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Abstract. Visual relationship detection targets on predicting categories
of predicates and object pairs, and also locating the object pairs. Rec-
ognizing the relationships between individual objects is important for
describing visual scenes in static images. In this paper, we propose a novel
end-to-end framework on the visual relationship detection task. First, we
design a spatial attention model for specializing predicate features. Com-
pared to a normal ROI-pooling layer, this structure significantly improves
Predicate Classification performance. Second, for extracting relative spa-
tial configuration, we propose to map simple geometric representations to
a high dimension, which boosts relationship detection accuracy. Third,
we implement a feature embedding model with a bi-directional RNN
which considers subject, predicate and object as a time sequence. We
evaluate our method on three tasks. The experiments demonstrate that
our method achieves competitive results compared to state-of-the-art
methods.

1 Introduction

In recent years, deep learning technology has achieved great success in computer
vision tasks, such as object detection techniques [13,26,27], pose estimation [32],
tracking [10], AI games [1,29]. However, visual scene understanding remains open
challenging tasks. Particularly, recognizing the relationships between objects is
important for describing visual scenes in static images. It provides rich informa-
tion for other visual tasks, such as Visual Turing Test [9]. Reasoning about the
pair-wise interactions between objects is a visual-language task which builds the
connection between visual images and human natural languages. A visual rela-
tionship is generally defined as two interacting objects combined together via a
predicate, as illustrated in Fig. 1. The interacting objects are divided into subject

and object. Following the definition in [20], we represent the visual relationship
as a triplet <subject, predicate, object>.

Traditional methods [6,28] consider this problem as a pure classification task
which treats the combination of <subject, predicate, object> as a single cate-
gory. Due to a large number of different possible combinations, such method
requires a huge amount of training samples. It is difficult to collect enough sam-
ples of phrase combinations for training a reliable model, especially the unusual
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(a) object detection (b) visual relationship detection

Fig. 1. The ground truth of visual relationship detection for a given image. With the
localized objects, relationships of pair-wise objects are represented.

phrases which might appear rarely in images (i.e. long-tail problem). For exam-
ple, the phrase <man, ride, horse> is usual but combination <kid, ride, dog>
is rare in the dataset. Another approach is to separately detect the object and
predicate classes, which treats predicates as individual categories [4,20,37]. Our
approach adopts such a strategy to reduce the dimensional complexity and avoid
the long-tail problem caused by unusual phrases. Objects and predicates provide
supplementary information to each other [17,18,34]. To leverage the dependen-
cies, many recent works [17,18,34] propose to recognize objects and predicate
jointly.

Based on the observation that objects and predicates affect each other, we
propose a feature embedding model in our network. In the relationship triplet
<subject, predicate, object>, as shown in Fig. 1, each element has semantic corre-
lations with the next one. For each relationship triplet, we consider that the three
elements are in a time sequence. The feature embedding process encodes the
semantic correlations among three branches. Since the recurrent neural network
is mostly adopted to deal with time sequence input, we apply a bi-directional
RNN to compute the feature embedding for three branches. By observing the
previous approaches, we find two problems: (1) Current strategies group the
detected objects or object proposals to object pairs and use the union bounding
boxes to extract union features, which are leveraged as the fundamental fea-
ture expressions of predicates [4,17,18,20,34]. Since union features are extracted
using the union boxes of object pairs, background information is also included.
The background information may distract the model’s attention from the inter-
action between two objects, since the background is normally very complex and
contains noise. However, the background also provides local contextual infor-
mation which is useful for understanding interactions. Motivated by this obser-
vation, we propose a spatial attention model for specializing predicate features.
(2) Spatial information, including relative locations and relative scales, is impor-
tant for understanding the interactions between objects. However, using simple
geometric representations [22,37,40] is not so effective. To solve this problem,
we propose a new spatial feature extraction structure which maps the simple
geometric representation to a high dimension.
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Contributions. In this work, we propose a novel end-to-end model to incor-
porate attention and semantic correlations for visual relationship detection.
The novelties of our work are: (1) We design a spatial attention model which
constrains the network focusing more on the most important regions. (2) We
introduce a new spatial feature extraction model which significantly improves
the detection performance. (3) We implement a feature embedding model which
encodes the semantic correlations among subject, predicate and object branches.
Experimental results display that our method achieves competitive performance,
compared to state-of-the-art methods.

