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Abstract

Background: Dense SNP genotypes are often combined with complex trait phenotypes to map causal variants,

study genetic architecture and provide genomic predictions for individuals with genotypes but no phenotype.

A single method of analysis that jointly fits all genotypes in a Bayesian mixture model (BayesR) has been shown

to competitively address all 3 purposes simultaneously. However, BayesR and other similar methods ignore prior

biological knowledge and assume all genotypes are equally likely to affect the trait. While this assumption is

reasonable for SNP array genotypes, it is less sensible if genotypes are whole-genome sequence variants which

should include causal variants.

Results: We introduce a new method (BayesRC) based on BayesR that incorporates prior biological information

in the analysis by defining classes of variants likely to be enriched for causal mutations. The information can be

derived from a range of sources, including variant annotation, candidate gene lists and known causal variants.

This information is then incorporated objectively in the analysis based on evidence of enrichment in the data.

We demonstrate the increased power of BayesRC compared to BayesR using real dairy cattle genotypes

with simulated phenotypes. The genotypes were imputed whole-genome sequence variants in coding regions

combined with dense SNP markers. BayesRC increased the power to detect causal variants and increased

the accuracy of genomic prediction. The relative improvement for genomic prediction was most apparent in

validation populations that were not closely related to the reference population. We also applied BayesRC to

real milk production phenotypes in dairy cattle using independent biological priors from gene expression

analyses. Although current biological knowledge of which genes and variants affect milk production is still

very incomplete, our results suggest that the new BayesRC method was equal to or more powerful than

BayesR for detecting candidate causal variants and for genomic prediction of milk traits.

Conclusions: BayesRC provides a novel and flexible approach to simultaneously improving the accuracy of

QTL discovery and genomic prediction by taking advantage of prior biological knowledge. Approaches such

as BayesRC will become increasing useful as biological knowledge accumulates regarding functional regions

of the genome for a range of traits and species.
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Background
In humans, plants and livestock, data on genome-wide

SNP markers and complex trait phenotypes have been

used for 3 purposes: to identify SNP associated with the

trait, to study the genetic architecture of the trait, and to

predict the genetic value or future phenotype of individ-

uals. Although different statistical methods are commonly

used for these three purposes, the Bayesian “genomic se-

lection” or “genomic prediction” approach of Meuwissen

et al [1] can be effectively used for all 3 purposes in a sin-

gle analysis [2, 3]. This Bayesian approach fits the effects

of all SNP simultaneously in the statistical model assum-

ing that they are random effects drawn from a distribu-

tion. Erbe et al [4] modified the approach of [1], proposing

a mixture of normal distributions to model the SNP ef-

fects. Their model allows many effects to be zero but

some effects to be relatively large and is flexible enough to

cover a range of distributions that might apply to different

traits. They called the method BayesR. In both human and

livestock data, BayesR has been demonstrated to be equal

or superior to linear mixed model methods, such as

GBLUP (genomic best linear unbiased prediction), for

genomic prediction and QTL mapping [2, 3, 5].

To date, methods such as BayesR, GBLUP and trad-

itional GWAS (genome wide association studies) assume

that each variant is equally likely to affect the trait: that

is, no prior biological knowledge is included in the

model. Instead, the available biological knowledge is

often applied post-analysis, in a somewhat arbitrary and

potentially biased manner to confirm candidate genes

and mutations. When analysing dense SNP array geno-

types it is reasonable to assume a model in which each

marker may equally affect the trait. However, this as-

sumption is less sensible when analysing whole-genome

sequence variants, some of which may be known to

cause non-synonymous coding changes or affect regula-

tory regions of candidate genes. In humans, as well as

some livestock it is now possible to impute sequence

variants for many thousands of individuals, so there is a

need to develop methods that objectively include inde-

pendent biological information in the analytical model.

Here, we propose a modification to the BayesR method

that incorporates prior biological knowledge about which

sites in the genome are more likely to affect the trait, using

a flexible and practical approach. For instance, the bio-

logical knowledge can include lists of genes that are

known to be important for trait expression, or specific

genome sites that are likely to have functional conse-

quences if mutated, such as non-synonymous coding sites.

A priori we allocate all genotyped variants into classes,

where each class of variants is believed to potentially differ

in the probability that they contain causal variants for

the trait. For example, one class could contain all non-

synonymous coding variants within previously reported

candidate genes such that this class may be enriched

for causal variants compared to a random selection of

variants. We call the method BayesRC. Previously Brondum

et al. [6] proposed a modified BayesR approach (BayesRS)

where prior estimates of the proportion of variance from

different chromosome segments were used to weight the

Bayesian priors for each segment. Our proposal differs be-

cause our prior is uniform across all variant classes such

that the biological information will only influence the ana-

lysis if there is support for this in the data being analysed.

