
DOCUMENT RESUME

ED 276 762 TM 860 713

AUTHOR Mislevy, Robert J.
TITLE Exploiting Auxiliary Information_about Examinees in

the Estimation of Item Parameters.
INSTITUTION Educational Testing Service, Princeton, N.J.
SPONS AGENCY Office of Naval Reselach, Arlington, Va. Personnel

and Training Research Programs Office.
REPORT NO ETS-RR-86-18-0NR
PUB DATE May 86
CONTRACT N00014-85-1E-0683
NOTE 52p.
PUB TYPE Reports - Research/TechnicaI (143)

EDRS PRICE MFOI/PC03 Plus Postage.
DESCRIPTORS *Bayesian Statistics; *Estimation (Mathematics);

Information Utilization; *Item Analysis; *Latent
Trait Theory; *Mathematical Models; Maximum
Likelihood Statistics; Postsecondary Education;
Student Characteristics; Youth

IDENTIFIERS Armed Services Vocational Aptitude Battery; Profile
of American Youth

ABSTRACT
The precision of item parareter estimates can be

increased by taking advantage of dependencies between the latent
proficiency variable and auxiliary examinee variables such as age,
courses taken, and years o, schooling. Score gains roughly equivalent
to two to six additional item responses can be expected in typical
educational and psychological applications. Empirical Bayes
computational procedure: are pLesented and illustrated with Armed
Services Battery arithmetic reasoning subtest data from the Profile
of American Youth survey. (Author/GDC)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *
***********************************************************************



a.

RR-86-18-0NR

U.S. DEPARTMENTOF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL-RESOURCES INFORMATION
CENTER (ERIC)

This document hos ',fen reproduced- as
recenred_trom the person or organization
originating if
Minor changes hove been mode to improve
reproduction quality

Points of view or opinions stated in theadOCtn
meat- do-not_nOCOSIlanly represent official
OERI position or pollOy

"PEI1MISSION TO REPRODUCE THIS
MA' ERIAL HAS BEEN GRANTED BY

TO THE EDUCATtONAL RESOURCES
INFORMATION CENTER (ERIC)."

EXPLOITING AUXILIARY INFORMATION
ABOUT EXAMINEES IN THE
ESTIMATION OF ITEM PARAMETERS

Robert J. Mislevy

This research was sponsored in part by the
Personnel and Training Research Programs
Psychological Sciences Division Office of Naval
Retearch, under Contract No. N00014-85-K-0683

Contract Authority Identification Number NR
No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

May 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Approved for public release; distribution
unlimited.

BEST COPY AVAILABLE



Unclassified_

SECURITY

REPORT DOCUMENTATION PAGE
la. REPORT SECURITYiCLASSIFICATION
_ Unclassified_

lb: RESTRICTIVE IVaRKINGS

2a: SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AV-..i:.ABILITY OF REPORT

Apptoved Tor i.kiblic_release;
distribution uniimite&

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING_ ORGANIZATION REPORT NUMBER(S)

RR-86-18-0NR
5: MONITORING ORGANIZATION REPORT NUMBER(S)

. NAME OF PERFORMING ORGANIZATION

Educational Testing Service
6b. OFFICE S-YMBOL

(If )applicable
7a. NAME OF MONITORING ORGANIZATION

Personnel and Training Research Programs
Office-of-Naval-Researeh----

,

7b. ADDRESS (City, State, arid ZIP Cncle)

Code 442PT
800_North Quincy Street
ArlingtonVA_Z2_21=7-5-0-00

6c. ADDRFSS (City; State, and Z1PCcide)

Princeton, NJ 08541

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

_Of ficeof _Naval__Reseamh_

8b. OFFICE_SYMBOL
(if applicable)

9: PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

-N00014-85_,K,0683

8c. ADDRESS (City, State, arid ZIP Code)
800 North Quincy Street
Arlington, VA 22217=5000

10.-SOURCE OF FUNDING NUMBER

PROGRAM
_ELEMEIVT NO.
61153N

PROJECT
ND,: _ i _

RR04204

TASK
NO.
RR04204-01

WORK- UNIT
ACCESSION NO.

4421539

11. TITLE (Include Security Classification)
.

Exploiting Collateral information in the Estimation of Item Parameters (Unclassified)

12. -PERSONAL AUTHOR(S)
Mislevy, Robert J.