2 Related Work

Over the decade, a number of researches [4,17,18,35,37–39] investigate the visual
relationship detection task. In earlier days, efforts focused on learning specific
relationships, e.g. spatial relations [3,15], physical support relations [12,36] or
actions [8,25,33]. Many previous works proposed to use the visual relationship
as a complementary tool for other visual tasks, such as image retrieval [21,24],
image captioning [2,7] and scene understanding [11,41]. Fundamentally different
from these previous works, our approach targets on generic visual relationship
detection. Our method extends the variety of relationships. It can not only rec-
ognize positional relations (“above”) and verbs (“walk on”) but also prepositions
(“with”) and functional relations (“of”).

Contemporary works pay more attention to recognize more general rela-
tionships. In [5,6,28], the visual task is considered as a pure classification task
through recognizing visual phrases, which are the alliance of object and predicate
categories. Such methods face difficulties because of the large combination space
and long-tail problem. Another strategy is to implement object and predicate
classifiers separately [19,23,39,40]. Lu et al. leverage semantic word embeddings
(i.e. language priors) for recognizing predicates in [20]. Dai et al. [4] introduce
Deep Relational Network for exploring statistical relations between object and
predicate categories. Yu et al. [37] leverage both internal and external linguistic
knowledge to regularize training process. In [17], Li et al. converge several sub-
graphs whose feature information was exchanged with object features. In [35],
Yang et al. exploit the contextual information between objects and predicates
through Graph Convolutional Network. Zellers et al. [38] analyze repeated sub-
structures in the dataset and design to let the model learn from scene graph
priors.

The most relevant works are [18,34], which propose to jointly detect objects
and pair-wise relationships. In [34], messages are passed iteratively between
object and predicate branches through the construction of the scene graph.
In [18], Li et al. additionally introduce new convolutional features (i.e. region
captions), features of three semantic branches are jointly refined. Different from
their methods, we propose a feature embedding model which encodes the time
dependencies and semantic correlations between objects and relationships. We
also design a spatial attention model which constrains a higher attention for
predicates. Experiments show that our proposed method performs better.
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3 Framework

Fig. 2. An overview of our proposed framework.

An overview of our proposed framework is illustrated in Fig. 2. It contains
object and predicate branches, where the object branch is divided into subject

and object branch. Our overall network consists of five parts: (1) Object proposal
generation. It aims to generate Region of Interests for objects and predicates.
(2) Visual feature extraction. It targets on obtaining feature vectors based on
obtained convolutional feature maps. (3) Spatial configurations. In addition to
visual feature information, we also extract relative spatial information. (4) Fea-
ture embedding. Feature vectors of parallel branches are fused to generate an
embedded feature vector, which indicates the semantic correlations of subject,
predicate and object. (5) Final classification. Categories of subject, predicate and
object are predicted, which are the final outputs of our network. In the following,
we describe the involved parts in more detail.

3.1 Object Proposal Generation

The input of our entire network is an original image without any preprocessing.
The foundation of visual relationship detection is object recognition. Therefore,
we remove the last three fully connected layers and the last max pooling layer of
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VGG-16 [30], and use 13 convolutional layers to generate convolutional feature
map X ∈ R

W×H×K , where K is the channel size. Then we apply the Region
Proposal Network [27] to generate object ROIs (Region of Interests) [17,18]. We
randomly group the obtained object proposals into object pairs. If we retain N

object proposals from RPN, in this step we group them into N × (N − 1) object
pairs, which are considered as predicate proposals in the following detection
procedure. We split the object proposals into two subsets, i.e. subject and object

proposals. These two subsets share the same layers and the same parameters.