The prior information is therefore more straightforward to

incorporate in the model.

We evaluated our new method using data from dairy

cattle where individuals had imputed genotypes for ap-

proximately two million variants in or near genome-wide

coding regions as well as real or imputed high density SNP

array genotypes. Due to the characteristically high LD (link-

age disequilibrium) within dairy cattle breeds, we combined

data from different geographical regions and breeds with

the aim of reducing the longer distance LD to improve the

precision of QTL (quantitative trait loci) discovery and pre-

diction. We compare the accuracy of genomic prediction in

validation individuals that are not closely related to the

training individuals to more effectively determine the preci-

sion of QTL effect estimates.

Using simulated phenotypes as well as real milk pro-

duction phenotypes, our results demonstrate several im-

portant advances:

1. Including imputed sequence variants from coding and

regulatory regions increased the accuracy of genomic

prediction compared to HD (high density) SNP array

genotypes only, and enabled QTL detection among

rare variants.

2. Our BayesRC method improved the power and

precision of QTL discovery compared to BayesR.

3. BayesRC increased the accuracy of genomic

predictions compared with the standard BayesR

approach. The observed improvement was most

apparent with increasing genetic distance between

training and validation populations.

Methods
Genomic prediction analysis was based on an imputed

subset of sequence variants in dairy cattle with either

simulated phenotypes or real milk production phenotypes.

We generated three training (“reference”) data sets to test

the new BayesRC method and compared these results

with the BayesR method.

Training and validation sets

The three training sets described below, are referred to

as DANZ, AUS and AUS-Sim (summarised in Table 1).

We employed several validation sets to represent different
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levels of relatedness to the training sets (see a principal

components analysis of the genomic relationships in

Additional file 1: Figure S1):

1. “DANZ” – the training set included 8920 Dutch,

Australian and New Zealand dairy bulls of pure-bred

Holstein (black and white), Jersey and Australian

Red breeds. The first validation set was made up of

Red Holstein bulls. All sons or sires of this group

were excluded from the training population. The

second more genetically distant validation set was a

group of Australian Red cows.

2. “AUS” - the training set included 16,214 Holstein

and Jersey pure-bred bulls and cows of Australian

origin (as described by Kemper et al [3]). The

validation sets were the same as for the DANZ

analysis (1. above).

3. “AUS-Sim” - The training set comprised the oldest

10,314 Holstein and Jersey animals from the AUS

set (2. above) based on a year of birth cut off. The

youngest Holstein bull and cows were assigned to

two validation sets: the first was 262 bulls that were

very closely related to the training set, while the

second included these bulls as well as 3678 cows

representing more genetic diversity than the bull

only set. The third less related validation was the

Red Holstein bulls as used for DANZ and AUS.

Finally, the fourth most genetically distant validation

was Australian Red breed cows and bulls.

Genotypes and biological priors

All AUS individuals and some of the DANZ bulls were

directly genotyped for the Illumina BovineSNP50 chip [7].

The remaining DANZ bulls were imputed from ~ 15,000

SNP to the BovineSNP50 chip. All individuals were then

either directly genotyped or had imputed genotypes for

the Illumina 800 K BovineHD beadChip. Further details of

DANZ genotyping are published in [8] and details for

AUS are published in [3]. In addition to HD 800 K SNP

genotypes, we identified approximately two million se-

quence variants (SNP and indels) in gene coding regions

and including variants 5000 bp up- and down-stream of

these genes (based on annotation available for the refer-

ence bovine genome University of Maryland UMD3.1 as-

sembly [9]). The discovery of sequence variants across

these regions was carried out in Run 3.0 of the 1000 Bull

Genomes project [10]. Beagle version 3 [11] was used to

impute these sequence variants in all animals. The refer-

ence sequences used for imputation were 136 Holstein

and 27 Jersey bulls combined from the 1000 Bull Ge-

nomes project (Run 3.0). The combined HD SNP and im-

puted sequence variants brought the total number of

genotypes per animal to 2,785,440.

All 2.785 M variants were then defined as belonging to

one of three broad categories based on annotation of the

reference genome UMD3.1 (details in Additional file 1:

Table S1). The first category, comprised variants predicted

to cause a non-synonymous coding change, referred to as

“NSC”. The majority were missense variants, but this NSC

category also included variants such as splice site, inframe

indels, frame shift and stop gained/lost mutations. The

second category included variants in regions that were

predicted to have potential regulatory roles: loosely re-

ferred to as “REG”. The REG variants were mainly those

within a 5000 bp region upstream and downstream of

genes, or in three/five prime untranslated genic regions

or were non-coding exon variants. All other variants were

from the Illumina HD 800 K SNP array and were allocated

to the third category, referred to here as “CHIP”: these

were mainly intergenic, but included some intronic and

synonymous coding variants.