13a: TYPE OF REPORT : I13b. TIME COVERED
Technical Report-- FROM TO

14. DATE__OF REPORT (rear, MOnth, Day)
May 1986

15. PA E- COUNT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I 113._SUBJECT TERMS (Continue on ret-zrse if necessary and identify by block number)
FIELD GROUP SUB-GROUP EM-aigorithm marginal maximum likelihood

empirical Bayes

19. ABSTRACT (COntinue on reverse if necessary and identify by brock number)

The precision of item parameter-estimates can be increased by taking_advantage of
dependencies between the latent proficiency_variable_and_auxiliary examinee variables such
as-age, courses taken, and years of_schooiing; _Gains roughly equivalent to_two to six
additional item responses_can_be_expected_in typical educational and psychological
applications._ Empirical_Bayes computational procedures are presented, and illustrated
With data from the Prnfile of American Youth survey.

20. DISTRIBUTION/AVAILABILITY OF:ABSTRACT
EJUNCLASSIFIED/UNLIMITED El SAME AS RPT. E. DIX USERS

21. ABSTRACT SECURITY CLASSIFICATION

1

22a. NAME OF RESPONSIBLE INDIVIDUAL
Robert J. Mislevy

22b. TELEPFONE_(Include Area Code)

t6091-/34-1271
22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be useduntil exhausted.
A9 other editions are obsolete: _

SECURITY CIASSIFICATION OF THIS PAGE

Unclassified



Exploiting Auxiliary Information

EXPLOITING AUXILIARY INFORMATION ABOUT EXAMINEES IN THE

ESTIMATION OF ITEM PARAMETERS

Robert J. Mislevy

This research wasisponsored inipart by the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research, under
Contract NO. N00014-85-K-0683

Contract Authority Identification Number
NR No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

May 1986

Reproduction_in whole or_in part is permitted
for any purpose of the United States Goverment.

Approved for publid releage; digtribution
unlimited.

1



Exploiting Auxiliary Information

Abstract

The precision of item parameter estirates can be increased

by taking advantage of dependencies between the latent proficiency

variable and auxiliary examinee variables such as age, courses

taken, and years of schooling. Gens roughly equivalent to two to

six additional item responses can be expected in typical

educational and psychological applications. Empirical Bayes

computational procedures are presented, and illustrated with data

from the -Profile of American Youth survey.

Key words: EMalgorithm, empirical Bayes, marginal maximum

likelihood
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Exploiting Auxiliary Information about Examinees in the

Estimation of Item Parameters

A pervasive problem in item response theory (IRT) ie the

difficulty of simUltaneously estimating large numbers of parameters

from limited data. Even large samples of examinees may not

eliminate the problem when each examinee responds to only a few

items, as in educational assessment and adaptive testing. Certain

improvements are obtained by using hierarchial models along the

lines of Lindley and Smith (1972); treating examinee parameters as a

sample from a common population enhances the stability and precision

of item parameter as well as examinee parameter estimates. This

approach has been applied to IRT by a number of researchers

recently, including Rock and Aitkin (1981) Leonard and Novick

(1985)i Rigdon and Tsutakawa (1982), and Swaminathan and Gifford

(1982).

For the most part, the aforementional writers conSider all

examinees to be members of a single, undifferentiated, population.

This framework instantiates such beliefs as, "if the parameters

of most examinees seem to lie between -3 and +3, then the

parameter of an examinee Who answered both of two hard math items

correctly is probably somewhere between +1.5 to +3.5--even though

his/her maximum likelihood estimate is +do." Additional stability

And preciSion may yet be aChieved if auxiliary information is
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available about examinees, such as educational background or status

on demographic variables. A statement like "the parameter of an

examinee Who answered both of two hard math items correctly and

studied calculus in college is probably between +2.7 and +3.7,"

might result.

This paper addresses the utilization of auxiliary information

about examinees in estimating item parameters. The following

section reviews item parameter estimation When examinee parameters

are known, then when examinee parameters are unknown and nothing

is assumed about them. Attention then turns to the additional

assumptions of first, an undifferentiated population, and second,

a population differentiated With respect to auxiliary variables.

Following this are sections that discuss anticipated gains in

precision, outline computational procedures, and illustrate the

approach With responses to four items from the Arithmetic Knowledge

subtest of the Armed Services Vocational Aptitude Battery.

The Role of Auxiliary Information

The relevance of auxiliary examinee variables to item

parameter estimation is not immediately obvious, since they play

no role in the basic model for item responses Letting xi = (xil,

..., ) represent the responses of examinee i tO n test items and

yi represent values of auxiliary variables such as educational and

demographic statu3, the standard IRT assumption of local



independence states that

t

e y e) - p(xi ,
1
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(I)

where ei is the examinee parameter, 0 = (01, ... 00n are possibly
-

vector-valued item parameterso and the form of p(xijI0) is

specified a priori through the item response model. It follows that

yi would indeed be irrelevant to item parameter estimation if Oi

were known. The likelihood to be maximized with respect to Oi

given the data matrix X = (xi,...,xN) of responses from N examinees

with proficiencies 0 = 01)...00 tnd Auxiliary variableS Y =

... iyN), Would be Simply

L =11 p 0)

.

