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Abstract | Bacterial DNA repair systems as a drug target have been 
drawing increasing attention. Recent research has highlighted important 
differences between bacteria and humans in these systems. Addition-
ally, most existing drugs are not known to act through inhibition of the 
components of these systems, especially involving the principal replica-
tive ligase, and hence afford the possibility to develop new therapeutics 
that can overcome present problems of drug resistance. Recent work has 
highlighted significant differences in DNA repair systems between myco-
bacteria and others like E. coli, leading to the possibility of developing 
inhibitors that can distinguish even between these bacteria. In this review, 
present information on these systems from the point of view of new anti-
bacterial development in general is collated. The subsequent focus is 
on mycobacterial DNA repair systems, particularly those involving DNA 
ligases. Presently available inhibitor scaffolds and new approaches for the 
development of potent inhibitors are also discussed.
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1 Introduction
The historic milestone in the fight against patho-
genic bacteria is arguably the breakthrough dis-
covery of penicillin in 1928. This was followed by 
numerous discoveries of additional classes of anti-
biotics that form the current arsenal of antimicro-
bials. Excessive use/misuse of antibiotics during 
the past years has unfortunately led to many path-
ogenic bacteria mutating into drug resistant 
strains. Bacteria exhibit diverse mechanisms of 
drug resistance against formerly successful drugs, 
a phenomenon called ‘multiple drug resistance’ 
(MDR), which is extremely difficult to treat.1,2 
There are several strains that have gained resistance 
against all available agents, eg. MRSA (Methicillin-
Resistant Staphylococcus aureus), a gram-positive 
bacterium, which is not only resistant to methicil-
lin but also aminoglycosides, macrolides, tetracy-
cline, chloramphenicol, and lincosamides.3 A big 
threat also comes from gram-negative bacteria like 

Acinetobacter and Pseudomonas spp which have 
acquired pan-drug resistance.4,5 Alarmingly, the 
emergence of resistant pathogens that is leading 
to increasing fatalities is accompanied by relative 
stagnation in the development of new antibiotics, 
especially those that have new modes of action. It is 
clear that inspite of the substantial progress in the 
development of modern drug discovery tools that 
utilize biological, chemical, informational, and 
technological interfaces, there have been dispro-
portionate difficulties in the identification of new 
lead therapeutic compounds.6,7 The emergence of 
clinically significant resistant strains of microbial 
pathogens has led to an increase in the discovery/
production of antibacterials, but most of them are 
derivatives of old traditional classes of antibiot-
ics. Compared to only two systemic antibacterial 
agents approved for use in humans by the U.S. FDA 
from 2008 to 2013, sixteen were approved from 
1983–1987. In particular, there has been no new 
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class of antibiotics to treat Gram-negative bacilli 
(GNB) for more than 40 years. Amazingly, the 
fluoroquinolones were the last new class of antibi-
otics to treat GNB. Resistant bacteria employ var-
ied approaches to escape antibiotic pressure, due 
to which there an acute need for the development 
of new antibiotics with the rise of novel modes of 
action.

More recently, there has been an explosion of 
data that significantly augment our knowledge of 
bacterial physiology.8–13 Informational and tech-
nological developments have given rise to large 
amounts of data, especially the complete genome 
sequence of thousands of bacterial genomes.14 
Systematic high throughput efforts in generating 
gene-knockouts of various bacterial species have 
shed light on the role and essentiality of numerous 
genes.11 Structural genomics initiatives have led to 
the determination of three dimensional structures 
of various crucial and essential proteins that could 
be exploited as promising drug targets. These are 
expected to be helpful in structure-based new 
inhibitor discovery approaches.12 Entire protein-
protein network analyses have been carried out 
in model organisms like Escherichia coli.15 Studies 
like these lead to better understanding of the indi-
vidual gene components against a systems biology 
background. Recent advances in technology has 
assisted the in vivo studies of proteins inside the 
live bacterial organism to support the decades of 
in vitro studies.16 The plethora of high-through-
put information available from model organisms 
can now be extrapolated to human pathogens. It is 
small wonder that this vast knowledge and infor-
mation can pave the way towards the expected 
development of new classes of antibiotics that uti-
lise new modes of action and new drug targets.

Antibiotics in current use mostly target a 
diminutive number of bacterial targets, most of 
which affect peptidoglycan, biosynthesis or gene 
expression/translation.17 These targets are either 
essential for growth and propagation of patho-
gens, or are absent from their human host and are 
conserved across wide range of bacterial patho-
gens.18 It is evident from enormous high through-
put knock-out and sequencing data that there 
remain many additional bacterial cellular targets 
essential for pathogen survival, and which are not 
the targets of any of the presently available armour 
of antibiotics.

2 Bacterial DNA Metabolism
DNA metabolism is a fundamental process car-
ried out by bacteria to maintain its survival. 
DNA metabolism involves many vital life-sus-
taining processes like DNA replication, DNA 

recombination, DNA repair, transcription etc. 
These processes require a large set of proteins and 
protein complexes to work in a highly coordi-
nated organized manner. The three indispensable 
mechanisms replication, repair and transcription 
share many of their functional workers following 
‘common enzyme-diverse pathways approach’. 
This strategy may be fascinating for the develop-
ment of antimicrobials, as therapeutic interven-
tion with any one critical functional component 
can influence more than one vital life processes in 
the bug, making it difficult to survive. Moreover, 
such inhibitors should also have broad-range 
activity as these modules are highly conserved. 
There are several reasons that lead to DNA dam-
age in bacteria; but an important reason especially 
during bacterial infection involves the release of 
chemicals by host cells that leads to bacterial DNA 
damage. Such damage is highly mutagenic and 
cytotoxic, and if left untreated leads to bacterial 
cell death. At the same time if genetic material is 
perpetuated with perfect fidelity, the genetic vari-
ation needed to drive evolution would be lack-
ing and new strains such as resistant forms of the 
pathogens would not arise. So the success story of 
pathogenic life depends on a happy and delicate 
balance between mutation and repair. The nature 
of mutation decides how the repair action should 
take place, and reverse the conceivable change in 
the DNA sequence. Some of the repair strategies 
employed by bacteria are outlined below.