We then combined all the AUS Holstein and Jersey ge-

notypes and used this data set to pre-select a subset of

the most informative sequence variants. First we excluded

those with Minor Allele Frequency (MAF) < 0.0002

using PLINK software [12]. We then excluded any one

Table 1 Composition of three different mixed breed training (reference) sets, and several validation sets chosen to represent

different levels of relatedness to the training sets

Training set: description Training set: total Training set: number per breed Validation sets: in order of decreasing
relatedness to the Training set

“DANZ” bulls of Dutch, Aust & N. Zealand origin
with real genotypes and real phenotypesa

8920 7371 Holstein
1438 Jersey
111 Aust. Red

1. 869 Red Holstein bulls
2. 655 Australian Red cows

“AUS” Australian bulls & cows with real genotypes
and real phenotypesa

16,214 11,527 Holstein:
3049 bulls, 8478 cows.
4687 Jersey:
770 bulls, 3917 cows.

1. 869 Red Holstein bulls
2. 655 Aust. Red cows

“AUS-Sim” Subset of above AUS set, with real
genotypes and simulated phenotypes

10,314 7991 Holstein
2323 Jersey

1. 262 Holstein bulls only
2. 3940 Holstein bulls & cows
3. 869 Red Holstein bulls
4. 885 Aust. Red bulls & cows

aphenotypes were milk, protein and fat yield: in the case of bulls these are daughter averages from progeny test and all phenotypes were corrected for known

fixed effects
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of a pair of variants in complete LD (r2 genotypic cor-

relation >0.999) across groups of 500 adjacent variants

in sliding windows of 50 variants (using PLINK). LD

pruning was carried out first independently within each

variant group (NSC, REG and CHIP) and then any REG

or CHIP variant in complete LD with an NSC variant

was removed. Last, all CHIP variants in perfect LD with

a REG variant were removed. The remaining 994,019

variants, henceforth referred to as “SEQ”, were used for

the analysis and included 45,026 NSC variants, 578,734

REG variants and 370,259 CHIP variants.

We also generated a standard set of SNP chip geno-

types for each animal based on the Illumina HD 800 K

SNP array that were in common with the full set of im-

puted 2.785 M sequence variants (ie. prior to pruning).

This provided a comparison of the accuracy of genomic

prediction using a standard 800 K genotype array or the

SEQ genotypes. In total there were 600,641 SNP geno-

types in this HD SNP array set, henceforth referred to as

the “800 K” genotypes.

Phenotypes

AUS

These phenotypes have previously been described by Kem-

per at al [3]. Briefly, the AUS bull phenotypes were daugh-

ter trait deviations (DTD) extracted from the ADHIS

(Australian Dairy Herd Improvement Scheme) database.

DTD are generated from nationwide progeny test data col-

lected on many bull daughters, and have been corrected

for known fixed effects such as herd, year and season. The

AUS cows phenotypes were TD (trait deviations - also ex-

tracted from the ADHIS database) based on their own lac-

tation records (3 lactations on average) and corrected for

known fixed effects. Traits analysed were Milk, Fat and

Protein Yield. A limited number of analyses were also car-

ried out for Protein and Fat Percent derived from the

Yield phenotypes as described by Kemper at al [3].

DANZ

These phenotypes are a subset of those described in [8]

(ie. excluding Livestock Improvement Corporation, LIC,

bulls). Briefly, the majority of Holstein and Jersey DANZ

bulls had international MACE (multiple trait across-

country evaluation) breeding values that were converted

to de-regressed proofs (“DRP”) on the Australian scale.

A total of 313 training bulls as well as the Australian

Red bulls and cows did not have international MACE

breeding values, and their DTD or TD were used instead

(as suggested by Haile-Mariam et al [8]). The variance of

DRP phenotypes was scaled to match the within breed

DTD variance using records from bulls with both DRP

and DTD. Additionally, data type by breed was included

as a fixed effect in the analytical model. Traits analysed

were Milk, Fat and Protein Yield. There was an overlap

of 3819 AUS bulls that were included in the DANZ set

of 8930 bulls.