The maximum likelihood estimate (MLE) 0 would satisfy the

likelihood equations

o = E ati(eiVas

where t1(0) = log p(xi ,0), and the covariance matrix of
OW

(2)

(3)
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estimation error variances for $ could be approximated by the

inverse of the observed information matrix I:

)(

6

(4)

But Equation 1 gives response probabilities conditioned on 0,

and 0 is not krown in praCtind. The problem that must actually be

solved is to maximize the marginal likelihood

P ,B) dye) , (5)

where F(e) is the distribution of the Unknown proficiency of

examinee i. This id At "incotplete data" problem, in the

tereinology Of Dempster, Laird, and Rubin (1977), corresponding

to the "complete data" problem of tatititing Equation 2 when 0
-

is known; Assuting the required integrals exist, the likelihood

equatione bedoine

-1:-
0 E p- (x-) I 191-(0)/aa] dF:(0)

i
i

where
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= f 21(0)dF1(0)

Louis (1982) shows that if Za-k (1971, Chapter 5) regUlarity

conditionsaremetandif-is known for all i, the diagonal

elements of the incompletedata observed information matrix,

namely

i(o) at-(o)
dF1-(8) , (6)E p71(xi )f I(

A

138

cannot exceed the diagonal elements I. In othr words, the
A

precision with with elements of 0 would be estimatetl if 0 were known
011

provides an upper liwit to the preCiSion to be expeCted when 6 is

not known bUt must be inferred.

A similar phenomenon arises in the context of sample survey

analysis When a clustered sampling design is employed to estimate

a mean. If n units are sampled from each of N randomlyselected

clusters, then the squared standard error of the mean, ignoring

finite population correctionS, 1.6 given AS

10
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2 d2
SEM = [1 + - 1)0]

nN

2
where a is the population variance and p is the intraclass

correlaton coefficient indicating Within-Cluster homogeneity' If

the nuMber of clusters (N) is held constant, increasing the sample

size (n) within clusters cannot decrease SEM below 00
2
1N, the

the value of SEM2 obtained when the means of the sampled clusters

are known Ulthout error.

The estimation of 0 in the context of IRT must also deal With

uncertainty from two sources. First is the usual limitation of

having data from only a finite sample of examinees. All other

conditions remaining unchanged, increasing N leads to greater

precision for 0. Second is the liMitation that e remains unknoWn

even for sampled examinees.

reducing uncertainty about 6

This can be achieved through

For a fixed sample of examinees,

A

leads to greater precision for O.

(i) item responses, (ii) assumptions

about the F
i
's and (iii) auxiliary variables related to 6.

de Leeuw and Verhelst (1984) point out that finding maxima in

terms of 0 and of each individual e- in the manner suggested by

Birnbaum (1968) is equivalent tO maximizing Equation 5 when each

Fi concentrates its mass at the single (unknown) point Oi. This

joint maximum likelihood (JMI.) solution utilizes only information

in responses xi from examinee i to reduce uncertainty About ei.

ii
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Alternatively, one may consider the 6's to be identically

distributed, so .11at Fi = F for all i. An auxiliary variable y

is thereby implied for all examinees, an indicator signilcying that

each is a member of the population Whose distribution is specified

by F. Appearing in the literature are treatments that assume a

completely specified form for F (e.g., Bock & Lieberman, 1970),

others that assume parametric forms with unknown parameters a to

be estimated along with 0 (e.g. Zwarts & Veldhuesen, 1985), and

still others that provide nonparametric approximations (

Tjur, 1982). Under the first of these three approaches, the

assumed population distribution combines with xi to produce

p(61IX), which in this case equals p(Oilxi). Under the latter

two approaches, responses from examinees other than examinee i

also play a role in estimating F so that p(6
i
Ix ) *

i

A third alternative, falling between unique, unconstrained

F 's and identical F's, is to posit distributions that depend on

auxiliary variables: that is, F-(e) = F_ (6). Examinees with
Yi

identical y values are considered a random sample from A

population indexed by that particUlar value of yi and these

conditiOnal distributions are allowed to vary with y. A following

section gives details for two special cases, namely a linedr model

and a (quasi) nonparametric mixture approximation.

12



Exploiting Auxiliary Information

10

How Much ant Be Gained?