2.1 Mismatch repair
The replication machinery has high degree of 
accuracy due to the proof reading component 
of the replisome*, the 3’–5’ exonuclease which 
removes wrongly incorporated nucleotides.

However, this proof reading is not foolproof 
and sometimes incorrectly added nucleotides 
escape detection and become a mismatch between 
the newly synthesized strand and template strand. 
Such mismatches if not detected and replaced 
would get lodged in the DNA permanently and 
lead to deleterious effect on the growth of the 
pathogen. A specialized mechanism of mismatch 
repair is reserved to deal with such genomic 
sequence alteration. The scanning action for detec-
tion of mismatch is performed by MutS, a protein 
that recognises DNA distortion. It further recruits 
MutL, a second component of the repair system. 
MutL, in turn, activates MutH, which causes an 
incision near the site of mismatch, followed by the 
unwinding of the DNA strand from the incised 
point by UvrD to the mismatched site. Exonucle-
ase progressively digests the displaced strand creat-
ing a single stranded gap that is then filled by DNA 
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polymerase III. The nick is subsequently sealed by 
the action of DNA ligase. Mismatch repair sys-
tems are highly conserved in bacterial populations 
and have evolved from common ancestors, i.e. the 
Hex system in Gram-positive Streptococcus pneu-
moniae and the Mut system in Gram-negative  
E. coli, Salmonella enteric, Serovar typhimurium19,20 
and Saccharomyces cerevisiae.21 But at times, the 
constant stress conditions that prevail in the 
human host, cause the repair machinery itself to 
get affected. Any alterations in genomic DNA that 
leads to mutations or loss of mismatch repair sys-
tem may result in greater chances of mutations 
in the pathogens, which can give rise to selected 
resistant strains. The resistant mutants may have 
altered targets of a drug, reduced permeability to 
the antibiotic, increased efflux of the antibiotic 
or upregulated antibiotic-inactivating enzymes. 
Hypermutability arising due to loss of DNA mis-
match repair systems, can be co-selected with anti-
biotic resistance. This means that mutants with 
resistance to one agent are more likely to develop 
subsequent resistance to unrelated agents.22 
Siegel & Bryson (1967) discovered the MutS gene 
in an azaserine-resistant derivative of E. coli that 
had a mutator phenotype and carried a deletion in 
the MutS gene. The mutator phenotype has been 
linked in several bacterial genera to a defect in 
the methyl-mismatch repair system, in which the 
chief modules are MutS and MutL and UvrD. This 
system is involved both in mismatch repair and in 
prevention of recombination between homolo-
gous fragments in Escherichia coli. This has been 
shown to play an important role in the adaptation 
of bacterial populations to changing and stressful 
environments including the development of anti-
biotic resistance based on the reasons delineated 
here.23,24

2.2 Base Excision Repair (BER)
Mutations do not arise only from errors in replica-
tion but also as a result of environmental muta-
gens that may be produced inside the pathogenic 
host as a defence immune response or outside. 
Most frequent mutations arise due to alkyla-
tion and oxidation of nitrogenous bases that 
lead to the generation of altered bases which are 
highly mutagenic and cytotoxic. The other harm-
ful modifications arise from ionising radiations 
which are clastogenic in nature and lead to double 
and single-stranded DNA breaks. There are spe-
cialized systems of DNA repair present in bacteria 
to deal with the altered bases, namely Base exci-
sion repair (BER) and nucleotide excision repair 
(NER) respectively. BER involves an enzyme, gly-
cosylase, which is a lesion specific enzyme. Cells 

have multiple DNA glycosylases with different 
specificities for lesions like uracil generated by 
the deamination of cytosine or oxoG generated 
by oxidation of guanine like Ung, UdgB, MutM, 
MutY.25–31 DNA glycosylases diffuse laterally along 
the minor grove until a specific lesion is detected. 
They recognise the damaged base which is flipped 
out of the DNA double helix. The base is then 
removed by hydrolysing the N-glycosidic bond, 
resulting in the production of abasic sites. These 
abasic sites are highly mutagenic in nature. The 
abasic sites are further processed by the action of 
AP endonucleases that incise the DNA phosphate 
backbone and produce a nick. The nick is then 
sealed by downstream processing enzymes like 
DNA polymerase and DNA ligase, thereby restor-
ing the intact strand using the undamaged strand 
as the template.32–38

2.3 Nucleotide Excision Repair (NER)
Unlike base excision repair, the nucleotide excision 
repair enzymes do not recognise any particular 
lesion. Rather the NER system works by recognis-
ing the distortion in the shape of the double helix. 
The task is largely accomplished by four major 
proteins, viz. UvrA, UvrB, UvrC and UvrD. A 
complex of UvrA-UvrB scans along the length of 
DNA in an ATP-dependent manner. UvrA detects 
the distortion and exits leaving behind UvrB to 
melt the DNA creating a single stranded bubble 
around the lesion. This step is followed by the 
recruitment of UvrC that incises both sides of the 
lesion. This cleavage creates 12–13 residue long 
single-stranded DNA segments made accessible 
by DNA helicase, UvrD. Finally DNA polymerase 
I and DNA ligase seal the gap.39–42