3.2 Visual Feature Extraction

For different branches in our network, we require their corresponding features.
For subject and object branches, we feed the shared convolutional feature map
and the generated object proposals to a ROI-pooling layer. We acquire the subject

and object visual feature vectors of size 512 × 7 × 7 and flatten them. Through
two 512-dimensional FC layers, we obtain 512-dimensional subject and object

visual feature vectors.
A different feature specialization structure is implemented for the predicate

branch. The grouped object pairs, i.e. predicate ROIs, contain background infor-
mation. The most important parts of each predicate ROI are the object parts
which form the specific predicate ROI. On the one hand, the background infor-
mation may distract the network’s attention on subject and object ; on the other
hand, it may be the supplemental information for predicate branch. So we wish
to strengthen the information of object parts and also weaken the background
information. In [16], Laskar et al. propose a model which combines background
information and object proposals’ features in a single feature representation for
image retrieval task. Motivated by this observation, we propose a spatial atten-
tion model for predicate branch in our visual relationship detection task.

Spatial Attention Mechanism. We develop the spatial attention model for
specializing predicate features. The grouped object pair, i.e. the predicate ROI
Rpr is mapped to the convolutional feature map X ∈ R

W×H×K . The mapped
predicate ROI is represented as R

′
pr ∈ R

Wpr×Hpr . We define an attention map

A ∈ R
Wpr×Hpr . This attention map is computed for all the K channels. The two

mapped objects, which are employed to form predicate ROI, are denoted as R
′
s

and R
′
o. For each spatial position p on attention map A:

Ap =

{

1, if p ∈ R
′
s ∪ R

′
o

Mp, if p ∈ R
′
pr and p /∈ R

′
s ∪ R

′
o

(1)

p ∈ R
′
s ∪ R

′
o denotes that the location point p lies inside the mapped subject

ROI R
′
s or object ROI R

′
o. p ∈ R

′
pr and p /∈ R

′
s ∪ R

′
o means that p lies in the

background region of mapped predicate ROI R
′
pr. The saliency map M is defined

as:

Mp =
K

∑

k=1

Xk,p, for p ∈ R
′
pr (2)
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where Xk ∈ X, k = 1...K. We compute the max-normalization to ensure Mp ∈

[0, 1]. For each Xk ∈ X, activation occurs:

X̃k,p =

{

ApXk,p, if p ∈ R
′
s ∪ R

′
o

g(Ap)Xk,p, if p ∈ R
′
pr and p /∈ R

′
s ∪ R

′
o

(3)

The applied g(·) function is:

g(a) = λ1 + λ2a
φ (4)

Constants λ1, λ2 ∈ (0, 1) are selected to satisfy the constraint g(·) < 1.
Through this method, for each predicate ROI, the feature values of object

pairs are activated by 1. The background information on predicate ROI is acti-
vated by values smaller than 1. So the effectiveness of background information
for predicate branch is weakened.

After the computation with the attention map, max-pooling is implemented
for predicate ROI as in normal ROI-pooling operation. The following process is
the same as for subject and object branch, we use another two 512-dimensional
FC layers for obtaining predicate visual feature vector.

3.3 Spatial Configurations

Previous attempts have proven that relative spatial configuration is impor-
tant to the visual relationship detection task. We implement and compare two
approaches for extracting spatial features.

Dual Mask. For each object pair, we crop the subject bounding box on the
original image and define a binary mask for subject, where the pixels inside this
bounding box are set to 1 and the others are 0. We perform the same process
for the object bounding box, too. The two binary masks for subject and object

are down-sampled and stacked to form the dual mask MD ∈ R
32×32×2. Through

three convolutional layers and an FC layer, we obtain the predicate spatial fea-
ture vector. We concatenate this spatial feature vector with the predicate visual
feature vector obtained from spatial attention model. The concatenated feature
vector passes through a 512-dimensional FC layer and we obtain the new predi-

cate feature.