AUS-Sim

Phenotypes were simulated for each animal as a complex

trait with 4000 additive QTL effects that were simulated

onto real genotypes chosen from SEQ variants. QTL were

simulated by sampling 3485, 500 and 15 effects from each

of three normal distributions, with a zero mean and

variances; 0.0001σ 2
g, 0.001σ

2
g and 0.01σ 2

g, respect-

ively, where σ
2
g is the additive genetic variance. The

genetic value of the jth animal was calculated as:

GeneticValuej ¼
X4000

i¼1

xijαi

where αi is the ith QTL effect and xij represents the ith

genotype (coded 0, 1 or 2 for genotypes aa, Aa and AA)

of animal j. An environmental effect for each animal was

sampled from a normal distribution and was added to

the genetic value to produce phenotypes with heritability

(h2) = 0.6. This relatively high h2 was chosen to mimic

the highly accurate progeny test phenotypes of dairy

bulls. Additionally a breed effect sampled from N(10,1)

was added to the phenotypic value of all Holstein animals.

Three traits were simulated to provide a range of genetic

architectures, where the 4000 QTL effects were simulated

on different sets of SEQ variants that were chosen as

follows:

Trait 1. QTL were randomly selected variants in or

within 50 Kb of 790 “Lactation” genes including: 500

NSC, 2828 REG and 672 CHIP variants. The

Lactation genes were candidate genes for milk

production because they showed differential

expression in association with experiments that

altered milk yield (Additional file 1).

Trait 2. QTL randomly simulated on 1200 NSC and

2800 REG variants in and around coding regions,

and dispersed genome-wide.

Trait 3. QTL simulated on variants chosen uniformly at

random genome-wide, including: 177 NSC, 2241

REG and 1582 CHIP variants.

Pedigree information was obtained for all phenotyped

animals, with data for overseas animals obtained from

Interbull and Australian animals from ADHIS.

BayesR

BayesR analytical methodology was described by Erbe et al

[4] with further detail and additions in Kemper et al [3].

Our implementation exactly followed that of Kemper at al

[3]. Briefly, BayesR uses an MCMC approach to estimate

variant effects which are modelled as a mixture distribution
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of four normal distributions including a null distribution,

N(0, 0.0σ2g), and three others: N(0, 0. 0001σ2g), N(0,

0.001σ2g), N(0, 0.01σ
2
g), where σ

2
g is the additive genetic vari-

ance for the trait. The first distribution accommodates the

likelihood that many variants have no effect on the trait,

thus reducing the complexity of the model. The model

fitted to the training datasets was:

y ¼ Xbþ ZaþWv þ e; ð1Þ

where:

y = vector of phenotypes for cows and/or bulls (TD,

DTD or DRP)

X = design matrix allocating phenotypes to fixed effects,

b = vector of fixed effect solutions, where fixed effects

included overall mean, breed, and when appropriate,

data type – DRP, DTD, TD – nested within breed,

Z = design matrix allocating phenotypes to polygenic

breeding values,

a = vector of polygenic breeding values: distributed

N(0, Aσ2a): A = numerator relationship matrix calculated

from sire and dam pedigree records and σ
2
a = additive

genetic variance not explained by the variants,

W = design matrix of variant genotypes, centred and

standardized to have a unit variance following [13],

v = vector of variant effects, distributed as a mixture of

the four distributions as listed above,

e = vector of residual errors, distributed N(0, Eσ2e): with

σ
2
e = error variance. E is a diagonal matrix constructed

as diag(1/wj), where wj is a weighting coefficient based

on the number of records available for each animal as

described in [3], and following [14]. This accounts for

the variable accuracy of trait phenotypes (heterogeneous

error variance) which arises in dairy cattle because bull

phenotypes were calculated from <100 to many

thousands of daughter lactation records, and cow TD

were based on their own records (between 1 to 6

lactation records per cow).

Variant effects were assumed to belong to one of four

normal distributions: d1, d2, d3 and d4. As in [4], the

prior distribution for the proportion of SNP in each of

these four distributions (Pd1, Pd2, Pd3 and Pd4) was P ~

Dirichlet (α) where α = [1,1,1,1]. Each iteration this was

updated by sampling:

PeDirichlet αþ βð Þ;

where β was a vector with the number of variants in

each of the four distributions as currently estimated from

the data. Each iteration, P was used in updating the condi-

tional posterior probability that variant i belongs distribu-

tion d (details in [3]).

Variants with MAF < 0.002 in each training set were

excluded from the analysis. For all BayesR models and

traits we implemented five replicate chains of the Gibbs

sampler, each chain running for 40,000 iterations with

20,000 iterations discarded as burn-in. Final parameter

estimates were derived from the means of the sampled

effects in the post burn-in iterations, obtained separately

for each of the five chains. BayesR analyses were carried

out with SEQ genotypes as well as with the 800 K SNP

chip genotypes.