2.4 Recombination repair of DNA
Owing to constant assault by the host defence sys-
tem, the maintenance of genomic integrity is a big 
task for a pathogen. This might give rise to a situ-
ation whereby the replication fork halts due to the 
presence of an unattended DNA lesion, and leav-
ing the lesion in a single-strand gap at the stalled 
fork. Alternately, if the replication fork encounters 
a DNA strand break, a double-strand break sepa-
rates one branch of the fork. Such stalled repli-
cation forks can be processed by diverse means 
to give rise to a DNA end with double stranded 
breaks. These broken DNA ends then commence 
recombination with homologous DNA molecule 
which will in turn heal the break. The cellular 
recombinational DNA repair system consists of 
flexible set of enzymes that can process whatever 
DNA structures might exist at a collapsed repli-
cation fork. The first set of proteins to come into 
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Table 1: Structural data available in the Protein Data Bank (http://www.rcsb.org/) for proteins in the different 
DNA repair pathways discussed.

Proteins
Enzymatic  
actvities

Gene annotation  
in Myco bacterium 
Tuberculosis

Pdb ids of  
structures  
from  
Myco bacterial*

Pdb ids of structures  
from other relevant 
bacterial sources 
(organism)#,*

Mismatch Repair Pathway

MutS Methyl-directed  
mismatch repair  
protein/ATPase

ABSENT - 2 WTU(Ec) 
3ZLJ(Ec) 
1OH5(Ec) 
1EWR(Ta) 
1NNE(Ta)

MutL Methyl-directed  
mismatch repair protein/ 
DNA-stimulated  
ATPase

ABSENT - 1BKN(Ec) 
3GAB(Bs) 

MutH Methyl-directed mismatch 
repair endonuclease

ABSENT - 1AZO(Ec) 
2AZO(Ec)

UvrD ATP-dependent 3’-5’ DNA 
helicase II

ABSENT - 3LFU(Ec)
2IS2(Ec)

RecJ ssDNA 5’-3’ exonuclease ABSENT - 2ZXO(Tt)

BER/NER Pathway

Ung Class 1 Uracil DNA  
glycosylase.

Rv2976c 3A7N 3UF7(Ec) 
1LQJ(Ec) 
2HJQ(Bs)

Udg Class 5 Uracil DNA  
glycosylase

Rv1259 -

Fpg Formamidopyrimidine  
DNA glycosylases

Rv2924 - 1K82(Ec) 
3TWL(At)

Fpg2 Formamidopyrimidine  
DNA glycosylases

Rv0944 -

Nei1 Endonuclease VIII Rv2464c - 2EAO(Ec) 
2OPF(Ec) 
2OQ4(Ec)

Nei2 Endonuclease VIII Rv3297 -

Nth Endonucease III Rv3674 - 2ABK(Ec) 
1P59(Gs)

MutY Adenine DNA  
glycosylase

Rv3589 - 1WEF(Ec) 
1KG2(Ec)

TagA Glycosylase Rv1210 -

AlkA Methylphosphotriester-
DNA-protein-cysteine 
S-methyltransferase

Rv1317 - 1DIZ(Ec) 
3OH6(Ec)

Mpg Glycosylase Rv1688 - 2ZU7(Ph)

Nfo Endonuclease IV Rv0670 - 4K1G(Ec) 
2NQ9(Ec) 
1XP3(Ba)

Xth Exonuclease III Rv0427 - 1AKO(Ec) 
2JC4(Nm) 
2VOA(Af)

Dut dUTPase and dCTPase 
activitites

Rv2697c 1SM8 
1SMC 
2PY4 
4GCY 
ISLH 
3LOJ 
1SIX

1SEH(Ec) 
1EU5(Ec) 
1EUW(Ec) 

MutT1 8-oxo(dGTP)/8-oxo(GTP)
Hydrolase, dGTP, dTTP 
hydrolase

Rv2985 - 3A6S(Ec) 
2PQV(Sp) 
3HHJ(Bh) 
3DUP(Rr) 

(Continued)
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Table 1: (Continued).

Proteins
Enzymatic  
actvities

Gene annotation  
in Myco bacterium 
Tuberculosis

Pdb ids of  
structures  
from  
Myco bacterial*

Pdb ids of structures  
from other relevant 
bacterial sources 
(organism)#,*

MutT2 8-oxo-dGTPase  
activity

Rv1160 -

MutT3 dNTPases/NTPases Rv0413 -

MutT4 dNTPases/NTPases Rv3908 -

RdgB NTPase for removal of 
hypoxanthine/xanthenes 
triphosphates

Rv1341 - 1K7K(Ec) 
2PYU(Ec) 
2Q16(Ec)

MazG nucleoside triphosphate 
pyrophosphohydrolases

Rv1021 - 3CRA(Ec) 
3CRC(Ec) 
2YF9(Dr) 

UvrA ATPase/excinuclease Rv1638 3ZQJ

UvrB Excinuclease/Stimulates 
ATPase activity of UvrA

Rv1633 - 1QOJ(Ec) 
1T5L(Bc) 
2D7D(Bs) 
2NMV(Bs) 
3V4R(Bs)

UvrC Excinuclease/Attiches  
to UvrA-B and incises  
the damaged DNA on  
both sides of the  
damaged site

Rv1420 - 1KFT(Ec) 
3C65(Bst)

Mfd Involved in transcription 
coupled repair

Rv1020 - 2EYQ(Ec) 
2QSR(Sp), 
3HJH(Ec) 
2B2N(Ec)

UvrD1 3’-5’ DNA helicase Rv0949 2LQQ 3LFU(Ec) 
2IS1(Ec)