Mapping Geometric Representation to a High Dimension. In another
method, we first use 6-dimensional, 8-dimensional, and 6-dimensional vectors
to express spatial information for three branches and then map the location
information to a high dimension. From the object detector, we obtain subject

os = [xs, ys, ws, hs], object oo = [xo, yo, wo, ho] and also predicate bounding boxes
opr = [xpr, ypr, wpr, hpr]. For subject, the geometric representation is:

[

xs − xo

wo

,
ys − yo

ho

, log
ws

wo

, log
hs

ho

, xs,central, ys,central

]

(5)
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where [xs,central, ys,central] is the central point coordinate of the subject bounding
box. xs−xo

wo
and ys−yo

ho
encode the normalized translation between subject and

object bounding box. log ws

wo
and log hs

ho
represent the weight and height ratio of

two boxes.
For object, the representation is:

[

xo − xs

ws

,
yo − ys

hs

, log
wo

ws

, log
ho

hs

, xo,central, yo,central

]

(6)

And for predicate branch:

[

xs − xpr

wpr

,
ys − ypr

hpr

, log
ws

wpr

, log
hs

hpr

,
xo − xpr

wpr

,
yo − ypr

hpr

, log
wo

wpr

, log
ho

hpr

]

(7)

All three geometric representations are embedded in a high dimension. Sine
and cosine calculations with different wavelengths [31] are calculated to compute
the embedding:

E(g,2i) = sin

(

g

10000
2i
D

)

, i = 0, ...,

(

D

2
− 1

)

, i ∈ N (8)

E(g,2i+1) = cos

(

g

10000
2i+1

D

)

, i = 0, ...,

(

D

2
− 1

)

, i ∈ N (9)

where E denotes the embedded features in high dimension. g means the current
spatial representation. D is the dimension of this mapping model and we select
D = 32.

After the embedding process, we concatenate the spatial feature vectors
respectively with the subject, predicate, and object visual feature vectors. We
use one 512-dimensional FC layer for subject and object branches, and another
512-dimensional FC layer for predicate branch, to obtain new feature vectors for
these three branches.

3.4 Feature Embedding

Information for objects and relationships is correlated. Through the iterative
message processing among different branches, prediction performances for three
branches will all be improved. Motivated by this thought, we add a feature
embedding architecture after our feature extraction structure.

In our feature embedding model, we consider subject, predicate and object

features as a time sequence. We apply the bi-directional RNN to compute the
feature embedding for three branches. Our bi-RNN network accepts subject fea-
ture as the input of a sequence at the first time point t1. Predicate feature is the
input at the second time point t2 of the time sequence and object feature the
input at the third time point t3. For our visual relationship detection task, the
order of input features is really important for the final predictions. We take the
hidden states in the forward and backward directions at the last time point, i.e.
the third time point, as the embedded feature. It embeds the time dependency
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Fig. 3. Feature embedding model with a bi-directional recurrent neural network. We
take the hidden states at the last time point as the embedded feature and then con-
catenate it respectively with subject, predicate and object features obtained from the
third step.

of three branches. We concatenate this time-sequence-based embedded feature
respectively with the previous subject, predicate and object features. The con-
catenated features are directly used for the final classification task. The feature
embedding procedure using Bi-RNN is illustrated in Fig. 3.

4 Experiments

4.1 Implementation Details

Model Details. We initialize our model by a pre-trained VGG-16 [30] network
on ImageNet. Instead of using original 4096, we employ 512 neurons in the fully
connected layers, and the weights are initialized using the weights of the pre-
trained model. The other parameters are initialized randomly.