Several factors contribute to the magnitude Of the precision

gains that can be achieved through population assumptioni and

antiliary variables. Otte factor is the sensitivity of different

model pare:Meter-8 ty missing infOrmationo Mislevy's (1984) analysis

of Bock and Lieberman's (1970) LSAT data showed that datitatet of

the population variance were more substantially improved by

iiiCreatied in teit length than were estimates of the population

meano This might lead one to expect increased infOkMatitin about

tti have More effect on item slopes than on item thresholds in the

context of item parameter estimationo

A second factor is the nature of the joint distkibUtiOn of

antiliary variables with Bo An auxiliary variable adept at

identifying loW profiCiency examinees) for etample, adds

information for those examinees most useful for estimating leiWek

asymptote item parameters.

A third faCtor is the dependence of the estimated information

upon estimated parameter valueso Although a sl-606 OttkaMetek

tay be consistently estimated under both the undifferentiated and

undifferentiated population models, a higher estimate under the

latter may appear less precise. This is because eStiMittéd Standard

errors for slopes are directly proportional to the values of the

slope estiMates, even though true standard errors depend on true

1 3
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slope values and not their estimates. A slope estimated With the

aid of auxiliary variables and obtaining a higher estimate can

thus have a lower true standard error but a higher estimated_

standard error.

Since the same factors determine information gain from both

increased test length and auxiliary variabIesi however, it is

reasonable to consider the contribution of auxiliary variables in

units of additional item responses. In the special case of

dichotomous items, the amount of information conveyed by item

responses alone 1.6

-2pin\v

p_oml -

whea-e P (9) = p(x, = lie) and P(0) = dF-(0)/d0. For examinees

with finite maximum likelihood estimates, Bayes theorem applied_

with a diffuse prior leads to the approximal:lon p(81xi) t N(O,0!)

With d! = i-1. This folloWS by first rescaling the likelihood so

that it integrates to one, then using its mode and curvature at the

mode in a normal approximation.

Consider as an example the two-parameter logistic model,

under which ye) E p(x = 11B,aj,b1) = 1/{1 + expl-1.7ye - bi)1}

14
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The contribution of item j tO nformation about 6 is

2.89ail(6)(1 - Pj(6)1, and the total information from n identical

items for which bl E 6 and al E a is simply 0.7225 na2. Table 1

2
gives values of i and a

x
in this simple case for selected test

lengths and values of a. Note that where I.7a = 1.0 (i. 4,

a = .588, corresponding to an item trait correlation of .7071 in a

standard normal population), four additional items provide a unit

gain in precision. The results provide an indication of the amount

of information about 6 that is employed in MC, estimation of item

parameters. It is apparent that as test length ihcreasesi

information (i.e., precision) increases at a constant rate and the

posterior variance decreases at a decreasing rate.

Insert TaLie 1 about here

The magnitude of gait in information about 0 obtained by

assuming an undifferentiated population (i.e., Fi E F) can be

gauged by extending the approximation employed for Table I. If the

normalized likelihood function induced by xi is again approximated

ad N(6$0-) and if it is further assumed that exaMinee i has been

selected at random from a population in which 6 %, N(p,a ), then

p(9 )

15
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and

Oa- + oa

,!2 -2

-2 -2 -1
E = (a + a )
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Table 2 shows values of the reciprocal of E (i.e., "ptediSiOn")

from various test lengths with identical items with 1.7a = 1 and

Standard normal prior for O. Note that for each test length, a

unit gain in precinion is achieved over the 1.7a = 1 coition of

Table 1. These tabled values fall within the ranges encounteted in

applied work, and suggest that the assumed distribution contributes

about as much information about 0 as four additional items. The

corresponding value for I.7a = .5 is sixteen items, and that fot

1.7a = 1.5 is about one item. Since the absolute contribution is

constant with respect to increasing tent length, the relative

contribution declines.

To gauge the additional impact of differentiating the

population through auxiliary variablen, We may consider numerical

16
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values resulting from a regression model with homoscedastic

residuals' Suppose y values account for (100 x z)-percent of the

vitriance in a population with total variance 1.0, so that

2 2
F-I(0) N(0 ,d-) With d- = 1 - . If the normalized likelihood
y y e

--
induckl bYiteilresponsesisapproximatelyt1(0'a.), thenx

2

p(0 ,yi) N

" -2
00-- + u

y-e ; -2 ,

+kae a x) j
i-2 -2
a* + a

e

Using the same simplified item response model and 'a' value as

Table 20 Table 3 compares values of the inverse of the posterior

14

variance for 0 as determined by (i) item responses aIonei (ii) with

knowledge of membership in an undifferentiated population with unit

variance, and (iii) with the additional knowledge Of auxiliary

variables that account for successively greater proportions of

total variance. Values between 10- and 40-percent, A range typical

of educational and psychological work, increase information

(posterior precision) about 0 by amounts roughly equivalent to one

to three additional item responses. For items with 1.7a = .5,

gains in item units would be doubled; for itemS With 1.'Ya = 1.5,

gains in item units would be halved.