BayesRC method

BayesRC used the same approach as BayesR except that

a priori independent biological information was used to

allocate each variant to a specific “class” c (where c ≥ 2),

where the purpose is to provide one or more classes that

are enriched for QTL. For example, all variants in or

close to candidate genes could be allocated to class I,

while all other variants could be in class II. As for

BayesR, the variant effects for members of class I are as-

sumed to belong to a mixture of four normal distribu-

tions with proportions (Pd1_cI, Pd2_cI, Pd3_cI, Pd4_cI,) while

the variant effects that are members of class II belong to

an independent mixture of the four distributions with

proportions (Pd1_cII, Pd2_cII, Pd3_cII, Pd4_cII,), etc. In BayesRC

a small modification in the BayesR algorithm allows

updating of the distribution of QTL effects within clas-

ses: an advantage if a particular class is enriched for

QTL. Within each class c, we used a uniform Dirichlet

prior (as in BayesR) for the proportion of effects in each

distribution: Pc ~Dir(αc), where αc = [1,1,1,1]. This was

updated each iteration within each class:

PceDir αc þ β
c

ð Þ;

where βc was the current number of variants in each of

the four distributions within class c, as estimated from

the data. Thus, we used a relatively uninformative prior

for all classes, but within a class the posterior proportion

of variants in each distribution was informed by the data

and could vary from one class to the next. If a class is

found to be enriched for QTL this increases the prob-

ability that a true QTL effect in this class will be in-

cluded in the model. The prior of αc = 1 can be argued

to have little influence on the posterior distribution pro-

vided that there is a reasonably large number of variants

per class. The updating of all other parameters was car-

ried out as described for BayesR [3].

We consider three versions of BayesRC (BayesRC Seq,

BayesRC Lact and BayesRC Rlact) defined by how the

prior allocated SNP to one of three classes, as described

in Table 2. In BayesRC Seq the variant categories in SEQ

genotypes (NSC, REG and CHIP) provided a simple bio-

logical prior, under the hypothesis that NSC should be
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most enriched for causal variants, REG somewhat enriched

and CHIP least likely to contain causal variants. In

BayesRC Lact, the prior was based on a set of 790 can-

didate genes associated with milk production (referred

to as “Lact” genes: Additional file 2) that had been dis-

covered in an independent microarray gene expression

study [15] (see Additional file 1). Although the DGAT1

(diacylglycerol O-acyltransferase homolog 1) gene was

not included in the original microarray experiment, we

added it to the Lact set because a causal mutation in

this gene has been demonstrated to have a very large

effect on fat, milk and protein yield [16]. In the third

version, BayesRC Rlact, we used the same prior as

BayesRC Lact except that we replaced the Lact gene set

with a randomly generated set of 790 genes to provide

a null model.

Genome-wide association analysis - GWAS

An association study was conducted in the AUS dataset

using ‘SNP Snappy’ [17]. This process fitted a model simi-

lar to Eq. 1, but replaced the term for all SNP genotypes

(Wv) with a single SNP regression of phenotype on geno-

type, one SNP at a time. That is, as well as the SNP regres-

sion, the model included the overall mean, fixed effects, a

polygenic term and phenotypes were weighted for hetero-

geneous error variance [14].

GBLUP

A traditional GBLUP method was implemented for the

simulated data as described in [3] using ASReml software

[18] and fitting the model described in Eq. 1. As for

BayesR, all variants are fitted in the model simultaneously,

but GBLUP linear mixed model assumes each variant has

an effect sampled from the same normal distribution.

Accuracy of genomic prediction

The accuracy of genomic prediction was estimated from

the correlation between the predicted genetic value

ŷv¼Wv̂ð Þ and the phenotypes (TD, DTD or DRP) for all

validation sets. For consistency, the residual polygenic

value was not included in the prediction of genetic value

because some validation sets were not connected through

the pedigree with the training population. In the AUS-Sim

data we used the same approach but the accuracy was

measured by the correlation between the predicted genetic

value (ŷv) and the simulated true genetic value. In

AUS-Sim we assessed the bias of the predictions using

the regression coefficient of the true genetic value on

the predicted genetic value. Accuracies and regression

coefficients were calculated within each of five MCMC

chains and the reported value is the mean.