UvrD2 3’-5’ DNA helicase Rv3198 -

XPB 3’-5’ DNA helicase Rv0861 - 2FWR(Af) 
2FZL(Af) 
2FZ4(Af)

PolA DNA polymerase Rv1629 - 3HQA(Ec) 
1DPI(Ec) 
3EYZ(Gb) 
4ELT(Ta)

DinP Y-family DNA  
polymerases V

Rv3056 - 4K74(Ec)

DinX Y-family DNA  
polymerases IV

Rv1537 -

DnaE2 error prone DNA  
polymerase

Rv3370 - 1ZDE(Ss)

LigA NAD+ dependent  
DNA Ligase

Rv3014c 1ZAU(adenylation 
domain) 
3SGI(BRCT  
deleted LigA)

2OWO(Ec) 
3JSN(Sa) 
3BAC(Hi) 
1DGS(Tf) 
1V9P(Tf)

ligB ATP dependent DNA  
Ligase

Rv3062 - 3GDE(Af)

LigC ATP dependent DNA  
Ligase

Rv3731 -

LigD ATP dependent DNA  
Ligase. Involved in NHEJ

Rv0938 1VSO(ligase domain) 
2IRU(polymerase 
domain) 
2R9L(polymerase 
domain)

2FAR(Pa) 
3N9B(Pa) 
2FAO(Pa)

(Continued)
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Table 1: (Continued).

Proteins
Enzymatic  
actvities

Gene annotation  
in Myco bacterium 
Tuberculosis

Pdb ids of  
structures  
from  
Myco bacterial*

Pdb ids of structures  
from other relevant 
bacterial sources 
(organism)#,*

Recombination Repair

RecA DNA dependent ATPase 
catalysing strand invasion 
and strand exchange during 
homologous recombination

Rv2737c 1G19 31GD 1UBC(Ms) 
1NO3(Ec)
1REA(Ec) 
1XMS(Ec) 
2REB(Ec)

RecB DNA helicase/nuclease Rv0630c - 1W36(Ec) 
3K70(Ec)

RecC DNA helicase/nuclease Rv0631c -

RecD DNA helicase/nuclease Rv0629c -

RuvA Holliday junction DNA  
helicase

Rv2593c 2H5X 2ZTE 1C7Y(Ec) 
1D8L(Ec) 
1HJP(Ec) 
1CUK(Ec) 
1BVS(Ml) 

RuvB Holliday junction DNA  
helicase

Rv2592c - 1HQC(Tt) 
1IN4(Tm)
1IN7(Tm)

RuvC Holliday junction resolving 
endonuclease

Rv2594c - 1HJR(Ec) 
4EP4(Tt) 
4LD0(Tt)

RecG ATP dependent DNA  
helicase

Rv2973c - 1GM5(Tm)

RecF ssDNA and ATP binding Rv0003 - 2O5V(Dr)

AdnA Helicase/nuclease Rv3202c - 3U44(Bs) 
3U4Q(Bs)

AdnB Helicase/nuclease Rv3201c -

# Organism designation: Ec, Escherichia coli K-12; Ta, Thermus aqaticus; Bs, Bacillus subtilis; Tt, Thermus thermophilus;  
At, Arabidopsis thaliana; Gs, Geobacillus stearothermophilus; Ph, Pyrococcus horikoshii; Ba, Bacillus anthracis, Nm, Nesseria 
meningitides; Af, Archaeoglobus fulgidus; Sp, Streptococcus pneumonia; Bh, Bartonella henselae; Rr, Rhodospirillum rubrum;  
Dr, Deinococcus radiodurans, Bc, Bacillus caldotenax; Bst, Bacillus stearothermophilus; Ta, Thermus Aquaticus, Gb, Geobacillus 
kaustphilus; Ss, Synechocystis sp; Sa, Staphylococcus aureus; Hi, Haemophilus influenzae; Tf, Thermus filiformis; Pa, Pseudomonas 
aeruginosa; Ms, Mycobacterium smegmatis; Ml; Mycobacterium leprae; Tt, Thermus thermophilus; Tm, Thermotoga maritima.
* Codes shown are Protein Data Bank accession number.
- Structure of the corresponding protein is not available.

play in recombination repair is RecBCD helicase/
nuclease trimolecular complex of three subunits. 
It binds to the DNA molecule at double stranded 
breaks and unwinds the DNA strands along the 
length of DNA using energy from ATP hydrolysis, 
accompanied with or without nucleolytic degra-
dation of one or both the DNA strands. The activi-
ties of RecBCD are controlled by specific Chi DNA 
sequences (GCTGGTGG). The Chi sites stimu-
lates frequency of homologous recombination by 
assisting in the creation of 3’-single stranded DNA 
ends by altering the polarity of nuclease activity 
of the enzymatic complex.43 The single stranded 
DNA tail generated by RecBCD must be coated by 
RecA protein for recombination to occur, which 
is recruited by the enzyme complex itself. RecA is 
a strand exchange protein that catalyses the pair-
ing of homologous DNA molecules. The active 

form of RecA is the protein-DNA filament. RecA 
binds readily to single-stranded DNA, nucleating 
and then assembling unidirectionally (5’-3’) into 
a nucleoprotein filament. It is within the RecA 
filament that the search for the homologous DNA 
sequences is conducted and execution of DNA 
strands occur.44,45 After the strand invasion step 
of recombination is complete, the two recom-
bining DNA molecules are connected by DNA 
branch called Holliday junction. Holiday junc-
tion specific protein RuvA recognizes and binds 
to the junction and recruits helicase RuvB that 
provides energy for the exchange of DNA pairs 
and move DNA branch. RuvC is the major hol-
liday junction resolving endonulcease that further 
brings about cleavage and resolution of junction 
in complex with RuvA and RuvB by nicking two 
of the homologous DNA strands. The 3’-OH and 
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5’phosphate ends are created that are then further 
ligated by DNA ligase.