Insert Tables -3 about here

1 7
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The Ignorability of p(y)

This section demonstrates that under reasonable assumptions,

the population distribution of y can be ignored for the purposes of

estimating item parameters 0 and population parameter a.
00

Suppose that the distribution of y in a population of examinees is

governed by the density function gYIY), which depends on possibly

unknown parameters y but not upon item parameters 13 nor on the

parameters a of the conditional distributions f(O ly,a). The

probability of observing the data matrix (X,Y) from A random

sample of N examinees is given by

POW' oci oif

= II I p(xi ,Y ,0 ,a ,Y ge1y1,0,01,Y) P(3'110410') dO

= p(x- 43) gelYiia gYily) dO

p x 0,8) gelyi,a) de) ( II p(yily)1

P(X LOA) P(Y1Y) (6)

is
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Likelihood inferences about a and 0 are therefore independent of
-

inferences about y, and the conditional MLE's of o and 0 given Y

are identical to MLE s obtained jointly with y.

Models and Meth-Jai

This section presents two IRT models that differentiate

examinees by means of auxiliary variables, and suggests computing

approximations based on Bock and Aitkin' (1S'81) marginal maicimum

likelihood (empirical Bayes) procedures.

Mixtures of Finite Distributions

Mislevy (1984) decribes a nonparametric approximation of a

continuous density function of a latent variable in terms of a

distribution With mass at a finite number of prespecified points.

The proficiency of each examinee, or 0i, then, is assumed to take

one of only Q known values. The "latent trait" problem iS thereby

replaced by an analogous "latent class" problem that is easier to

solve. A single population was addressed in that presentation,

and item parameters were assumed known. We now consider extensions

to the simultaneous estimation of item parameters, and to multiple

subpopuIations indexed by an auxiliary variable y. This approach

provides considerably flexibility in the distributions Fi(e) =

F (0). It lendS itself well to discrete auxiliary variables with
Yi

relatively few values.
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It proves convenient to write such an auxiliary variable as

a vector of 0/1 indicators. Define yi = (yil ..... yid by letting

y = 1 if examinees i is associated with the k'th of K exhaustive
ik

and mutually exclusive subpopulations, and zero otherwise. The

probability of observing response pattern from an examinee

selected at random from a specified subpopulation is given by

P(n. yii0) R I p(xi ,B) dFk(e))
Yik

(7)

whenne Fk is the distribution in subpopuation k. This probability

can be approximated by a finite distribution as

Yi,0) { r 0{xi o ,0)1v)
Yik

q qk

where 0]'''0Q is a grid of points and Wqk is 61, weight Or

density at point q in subpopulation k. The weights W play the

role of a in earlier notation. For the remainder of this

subsection, we limit our attention to distributions of the forM

of the right-hand side of Equation 8. As demonstrated above, we

may carry out the estimation of 0 and W conditional on Y.

20

( )
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Let (X,Y) be the data matrix observed from a sample of N
41111. 41111

examinees selected either tandomly from the population as a whole

or as random subsamples stratified on y. The probability of X

given Y is proportional to

YikL- =HD Ep
m q kq

i k q

and its logarithm is

=log Lk

= E E yik og E p(x
i k

1!) wqk

Relative maxima with respect to 0 and W can be obtained by means

of the EM algorithm, under the special case of missing indicators

for a multinomial distribution (Dempster et al., 1977, Section

4.3). The expectation step of cycle t + 1 computes expected

values of the following quantities:
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l. The expected number of examinees with proficiency 0 from a

sample of size Nk from subpopulation k, conditiongl on X,

"t
0 , and W-:

Where

= P(X-
q

t
0 )%4t:- E ,0

k q qk r

an application of &ayes theorem, gives the posterior

probabilitythattheproficiencyofexamineeiis_givenOq

"t "t
provisional parameter estimates 0 and W

2. The expected number of correct responses to item j from

examinees in subpopulation k with proficiency 01, given a

"
random sample of size Nk (again given 0' and W

t
):

"ti71 "Ei
Rjqk = yikxij

22
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The maximization step computes What would be MLE'S of B And

W if N and R were observed quantities rather than conditional

expectations. For W, we have simply

W- = N- IN-
qk qk k

For 8, we sol-Te conditional expectations of likelihood equations:

;;.