Results
Genotype LD and MAF

The allele frequency spectrum of the 994,019 imputed

SEQ variants was similar for all three cattle breeds used

in this study (Holstein, Jersey and Australian Red). A lar-

ger proportion of NSC and REG variants had MAF < 0.1

(55 % and 49 % respectively) compared to CHIP variants

(21 %) (Additional file 1: Figure S2). The proportion of

all polymorphic loci not segregating across both the

Holstein and Jersey breeds was; 24 % for NSC, 19 % for

REG and 4 % for CHIP variants. The LD among CHIP

variants was on average higher than LD between NSC

and CHIP variants (Additional file 1: Table S2).

Simulated phenotypes – accuracy of genomic prediction

The AUS-Sim data (Table 1) used real genotypes with

three different simulated trait phenotypes (each with 4000

QTL). For each trait we analysed the data with GBLUP,

BayesR and three versions of BayesRC (BayesRC Seq,

BayesRC Lact and BayesRC Rlact) that differed in the

biological priors used to allocate variants to one of three

classes (Table 2). The simulated traits were developed to

test specific BayesRC priors:

Trait 1. QTL simulated on variants in or close to the

790 Lact genes. The BayesRC Lact was the most

appropriate model for this trait because QTL were

Table 2 Description of BayesRC models used to analyse the SEQ a genotype data

Name of BayesRC Model Variant Allocation to Classes I, II and III Number of variants per classc

BayesRC Seq I. NSC (non-synonymous coding)
II. REG (potentially regulatory)
III. CHIP (HD SNP chip variants)

45,026
578,734
370,259

BayesRC Lact I. NSC & in Lact b genes
II. All variants other than NSC that overlap Lact gene regions (±50Kb)
III. All other SEQ variants not in class I or II

4650
64,518
924,851

BayesRC RLact I. NSC & in random set of 790 genes
II. Variants other than NSC that overlap a random set of 790 genes (±50Kb)
III. All other variants not in class I or II

4350
61,748
927,921

aSEQ = pruned set of 994,019 genome-wide sequence variants from coding and regulatory regions as well as SNP from a high density genotyping array. Variants

were allocated to one of three BayesRC classes as listed
bLact refers to a set of 790 candidate genes shown in an independent study to be differentially expressed in association with altered milk production
cNumbers generally reduced slightly from those listed because variants with MAF < 0.002 in any given training population were also excluded from the analyses
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allocated either to class I or II. The QTL

represented 13 % of all class I variants and 6 % of all

class II variants: that is there was enrichment for

QTL, particularly in class I.

Trait 2. QTL simulated on 1200 NSC and 2800 REG

variants, randomly chosen genome-wide. The BayesRC

Seq model was the most appropriate for this trait

because all QTL were allocated to class I (NSC) and

class II (REG). However, the QTL represented only 3 %

of class I variants and 0.5 % of all class II variants: that

is enrichment for QTL in these two classes was weak.

Trait 3. QTL simulated on random variants genome-wide,

including NSC, REG and CHIP variants. This trait

represents a null model with QTL randomly dispersed

across all classes, therefore none of the BayesRC priors

were biologically informative: that is there was no class

enrichment for QTL.

Figure 1 compares the accuracy of genomic prediction

estimated as the correlation between predicted genetic

values and true genetic values. In all comparisons the ac-

curacy of GBLUP was lower than BayesR and BayesRC.

For all traits, the accuracy of prediction decreased with

decreasing relatedness between training and validation

sets (Fig. 1). However, this decrease was generally the

more severe with GBLUP compared to BayesR or BayesRC.

As expected, the accuracy of prediction generally increased

using the SEQ genotypes, in which causal variants were

present, compared to using 800 K variants (no QTL

present). For BayesR, the relative gain from SEQ variants

increased dramatically in the least related Australian

Red validation (Fig. 1), indicating improved precision of

estimated QTL effects. Smaller differences were observed

for GBLUP because the GBLUP model fits a quasi-

infinitesimal model with all effects estimated from a single

Fig. 1 a, b and c Accuracy of genomic prediction for real genotypes with simulated phenotypes (3 traits with h2 = 0.6) with a range of BayesR and

BayesRC models (AUS-Sim data). BayesR models used 800 K SNP array genotypes or sequence data (SEQ), while all BayesRC models used SEQ data

(models described in Table 2). The results are shown for the three simulated traits: a QTL simulated on variants in or close to a set of 790 Lact genes,

b QTL simulated on NSC or REG variants only and c QTL simulated at random genome-wide on NSC, REG and CHIP variants
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normal distribution, resulting in the effect of a single QTL

being spread across many variants in moderate LD with

the QTL. BayesR on the other hand is better at predicting

more precise effects, and can more accurately estimate the

larger QTL effects because the QTL effects are modelled

as a mixture distribution [3, 5].