Recombination-based DNA repair proteins, 
particularly the RecBCD and AddAB helicase-nu-
cleases, are potential targets for development of a 
new classes of anti-bacterial agents. These proteins 
are the constituents of the major pathway of DNA 
repair, broadly dispersed in bacteria and appar-
ently missing from eukaryotes. They are particu-
larly required during infection by several diverse 
pathogens, and are responsible for the induction 
of mutations that impart resistance to available 
antibiotics. Drugs against these enzymes should 
self-limit the progress of bacterial resistance. Many 
recent studies have resulted in promising results to 
exploit these yet untouched novel cellular targets. 
The hexapeptide WRWYCR has been recently 
identified as an inhibitor of bacteriophage lambda 
integrase (Int)-mediated site-specific recombina-
tion. The most effective peptides were found to be 
specific for the branched DNA structure itself, in 
contrast to the integrase complex. These peptides 
have been found to be inhibitory to several hol-
liday junction processing enzymes in vitro that 
includes RuvABC junction resolvase complex.46,47 
Inhibition of recombination repair constitutes a 
novel target for antibiotic therapy and needs fur-
ther investigation.

3  The DNA Repair Systems of 
Mycobacteria: A Tool for Evolution/
Adaptation?

Mycobacterium tuberculosis is a major global 
threat to the human population. The co-infection 
of TB with HIV increases the risk of death twice 
as compared to patient with HIV infection alone48 
(WHO 2010). The integrity of the mycobacterial 
genome is protected by dedicated DNA repair 
machinery, which is of paramount importance 
for its survival within the host. Availability of the 
genome sequences from a variety of mycobacte-
rial strains and variants has significantly advanced 
our knowledge of DNA repair mechanisms in this 
organism.49 A growing body of evidence suggests 
that these pathogens often behave differently even 
from other bacteria like E. coli and B. subtilis espe-
cially in some of the important processes involv-
ing DNA repair.50 The M. tuberculosis genome 
contains many of the base excision and nucleotide 
excision repair genes found in E. coli. However, it 
lacks homologs of the mismatch repair pathway 
genes.51,52 Interestingly, the bacterium possesses 
ERCC3 (XPB) and Mpg, enzymes which were 
until then found exclusively in mammalian cells.49 
The bacterium also encodes homologs of the 
non homologous end joining pathway (NHEJ), 

which has been established as a major pathway for 
repairing double strand DNA breaks in eukaryo-
tes. Proteins such as Ku70, Ku80, DNA ligaseD 
that function in this pathway have been identi-
fied in M. tuberculosis and other selected bacterial 
members.53,54 A similar NHEJ process is notably 
absent in bacteria, like E. coli. The capacity of 
M. tuberculosis to adapt to the ever-hostile and 
varying host conditions has been shown by the 
emergence of multidrug resistant strains (resist-
ant to both isoniazid and rifampicin that may 
or may not demonstrate resistance to any other 
antituberculosis drugs) and, more lately, exten-
sively drug-resistant (strains resistant to isoni-
azid and rifampin as well as atleast two of the six 
primary classes of second-line drugs, one being 
a fluoroquinolone and the other an injectable 
drug.55 Studies by Dos Vultos et al. demonstrated 
predominant high level of variation in the nucle-
otide sequences encoding DNA repair proteins in 
the W-Beijing family of resistant strains.56 The sig-
nificant role that DNA repair machinery plays in 
providing adaptive capability and hence the emer-
gence of drug resistance, comes from the study of 
M. tuberculosis W-Beijing strains, a family linked 
to increased risk of drug resistance. This fam-
ily carries an accumulation of unique mis-sense 
alterations in the three putative anti-mutator genes 
including mutT-type genes, mutT2 and mutT4.57 
The available evidence points to the importance 
and link between the survival/emergence of resist-
ant mycobacterial strains and alterations in their 
DNA repair, recombination and replication sys-
tems. Specific mycobacterial DNA repair systems 
will be detailed subsequently.