't+1"t+1
N P (0

P

) 913 (e )

(eicf j[1 P (0 30
j q q

where R
jq+

R
jqic

and N
q+
t+1

is similarly defined. Under the 2-
k

parameter logistic model, for example, Equation 9 simplifies as

f011oWS:

--t+1 At+1
(ik N P-(0-)](0- = )jq+ q+ j q q

"t+1 "t+1
R-__ - N_jq+

In principle, the linear indeterminacy in the 1-, 2-, and 3-

20

(9)

parameter logistic and normal IRT models presents no impediment to
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the EM algorithM, Which readily converges to one of the infinitely

many solutions on a ridge. Numerical stability and the quality of

the finite characterization Of F ate enhanced, however, by

controlling the scaling of the solution at this point. One

Cohilenient way of doing so is to standardize the weighted AVerage

distribution. We have referred to the points as specified a
4

priori; given the linear indeterminacy, we may conceive of only

their relatiVe spacing as prespecified. After each EM cycle, then,

we may rescale the points as follows:

where

and

. (D -6)/s

.

EN ZOW
k kq qqk

(0 5) "t;t
qk

Item parameters are adjuated ACcOrdiuglyi Under the - and 3-

2 4
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A
parameter models,

J
is replated by (b= = 6)/S Ahd aj is replaced

J

by saj -. Under 1-parameter models rescaling takes place only with

respect to g.

Iteration from several starting values helps to verify whether

a given solution is indeed a global maximum. The observed

information matrix for the item parameter estimates can then be

approximated via Equation 6. Etployitig Lridia'S (1982)

sitplificationa for "miSeing multinomial indicators" problems, we

obtain

I- (;) E E y- EX,Y ik

auJel at-0 _)
)(

as as

A -

where pk(eqlxi) is evaluated at 6 and W

A Linear Mbdel

The unrestricted mixture solution described above becomes

unwieldly as the number of potential valued -of the aukiliary

variable increases. The trite ittudtUted alternative of a linear

model fOr p(O ly) 18 suitable when y is vector-valued or is

continuous rather than discrete. Assuming homoscedastic and normal

residuals, we would have
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N(y'a,a

where auxiliary variables are coded so that the K columns of Y =

. yid', which are basis vectors for the K elements of d,

are linearly independent. They may include values on measured

variables such as previous test scores and dummy regression

variables that encode selected contrasts among categorical

auxiliary variables.

Maximum likelihood solutions for a and a in the special case
-

of structured means for the cells of a multi-way design have been

given by Mislevy (1985) under the assumption that item parameters

are known, and by &arts and Veldhuesen (1985) under the assumption

that p(xle) is the Rasch model with unknown item parameters to be

estimated jointly. These solutions are readily extended to the

case of a general 1RT model with unknown item parameters. This

section describes an approximation over a grid of prespecified

points so that computation is similar to the nonparametric solution

described above. Attention is focused for convenience upon the 1-,

2-, and 3-parameter logistic and normal IRT models;

The linear indeterminacies of these models are again

conveniently resolved by restrictions on the population parameters.

2
First, we may without loss of generality fix a at unity to set the
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unit-size of the scale. For 1-parameter models, a slope parameter

common over items is then estimated. Second, we may set the

origin by centering the elements of each column of Y at zero. All

effects are thus cast as deviations around a grand mean of zeroi

This restriction, in conjunction with the independence of the basis

vectors, completes the resolution of the scale.

The marginal likelihood for a sample of size N is written as

L = n I p(xi ,$) - 5!) de

where (I) represents the standard normal density function.

Approximation over a finite grid of points is accomplished by

Where

L* = n E p(x1
q

0_,$) Wqi --(a)
.

q

Wqi (11) = exp[(0-q _ - y'a /21/ E exp[- Y-a /2] .
r

The weights W play the same role as those in the preceeding

approximation. The difference iS that they are no longer eatimated

2 7
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without restriction, but modeled as functions of the effect

parameters d

MNL estimation can again proceed in EM cycles that solve the

"t "t
likelihood equations. Let 0 and a be provisional estimates from

-

cycle t. The E-step computes expected counts of examinees and

correct responses at each point:

and

where

N = £ P(0
q

"t+1
Rj4

P(0
"t

) = it)W -61t)/ E 0(ki
"i q'" qi

"t "t
)Wri(a )

It also computes the conditional expected value of each examinee's

proficiency:

= P(0
q q

^t ^t
f3 )

28
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The M-step pseudo-likelihood equations for item parameters can

be written AS in Equation 9. The equatiOna for a simplify to

"t+1 _-^t+1
a = (Y'Y) Y'8

RP

where e = (el- .... ,eN ). The posterior information matrix for

0 can aga n be approximated via Equation 10.