Training Details. At first, we train the Region Proposal Network. Then we
train the complete network with a mini-batch which contains only one image.
After RPN, we use NMS with a threshold of 0.7 and keep at most 2000 object
proposals (In testing, we set the threshold to 0.3 and keep at most 300 object
proposals). Then we sample 256 object ROIs per image. We sample 512 predicate
ROIs, of which 25% are positive. Our loss is the weighted sum of the cross-
entropy for objects, the cross-entropy for predicates and the smooth L1 loss
for box regression, the ratio is 1:1:0.2. We optimize using SGD with gradient
clipping on GTX 1080, with a learning rate of lr = 0.01 which will be divided
by 10 after every three epochs. The training process stops after 15 epochs and
the running time is about three days.

4.2 Dataset and Evaluation

Dataset. We evaluate our proposed method on the cleansed Visual Genome [14]
dataset. In previous works, there are different ways of data cleaning and dataset
splitting. We use the filtered data from [34] where the most frequent 150 object
and 50 predicate categories are chosen. We follow the train/test dataset splits
in [34], where the training set contains 57723 and the testing set 26223 images.
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Performance Metric. We adopt the same performance metric reported in [20],
i.e. the Top-K recall, or represented as Rec@K. Rec@K denotes the number of
correctly detected relationships in the top K relationship predictions. Following
[20], we apply Rec@50 and Rec@100 for evaluation. We use this metric instead
of using mean average precision mAP because the ground truth annotations
applied for evaluation are incomplete.

Task Settings. We evaluate our methods on three tasks: (1) Predicate Clas-
sification(PredCls): The inputs are the object ground truth boxes and labels
together with the image. We only evaluate the classification performance of pred-

icate in this task. (2) Phrase Recognition(PhrRecog): Taken the image as input
only, the model predicts subject, predicate, object together, and also the union
bounding boxes of object pairs. If the overlap between the predicted union box
and the ground truth box is larger than 0.5, the prediction will be considered
as correct. (3) Relationship Recognition(RelRecog): The input is an image only.
This task targets on localizing object pairs and predicting categories of predicate

together with object pairs. Both two bounding boxes are required to have an
overlap larger than 0.5 with ground truth boxes, for correct recognition.

4.3 Ablation Study

In our network, we propose a spatial attention model, a spatial feature extraction
structure which embeds simple geometric representations in a higher dimension,
and a feature embedding model. To evaluate how these parts influence the pre-
dictive performance of our final model, we perform ablation studies. The left
columns of Table 1 display whether the spatial attention model (SA), the spa-
tial feature extraction network (G or DM) and the feature embedding model
(bi-RNN) is used or not.

In Table 1, we find that with the spatial attention model, the prediction per-
formances on three tasks are all improved, especially on Predicate Classification.
With SA, our network focuses more on the most important parts for predicate

branch and it is not distracted by the other regions. This proves the effectiveness
of ‘attention’. The relative spatial configuration boosts prediction performances
significantly. It provides supplementary information to simple visual feature rep-
resentations. Comparing the two spatial feature extraction methods, we find that
DM is slightly better than G. So we adopt DM to distill relative spatial informa-
tion in our final network. Adding the feature embedding model to our network
further improves the prediction performance. The feature embedding model is
implemented to encode the dependencies of different branches. The improvement
indicates that the features of different branches affect each other.

4.4 Comparison with Existing Methods

Previous works use different dataset splitting methods. Since we follow the data
cleaning and train/test splitting in [34], we compare our results with those com-
puted using the same dataset splitting. The comparison is listed in Table 2. In
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Table 1. Ablation studies on our proposed network. We evaluate our method on the
cleansed Visual Genome dataset and report the results for three evaluation tasks. All
numbers in %. ‘SA’ represents the spatial attention model. ‘G’ indicates the spatial
feature extraction structure which maps the geometric representation to a high dimen-
sion. ‘DM’ means the dual mask for extracting spatial features. ‘bi-RNN’ denotes the
feature embedding model with the bi-directional recurrent neural network.