For Trait 1, accuracy was highest for the BayesRC Lact

model (Fig. 1a) where class I and II were enriched for

true QTL. Importantly, the accuracy of the BayseRC Lact

model persisted in the more genetically distant validation

sets indicating that QTL effects were estimated more

precisely. For example, in the Australian Red breed the

BayesRC Lact accuracy was 16 % higher than the BayesR

SEQ model and was almost as high as accuracy in the

Red Holsteins. We also tested models equivalent to the

BayesRC Lact, but with only two thirds or one half of

the Lact genes correctly identified, thus one third or

one half of QTL were mis-allocated to class III (Additional

file 1: Table S3 - BayesRC 2/3Lact and BayesRC 1/2Lact).

Although these latter models represented much less in-

formative biological priors (ie. reduced enrichment of

QTL in class I and II compared to BayesRC Lact) they

still conferred an advantage in accuracy for Trait 1

compared to BayesR (Additional file 1: Table S3).

Again, this was most apparent for the Australian Red

validation (9 % and 6 % improvement).

For Trait 2, although all QTL were contained in

classes I and II of the BayesRC Seq model, this did not

lead to an increase in accuracy, probably because the

QTL represented only 3 % and 0.5 % of all variants in

the two classes respectively. That is, enrichment for

QTL in these classes was too low. For the BayesRC

RLact (random allocation of QTL to classes) and all

BayesRC models tested on Trait 3 (no enrichment of

QTL in classes I or II) there was no difference in accuracy

compared to the BayesR SEQ model (Fig. 1). Importantly,

this indicates that there was no penalty for uninformative

class specification.

Simulated phenotypes – genetic architecture

The genetic architecture of the simulated traits was rela-

tively accurately recovered in BayesR and BayesRC models

with SEQ genotypes. For instance, in Trait 1 the propor-

tions of QTL in each of the four distributions within each

class of the BayesRC Lact model approximated the true

proportions (Table 3). Although no causal variants were

allocated to class III, a small number of QTL were estimated

to be present in this class probably because some variants

just outside the Lact gene regions were in high LD with

Lact gene variants. (See also Additional file 1: Table S4).

Simulated phenotypes – QTL discovery

In the Bayesian framework, the observed posterior prob-

ability of a variant having a non-zero effect should pro-

vide a direct measure of the relative likelihood that a

variant is causal or is in very high LD with a real QTL.

For all three simulated traits, the posterior probability

generally reflected close to the true probability that a

variant was a QTL (Fig. 2). That is, if 100 variants with a

posterior probability > 0.25 were selected as potential

causal variants, then at least 25 were real QTL. This con-

firms that the posterior probability statistic is generally

well calibrated and could be used to make informed deci-

sions on selecting variants for further study. The appropri-

ate choice of posterior probability threshold for selection

of variants would depend on the particular study object-

ive. For studies designed to confirm causal mutations, it

would be wise to choose a small number of variants with

a high posterior probability and with consideration of

other informative biological data. Alternatively if the ob-

jective is to find a subset of informative SEQ variants to

include on a custom array for genomic prediction, then

the appropriate threshold would be considerably lower.

The power to detect the 4000 QTL from approximately

900,000 variants was highest for Trait 1 with the BayesRC

Lact model (Fig. 3). For example, in BayesRC Lact,

115 simulated QTL were recovered with a posterior

Table 3 Average number of QTL estimated per distribution and per class of the BayesRC Lact modela, compared with the true

number of simulated QTL

CLASS Number of QTL per Distribution Total per Class

N(0,0.0001σ2g) N(0,0.001σ2g) N(0,0.01σ2g)

Class I TRUE Number 436 63 1 500

BayesRC Lact 444 36 4 484

Class II TRUE Number 3049 437 14 3500

BayesRC Lact 2512 346 16 2874

Class III TRUE Number 0 0 0 0

BayesRC Lact 219 11 1 231

Total per distribution TRUE Number 3485 500 15

BayesRC Lact 3175 393 21

a Results are for Trait 1 (AUS-Sim data) where QTL were simulated in Lact gene regions only
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probability > 0.25 (667 with posterior probability > 0.1),

while other analyses recovered less than 40 (89) QTL

above this 0.25 (0.01) threshold. For Trait 2, BayesRC Seq

identified 42 QTL with posterior probability ≥ 0.25 (74

with posterior probability ≥ 0.1) compared to less than 30

(56) in other models. Therefore, although the BayesRC

Seq did not improve prediction accuracy because class en-

richment for QTL was weak, it did provide a small advan-

tage for QTL discovery (Fig. 3). For Trait 3, as expected,

the number of QTL detected was similar across BayesR

and all BayesRC models because no class was enriched for

QTL (Fig. 3).