3.1  Components of Mycobacterial Base 
Excision Repair (BER) system

The full complement of genes that encode for 
homologs involved in base excision repair path-
way have been reported in mycobacteria.49,52 The 
proteins encoded are highly conserved compared 
to homologs from other bacteria. BER is initiated 
by DNA glycosylases, which as mentioned earlier 
are lesion specific enzymes that display high spe-
cificity for damaged bases. They catalyze excision 
by hydrolyzing the N–glycosidic bond between 
the base and sugar. DNA damage that arises from 
oxidative stress frequently involves the oxidation 
of guanine resulting in the generation of 7,8-di-
hydro-8-oxoguanine (8-oxoG) or its derivatives 
(Fraga et al., 1990; Steenken and Jovanovic, 1997; 
Farr and Kogoma, 1991; David et al., 2007). The 
presence of 8-oxoG in the template strand results 
in the misincorporation of A during replication 
resulting in C to A (or G to T) transversions.58–60 
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Figure 1: Schematic representation of Base Excision Repair pathway in Mycobacterium tuberculosis. In 
this and the subsequent figures, the gene annotations corresponding to the protein are shown in outlined 
boxes. The PDB IDs of the presently available crystal structures of the proteins involved in the pathways, 
with references, are in the shaded boxes.
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To check such mutations, organisms have a dedi-
cated pathway called the ‘GO repair system’ involv-
ing atleast two enzymes to locate 8-oxoG lesions in 
the midst of predominantly undamaged DNA. The 
first one viz. MutM (Fpg-formamidopyrimidine 
DNA glycosylase), excises 8-oxoG paired against C, 
while the second enzyme viz. MutY (adenine gly-
cosylase) is involved in removing the normal base 
A when paired against 8-oxoG, thus preventing 
the mis-incorporation of A against 8-oxoG.61–63 
The Mpg gene encodes for 3-methylpurine-DNA 
glycosylase which until then was considered to 
be present only in mammalian cells.49 Mpg pro-
tein has a broad spectrum of substrates including 
altered bases like deaminated purines. The latter 
are generated as a result of the action of reactive 
nitrogen species produced by macrophages.64 The 
lack of a mismatch repair system in M. tubercu-
losis makes it more vulnerable to cytosine deami-
nation, although this is yet to be confirmed. The 
deamination of cytosine results in the incorpora-
tion of uracil in DNA which brings transversion 
mutations and destabilizes genomic integrity. Ung, 
uracil DNA glycosylase prevents such mutations 
by efficiently excising uracil from DNA and helps 
in the maintenance of the pathogen in the reactive 
environment of macrophages.65 MtuUdgB excises 
ethenocytosine and hypoxanthine from double-
stranded DNA (dsDNA) and may act as backup 
for Ung disabled bacteria.66 Recent elucidation of 
the crystal structure of Ung from M.tuberculsosis 
(PDB ID 3A7N, 2ZHX)67,68 demonstrated unique 
features of its structure and interaction. After the 
action of DNA glycosylases that leaves an Apu-
rinic/Apyrimidinic (AP) site, AP endonucleases 
come into play to repair them. The accumulation 
of abasic sites are extremely mutagenic in nature 
as they obstruct vital life processes like replication 
and transcription.69–72 Two homologs of E. coli AP 
endonucleases, viz. Nfo (endonuclease IV) and 
XthA (exonuclease III) have been reported to exist 
in M. tuberculosis. Although the protein elements 
of the BER pathway in mycobacteria are highly 
conserved they have not yet been exploited for the 
development of new inhibitors that target them.

3.2  Components of Mycobacterial 
Nucleotide Excision Repair (NER) 
system

The NER pathway in bacteria is an important alter-
native to BER, especially in the context of repair 
of DNA damage resulting from UV exposure 
such as thymine dimers, DNA cross links, strand 
breaks, deamination of bases, etc. generated by 
ROS and RNI.73,74 The protein components of the 
NER pathway in mycobacteria remains essentially 

conserved in all mycobacaterial strains as also in 
bacteria like E. coli. The components mainly con-
sist of the excinuclease ABC and the DNA helicase 
II, i.e. uvrA, uvrB, uvrC and uvrD respectively. This 
indicates the significant importance that the NER 
system carries in preserving the genomic integrity. 
Studies have highlighted the increase in the expres-
sion of UvrA and UvrB in M.tuberculosis on expo-
sure to hydrogen peroxide and amplification in 
the production of NER pathway gene transcripts 
in human macrophages.75,76 The UvrB mutant of 
M.tuberculosis was shown to be sensitive to acidified 
sodium nitrite. Further exploration demonstrated 
that the mutant exhibited deficiencies for survival 
within mouse.77,78 Very recently the crystal structure 
of UvrA from mycobacterial origin was reported, 
which has led to additional understanding about 
its reaction mechanism and mode of binding to 
UvrB binding domain.79 The available information 
suggests that mycobacterial NER can prove to be a 
useful drug target. In fact, a recent study demon-
strated therapeutic targeting of the mycobacterial 
NER pathway by a chemical inhibitor 2-(5-ami-
no-1, 3, 4-thiadiazol-2-ylbenzo[f]chromen-3-one 
(ATBC) at micromolar concentrations.80 However, 
further investigations are required to exploit this 
repair system as a novel target.

3.3  Components of the Mycobacterial 
recombination repair system

The continuous stress under which mycobacte-
ria exists inside the host’s macrophage, subjects 
its genomic integrity to a high degree of threat. 
Maintenance of genome integrity is pivotal for 
cell survival, yet the outcome of constant host 
assaults, such as double-strand breaks (DSBs) 
occur routinely. Such DSBs are induced by endog-
enous sources such as the reactive and genotoxic 
environment present inside the macrophage, rep-
lication across nicks etc. Double-strand breaks 
(DSBs) are a specific type of DNA lesions that may 
act as obstacles during DNA metabolism, eg. when 
replication forks encounter single-strand breaks.81 
Understanding of the processes and sequence 
of events involved in recombination repair has 
largely been based on studies done in E. coli.82–84 
Nature has evolved two general approaches for 
repairing DSBs: homologous recombination (HR) 
and non-homologous end joining (NHEJ) respec-
tively. Homologous recombination is a template 
(homologous donor DNA molecule) dependent 
process which is relatively error free and occurs 
by either joining the two opposed ends of the 
broken DNA molecule or restarting the replica-
tion process from a detached DNA end. In both 
the cases, exchange of DNA strands occurs by a 
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Figure 2:  Schematic representation of Nucleotide Excision Repair pathway in Mycobacterium 
tuberculosis

process called synapsis (‘synapsis’ broadly refers to 
the pairing of two recombining DNA molecules) 
between homologous DNA molecules.85–87 The 
chief player in the recombination process is DNA-

dependent ATPase called RecA, that searches for 
homology and brings about strand invasion cul-
minating in strand exchange. Consequently, DNA 
lesions requiring recombinational repair must first 
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Figure 3: Schematic representation of Homologous recombination by the RecBCD pathway in Mycobac-
terium tuberculosis.
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Figure 4: Schematic representation of NHEJ repair pathway in Mycobacterium tuberculosis.