SA G DM bi-RNN PredCls PhrRecog RelRecog

Rec@50 Rec@100 Rec@50 Rec@100 Rec@50 Rec@100

– – – – 29.0 40.0 7.3 10.1 3.0 4.8

� – – – 32.1 44.0 8.3 11.6 3.7 6.0

� � – – 44.7 57.1 11.8 14.9 7.3 10.9

� – � – 45.7 58.3 13.0 16.4 8.2 12.2

– – – � 47.5 60.5 17.4 20.9 10.4 14.1

� – � � 48.9 61.5 17.5 21.1 10.2 13.8

Table 2. Comparison of our proposed framework with the existing methods. The
results of LP [20] are taken from [18]. The results of ISGG [34], MSDN [18], Factorizable
Net [17] are taken from [17]. ours* reports the results where the network is first trained
with ground truth boxes and then fine-tuned using pre-trained RPN.

Comparison PredCls PhrRecog RelRecog

Rec@50 Rec@100 Rec@50 Rec@100 Rec@50 Rec@100

LP [20] 26.6 33.3 10.1 12.6 0.08 0.14

ISGG [34] – – 15.9 19.5 8.2 10.9

MSDN [18] – – 20.0 24.9 10.7 14.2

Factorizable Net [17] – – 22.8 28.6 13.1 16.5

Graph R-CNN [35] 54.2 59.1 – – 11.4 13.7

Ours 48.9 61.5 17.5 21.1 10.2 13.8

Ours* 58.2 60.7 29.4 34.5 19.4 22.7

our original experiments (i.e. ours), we train RPN first and then apply the pre-
trained model to train the entire network. From Table 2 we find that our model
improves the Predicate Classification performance on Rec@100, and achieves
comparative results on the Relationship Recognition, but performs not so well
on the Phrase Recognition task. In an additional experiment (i.e. ours*), we first
train our network using ground truth bounding boxes, and then fine-tune it using
the pre-trained RPN. The object detector (i.e. RPN) is also fine-tuned. In this
way, the performance improves significantly, especially on Phrase Recognition
and Relationship Recognition tasks.
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4.5 Qualitative Results

We show the qualitative results of our final network in Fig. 4, which displays the
correct predictions, and Fig. 5, which illustrates the incorrect ones. The input
of our network is an original image. Our network predicts subject and object

bounding boxes and categories of subject, predicate and object. In the actual
recognition process, the model attempts to find out all the possible relationship
triplets for each image. For illustration in a simpler way, we only display one
primal relationship triplet for one image.

Fig. 4. Qualitative results of our final network. The green and blue bounding boxes
correspond to subjects and objects respectively. (Color figure online)
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In Fig. 4, the green and blue boxes represent predicted subject and object

respectively. It displays the effectiveness of our network on the visual relationship
detection task. However, there are also some false predictions. In the left sub-
image of Fig. 5, shadow is falsely detected as light, this might be caused by the
predicted object bounding box which contains both shadow and light region.
In the middle sub-image of Fig. 5, the correct category for predicate should be
beside since there is no physical contact between man and bike. However, the
network might consider that there exists physical contact between them. In the
right sub-image of Fig. 5, the two glasses are close to each other and their colors
are quite similar, which may lead to the mistake.

Fig. 5. Incorrect results. In the left image, shadow is falsely detected as light. In the
middle one, the correct label for predicate should be beside. And for the right one, the
ground truth label is <glass, next to, glass>.

5 Conclusion

In this work, we propose a new framework for precise visual relationship detec-
tion. The proposed framework learns the predicate features between two objects
by using a spatial attention module. To capture the contextual information
between two objects which are involved in a likely relationship, an RNN module
is utilized, which also integrates the spatial information with the visual fea-
tures together. The framework is trained in an end-to-end fashion. The pro-
posed method outperforms the previous works in the experiments w.r.t. the task
of visual relationship detection. There remain some directions for improvement.
Instead of using spatial attention module, another way is to exclude background
information and only feed the features of two objects to the network. Another
interesting direction is to replace the RNN embedding structure with other effec-
tive modules.
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