; Troyer, M.; Kitaev, A.; Wang, A.; Freedman, M.H. Interacting Anyons in Topological

Quantum Liquids: The Golden Chain. Phys. Rev. Lett. 2007, 98, 160409. [CrossRef]
57. Zhang, H.; Liu, C.X.; Gazibegovic, S.; Xu, D.; Logan, J.A.; Wang, G.; van Loo, N.; Bommer, J.D.; de Moor, M.W.; Car, D.; et al.

Retraction Note: Quantized Majorana conductance. Nature 2021, 591, E30. [CrossRef]
58. Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S.C.; Logan, J.A.; De Moor, M.W.; Cassidy, M.C.; Schmits, R.; Xu, D.; Wang, G.; et al.

RETRACTED ARTICLE: Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434–438. [CrossRef]
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