be processed into ssDNA by the action of helicases 
and nucleases.88–90 RecA-dependent pathways 
include the RecBCD pathway and the RecF path-
way. Sequencing of the M. tuberculosis genome has 

led to the identification of a number of mycobac-
terial homologs of recombination genes including 
RecA, RecBCD, RecF, RuvA, RuvB and RuvC.49,51 
This indicates that the basic mechanism of 
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recombination is conserved in mycobacteria. The 
elucidation of crystal structures of mycobacterial 
RecA and RuvA from have shed more light on 
the mechanism of these important proteins. The 
information can be exploited for development of 
rational design of inhibitors.91,92 Recently another 
heterodimeric helicase–nuclease AdnAB has been 
identified in mycobacteria. The studies suggest 
that these play an important role in homologous 
recombination. They also suggest that mycobacte-
ria are exceptional in that they encode both AdnAB 
and RecBCD, and furthermore, point to the exist-
ence of alternative end-resecting motor–nuclease 
complexes.93 Analysis of genome sequences iden-
tified potential prokaryotic homologs of two 
proteins known to be involved in NHEJ, namely 
Ku and an ‘NHEJ-type’ of DNA ligase, viz. LigD. 
NHEJ, was initially assumed to be restricted to 
eukaryotes till it was identified in mycobacteria. 
NHEJ is a error prone repair process that pro-
ceeds without the need of a homologous DNA 
molecule, with the direct reattachment of the two 
broken DNA ends.53,94–97 Structural and biochemi-
cal characterization of recombinant MtKu and 
MtLigD suggests they efficiently process NHEJ 
functions.54,97–100 It has been proposed that in the 
stationary phase, bacteria rely on NHEJ in a man-
ner analogous to non-cycling eukaryotic cells.54,97 
However, the present understanding supports that 
the NHEJ process in mycobacteria is more than 
just a two component system comprising MtKu 
and MtLigD. Alternate NHEJ processes have been 
identified in mycobacteria that are independent 
of Ku and LigD. The latter involves the repair of 
3’ overhang Double Strand Breaks and the princi-
pal replicative ligase, viz. LigA, is involved in this 
pathway. The role of other as-yet-unknown fac-
tors have also to be investigated.101,102 There have 
been speculations about the cross talk between 
the RecA dependent repair pathways and NHEJ in 
bacterial systems, known to repair similar kind of 
DNA damage.103 It has been proposed that myco-
bacteria exploit three genetically distinct DNA 
double-strand break repair pathways with recent 
identification of another novel repair system 
called as ‘Single-strand Annealing’ (SSA) pathway 
which involves RecBCD complex.104 The SSA path-
way is mutagenic as it involves the loss of genetic 
material and was initially identified in eukaryotes. 
Thus, these proteins involved in recombination-
based DNA repair proteins, emerge as poten-
tial targets for the development of anti-bacterial 
agents. Most noteworthy are the RecBCD and 
AddAB helicase-nucleases. Being essential in the 
DNA repair pathway, their candidature as drug 
targets is strengthened by its wide distribution 

in bacteria and apparent absence from eukaryo-
tes. Also, they contribute to induced mutations, 
which are known causes of resistance to existing 
antibiotics. Drugs against these enzymes should 
expectedly self-limit the evolution of bacterial 
resistance.

4  DNA Ligases: Novel Drug Targets 
Waiting for Right Inhibitor

The largest number of new inhibitor classes are 
presently available for NAD+-dependent DNA 
ligase (LigA), the principal bacterial replicative 
ligase. DNA ligases are indispensable enzymes 
playing a critical role in DNA metabolic processes 
including DNA replication, recombination, and 
repair in all living organisms. DNA ligases cata-
lyze the joining of nicks between adjacent bases 
of double-stranded DNA by mediating the forma-
tion of phosphodiester bonds at single stranded 
or double stranded breaks between adjacent 5’ 
phosphoryl and 3’ hydroxyl groups of DNA. The 
first step consists of the formation of a covalent 
DNA ligase-adenylate intermediate. In the second 
step, AMP is transferred from DNA ligase to the 
5’phosphate of nicked DNA through a pyrophos-
phate bond. In the third step, a phosphodiester 
bond is formed to join adjacent polynucleotides, 
with the release of AMP.105 DNA ligases can be 
classified into two groups on the basis of their 
specificities of cofactor used for the formation 
of DNA ligase-adenylate intermediate: NAD+-
dependent DNA ligases are present in bacteria, 
some entomopox viruses and mimi virus while 
ATP dependent DNA ligases are ubiquitous.106–108 
Mycobacteria contain genes for several ATP-
dependent DNA ligases and a single NAD+- 
dependent DNA ligase encoded by ligA.109–112 LigA 
has recently drawn attention as a broad-spectrum 
novel antibacterial target because it is essential for 
DNA replication, conserved among bacterial path-
ogens, and markedly dissimilar to eukaryotic DNA 
ligases. It has particularly drawn attention in case 
of mycobacterium as a target with the potential 
to combat multiple drug resistance.110,113–117 The 
recent determination of X-ray crystal structures 
of several DNA ligases has provided insights into 
substrate binding and the catalytic mechanisms. 
The information gained from structural stud-
ies has motivated rational inhibitor design and 
identification also with the utilization of informa-
tion gained from of a broad range of techniques 
encompassing molecular biology, protein bio-
chemistry and synthetic chemistry. Most of the 
present crop of inhibitors bind to the co-factor 
binding site, and efforts have involved the design of 
inhibitors that can distinguish between NAD+ and 
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ATP-dependent ligases respectively. In this respect, 
a spectrum of inhibitors have been identified that 
includes alkaloids from the simple quinoline, 
isoquinoline berberine, quinacrine, benzophen-
anthridine alkaloids, flavonoids, flavonoxanthone, 
triterpenes, bisquinolines, anthracycline analogs, 
and Pyridochromanones.114,116,118–133 Our group, 
in the first instance, has searched for diverse com-
pound families which inhibit MtbLigA with sev-
eral fold specificity compared to ATP-dependent 
ligases (human DNA ligase I). We have identified 
glycosyl ureides, glycofuranosylated diamines, tet-
racyclic indole derivatives, dispiro-cycloalkanones 
and hydroxamates as novel inhibitors possessing 
the potential to be developed as promising anti-
bacterials against M. tuberculosis. These com-
pounds possess IC