A Numerical Example

This section illustrates the procedures described above. The

data are responses to four items from the Arithmetic Reasoning teat

of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A,

as observed in a sample of 776 participants in the Profile of American

Youth survey (U.S. Department Of Defense, 1982). Table 4 gives-
counts of the sixteen possible response patterns occurring in each

cell of a 2-by-2 design based on two background variables collec.ted

along with item responses. Because these variables are based on

demograPhic information rather than the educationany-relevant

information we would prefer, we will refer to the factors as simply

Factor A and Factor B, nesting levels 1 and 2 Within each.

Insert Table 4 about here

29
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Four analyses were carried out on these data. In each, the

2parameter logistic ogive was employed as the IRT model for

conditional probabilities of correct response. The analyses

differed in terms of the auxiliary information about examinees they

employed. The first run used 1011; estimation of item parameters and

densities over a grid of ten points, assuming examinees were drawn

at random from a single undifferentiated population. The second

and third runs differentiated the population via Factor A and

FactOt B respectiVely, and the fourth run employed both factors

jointly.

Resulting item parameter estimates and standard errors, along

with subpopulation means and standard deviations, are shown in

Tables 5 through 8. The scale has been set in all solutions to

standardize the total population. For each item parameter type,

columns in Table 6 through 8 display the ratio Of the squared

standard error of the item parameter estimate under the

undifferentiated model to the corresponding value in the

differentiated model. The result can be interpreted as efficiency

relative to the undifferentiated model, and the excess of a value

above unity reflects the proportional increase in estimation

precision. Geometric averages are also shown fot the relative

efficiency columns. The excess of such a value over unity, times
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four, gives the increases of precision in the units of numbers o

additional items of the same kind.

Insert Tables 5-8 about here

28

It is apparent that including auxiliary information had little

effect on the values of the item parameter estimates. The

differences between the estimates from the undifferentiated and the

fully differentiated solutions occur only n the second decimal

place. Wore significant differences exist in the accompanying

(estimated) standard errors, however. The precision of threshold

estimates was improved only modestly; an increase roughly

equivalent to one additional item response per examinee was

observed in the fully differentiated run. The precision of slope

estimates was improved dramatically; an increase roughly equivalent

to eight items was observed. It would appear that Factor A

accounted for more increase in precision for slopes, while Factor B

accounted for more increase in precision for thresholds.

Discussion

Thi3 paper has outlined procedures for incorporating

auxiliary information about examinees into the IRT f amework.

Enhancing the precision of item parameter estimates was the primary

focus. This section evaluates the value of improvements so

attained, and discusses two Additional Aspects of the model.
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The increase in information about item parameters in typical

educational and psychological settings can be expected to lie in

the range of two to six items. The numerical example suggests that

the increase will vary by item parameter type, probably less for

well-estimated parameters and greater for poorly-estimated

parameters.

The expected increase is modest, to be sure, but in many

applications it is free in the sense that it is already available

for use. Because its incremental value decreases for longer tests,

auxiliary information would be most useful in settings where

relatively few response are solicited from each examinee. This

would include two applications of great current interest, namely

educational assessment and adaptive testing. In assessment, data

that are sparse at the level Of individualssay, fiVe item§ in a

given scale--yield more efficient estimates of population

parameters for a given total number of item responses. In

adaptive testing, new items are calibrated uSing joint response

patterns with previously-calibrated items While the number of old

items is held to minimally acceptable leveIs--as few as, say,

fifteen.

A side issue in the present paper but a fundamentally

important result is that when examinees are indeed a random sample

from a Well-defined population, the estimated population

32
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distributions and effect parameters are consistent within the limits

of precision afforded by the numerical approximations (see Mislevy,

1984, 1985, on population estimation when item parameters are

known). This stands in contrast to the asymptotically biased

results obtained by using the distribution of 8 to approximate the

distribution of 6. In fact, the discrepancy between the two

distributions is largest in exactly those cases in Which the present

procedures offer most the benefit for item parameter estimation,

namely short tests

Finally, it is implicit in preceding discussions that auxiliary

information about examinees can lead to improved estimates of

individual proficiencies. Whether estimates that are improved in

the sense of minimum

for all applications

mean squared error are

is not clear, however.

advocating the use of auxiliary information

unequivocally "better"

We have avoided

when tests are used as

contests--i.e., when important placement or selection decisions are

made for individual examinees--because it would seem that in these

situations the tester ought to gather enough data directly dependent

upon proficiency (i.e., item reponses) to make satisfactorily

precise decisions on that strength alone. In adaptive testing, for

example, we would recommend the use of auxiliary information to

improve item parameter estimation, but not to estimate scores that

will be used to compare individual examinees.