50
 values in the low µM range 

and compete with NAD+.111,113,134 Given the con-
served nature of the cofactor binding site, most of 
the inhibitors are expected to exhibit some degree 
of general antibacterial activity too. Better inhibi-
tor development is focused on improving the 
specificity of the compounds for MtbLigA. The 
major approaches in the direction of achieving 
better inhibitor development is by utilizing active 
site water molecules.135 Other ongoing approaches 
involve the design and synthesis of inhibitors that 
can bind to other regions of the molecule, eg. the 
BRCT domain. The latter inhibitors will expect-
edly block subsequent catalytic steps.136 We have 
demonstrated that the BRCT domain of MtbLigA 
is important for bacterial survival.111 The BRCT 
domain has been shown to play an important role 
in mediating protein-protein interactions in other 
homologous enzymes. Compounds designed to 
bind to BRCT domain to disrupt its interactions, 
eg. those that disrupt the interactions of impor-
tant conserved residues like a conserved glycine in 
MtbLigA137 should have different modes of action 
compared to the earlier LigA inhibitors. As a start, 
we modeled the MtbLigA BRCT domain and sug-
gested that it possesses regions with finer struc-
tural differences. The studies136 pave the way for 
a full-blown exploration of inhibitors with this 
mode of action.

5  Concluding Notes for the Future, 
Especially in Tuberculosis Treatment

There is increased international attention on 
tuberculosis in the last decade that is in part 
attributable to whole genome sequencing of 
M. tuberculosis and other mycobacterial variants 
and strains. Structural genomics approaches have 
also resulted in the spurring of rational design 
strategies for new inhibitor design. Presently, 
there are at least 8 compounds or combinations 

in Phase II clinical trials and 4 compounds in 
Phase III trials (http://www.newtbdrugs.org/pipe-
line.php) against tuberculosis. A brief analysis of 
those in Phase III trials is in order. Rifamycin, one 
of the compounds, is thought to inhibit DNA-
dependent RNA polymerase. Resistance issues to 
the compound have been observed and have been 
attributed to missense mutations in the rpoB gene. 
Delamanid, an oxazole derivative is another com-
pound undergoing trials and was being examined 
for its efficacy against multi-drug resistant TB. 
However, the committee for medicinal products 
for human use (CHMP) of the European Medi-
cines Agency has very recently voted not to rec-
ommend marketing authorization for Delamanid 
as its supposed benefits have not been sufficiently 
demonstrated. Gatifloxacin, a quinolone antibi-
otic introduced in 1999, which is a DNA gyrase/ 
topoisomerase IV inhibitor, is also undergoing 
trials as a pulmonary TB therapeutic. It is worth 
noting that several earlier reports have established 
severe side effects for Gatifloxacin including that 
of developing severe hyperglycemia. In fact it was 
banned in India in 2011 for systemic use. Moxi-
floxacin, another relatively old quinolone antibi-
otic, is also undergoing trials. However, its oral 
use is approved with the warning that it may cause 
worsening of symptoms for those with Myastha-
nia gravis, a disease associaed with muscle weak-
ness and breathing problems. It is clear that most 
of the compounds undergoing Phase III trials 
have several problems or are antibiotics that are 
being repositioned for TB treatment. Delamanid, 
the relatively new experimental drug has severe 
problems; however a related molecule, PA-824, a 
Nitroimidazole-oxazine, is showing promise in 
Phase II trials of being developed as a new thera-
peutic. The latter has a complex novel mechanism 
of action and is active against both replicating 
and non-replicating TB. PA-824 is a prodrug that 
requires reductive activation of an aromatic nitro 
group that is carried out by glucose-6-phosphate 
dehydrogenase, Rv0407.138 TMC207, a diarylquin-
oline, also called bedaquiline, is another promising 
new drug that acts by inhibiting the mycobacterial 
ATP synthase. It is also active against drug-resistant 
TB. Long-term safety is yet to be tested fully for 
this moiety and Phase III trials are presently under 
development. However, TMC207 holds out the 
exciting promise of reducing treatment duration 
by half, as suggested by the preliminary data. It is 
clear that upcoming therapeutics are important to 
face current and future TB treatment challenges. 
They are mainly dependent on the addition of 
a single new drug to an already failing (against 
drug-resistant TB) treatment regimen or involve 
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repositioning old drugs. Based on past history 
and the devious means adopted by the pathogen, 
there is an urgent need to keep ahead of its resist-
ance mechanisms. It is hoped that sustained glo-
bal interest in the eradication of TB as a universal 
health crisis will finally succeed in the not-too-
distant future.

In this context, targeting the DNA repair 
and metabolism processes of bacteria seems to 
be an attractive strategy for the development 
of therapeutics that are expectedly self-limiting 
from the point of view of developing resistance, 
both in mycobacteria and other drug-resistant 
bacteria.
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