33
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Table 1

Posterior Precision for e from Item Responses otly

= _.500 lAra = Liiaaa Ii7a = 1i500

a
ax ax

2 .125 8.000 .500 2.000 1.125 .889

.250 4.000 1.000 1.000 2.250 .444

.500 2.000 2.000 .500 4.500 .222

16 1.000 1.000 4.000 .250 9.000 .111

32 2.000 .500 8.000 .125 18.000 .056

64 4.000 .250 16.000 .063 36.000 .028

128 8.000 .125 32.000 .031 72.000 .014

n = number of identical items with a as noted and b = .

i = information E posterior precision.

3 8
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Table 2

Posterior Precision for 0 from Item Responses and Population Membership

I.7a = 1.000

i( a
Relative

2
Efficiency (aX

Effective
) Gain_

2 1.500 3.000 200.0%

2.000 2.000 100.0%

8 3.000 1.500 50;0%

16 5.000 1.250 25.0%

32 9.000 1.125 12.5%

64 17;000 1.063 6.3%

128 33.000 1.031 3.1%

n = number of identical items with a as gored and b = .

= information posterior precision.
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Table 3

Precision Increases for 0 Resulting from the Use of

Auxiliary Information

Source_

Increment
in_Posterior

Precison

Precision
Gain in
Item Units

Gain over, ,

Undifferentiated
Population

One-item response

Population membership

Auxiliary information

R2 = .10

ft
2

= .20

2
K = .30

R2 = .40

-2
R = .50

-2
R = .60

R2 = .70

it
2

= .80

12
R = .90

.250

1.000

1.111

1.250

1.429

1.667

2.000

2.500

3.333

5.000

10.000

1X00

4.000

,.444

5.000

5.716

6;668

8.000

10.000

13;332

20.000

40.000

11.1%

25.0%

42.9%

66.7%

100.0%

150.0%

233.3%

400.0%

900.0%

40
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Table 4

Counts of Observed Response Patterns

Item
_Respohse,
I 2 3 4 AIBI AIB2 A2BI A2B2

23 20 27 29

1 5 8 5 8

0 12 14 15 7

1 1 2 2 3 3

16 20 16 14

1 0 1 3 5 5 5

1 1 0 6 II 4 6

0 1 1 1 i 7 3 0

0 0 22 23 15 14

1 0 0 1 6 8 10 10

1 0 1 0 _7 9 8 II

19 i 2

21

_6

18 7 19

1 1 o 1 11 15 9 5

o 23 20 10

iii 86 42 2

Total 263 228 140 145

41
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Table 5

Item Parameter Estimates: Undifferentiated Population

Item sE(b) a SE(a)

.422 .058 1.022 .171

2 .226 .072 .666 .094

3 .152 .076 ;705 .096

4 .397 .080 .839 .114

Population Mean: 0.000

Population Standard Deviation: 1.000

42
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Table 6

Item Parameter Estimates: Population Differentiated

with Respect to Factor A Only

. Relative
Item b _SE(b) Efficiency a _SE(a)

Relative
Efficiency

-.436 .062 .875 .869 .069 6.142

-.217 .077 .874 .622 .054 3.030

3 .189 .072 1.114 .676 .056 2.939

.465 .069 1.344 .775 .061 3;493

Geometric average
relative e:ficiency: 1.035 3;718

Subpopulation means: .296, =.511

Subpopulation standard deviations: .960, .850
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Table 7

Item Parameter Estimates: Population Differentiated

with Respect to Factor B Only

41

_Relative
Item b _SEW _Efficiency________a __SE(a)

Relative
Efficiency

1 =.408 .057 ..035 .941 ;073 5.487

2 --.211 .077 .874 .621 .056 2.818

3 .185 .071 1.146 .686 .058 2.740

4 .431 .064 1.563 .842 .067 2;895

Geometric average
relative efficiency: 1.128 3.328

Subpopulation means: .136, =.147

SubpopuIation standard deviations: 1.021, .955

44
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Table 8

Item Parameter Estimates: Population Differentiated

with Respect to Factors A and B

Relative
Item b saw Efficienc

-,z -,z Relative
SEW Efficienc

i -.421 .0!)2 1;244 1.006 .080 4.569

2 -.213 .071 1.028 .672 .059 2.538

3 .139 .065 1.367 .775 .063 2.311

4 .402 .066 1.469 .834 .066 2.983

Geometric average
relative efficiency: 1.266 2.994

Subpopulation means: .485, .073, -.513, -.502

Subpopulation standard deviations: 1.164, .855, .642, .640
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