Fig. 2 The observed proportion of true QTL among variants with posterior probabilities falling in one of five bins (bars) compared to the median

posterior probability for variants in each bin (lines). Posterior probabilities are calculated as the proportion of iterations that a variant was estimated to

have a real effect on the trait. Results are from the AUS-Sim data (real cattle genotypes with 4000 simulated QTL) for three simulated traits with BayesR

SEQ, BayesRC Seq and BayesRC Lact models (see Table 2 for description of BayesRC models)

Fig. 3 Number of true QTL discovered (log scale) within groups of variants binned on posterior probabilities, for three simulated traits. The sum

across all bins is the number of true QTL with posterior probability > 0.01 out of a total of 4000 simulated QTL. Results are shown for the AUS-Sim

data (real genotypes with 4000 simulated QTL) applying a range of BayesR and BayesRC models (see Table 2 for description of BayesRC models).

Posterior probabilities are calculated as the proportion of iterations that a variant was estimated to have a real effect on the trait

MacLeod et al. BMC Genomics  (2016) 17:144 Page 9 of 21



Real phenotypes – accuracy of genomic prediction

In the DANZ analysis, there was generally a consistent

trend for accuracy of prediction to increase with variant

density moving from 800 K to SEQ (Table 4). Overall,

the accuracy of prediction in the Australian Red cow val-

idation set was very low because cow phenotypes were

less reliable as an indicator of true genetic value than bull

phenotypes which were based on a progeny test. This is in

contrast to the simulated data where bulls and cows had

equally reliable data and also accuracy was measured as

the correlation between the predicted genetic value and

true genetic value.

For the DANZ analysis, there was a trend for slightly

increased accuracy with the BayesRC Lact model com-

pared to the BayesR SEQ model in both validation sets

except in the Australian Red validation for Fat Yield.

The Lact genes were expected to be most highly associ-

ated with Milk Yield because of the experimental design

used to identify these genes (Additional file 1). However

increased Milk Yield is often associated with an increase

in Protein and Fat Yield. Overall, the accuracy of BayesRC

RLact (variant classes based on a random gene set instead

of Lact genes) were similar to BayesR SEQ and slightly

lower than BayesRC Lact accuracy.

In the AUS data, the accuracy of genomic prediction

showed similar trends to those in DANZ data: increased

accuracy with BayesR SEQ compared BayesR 800 K and

slightly higher accuracy with BayesRC Lact for Milk Yield

(Table 5). In the Australian Red validation the accuracies

for Protein Yield were very low indicating that these valid-

ation results are less reliable, so it is not surprising that

these results did not follow a clear trend.

Real phenotypes – genetic architecture

The average number of variant effects estimated per

non-zero variance distribution (variance of 0.0001 σ 2
g,

0.001σ 2
g, and 0.01σ 2

g) were similar for all models with

SEQ data (results for BayesR SEQ and BayesRC Lact

shown in Table 6). The overall number of variants

estimated per trait was higher than in our simulation

with most in the smallest variance distribution.

In the BayesRC Lact analysis of Milk Yield, class I and

II variants appeared to be enriched for QTL effects

(Table 7). For instance, in the AUS dataset, 3.9 % of class

I variants were sampled in the 0.0001 σ 2
g distribution

whereas in BayesR SEQ, only 0.86 % of all variants were

in this distribution. The highest fold enrichment was in

Class I for SNP effect distributions with 0.001σ 2
g and

0.01σ2 g variance (Table 7).

To confirm that class I and II variants in BayesRC Lact

were enriched for milk yield QTL we tested their ability

to predict phenotype compared with the same number

of randomly chosen variants. We derived a separate pre-

diction equation for each class (I, II and III) using the

variant effects estimated from BayesRC Lact (DANZ),

for each of the five replicated MCMC chains. We then

randomly selected 790 gene regions and allocated equiva-

lent numbers of SEQ variants to class I, II and III as in

BayesRC Lact. Prediction equations for these random vari-

ant sets were derived from the BayesR SEQ estimated vari-

ant effects. This was replicated 10 times by sampling a new

set of 790 genes with replacement, giving a total of 50 rep-

licates (because prediction equations were derived for each

of the five BayesR SEQ chains). The accuracy of all predic-

tion equations for each class was estimated in the Red

Holstein validation set and averaged across replicates. We

repeated the same procedure for Fat and Protein Yield.

For Milk Yield there was higher prediction accuracy

from BayesRC Lact class I and II equations compared to

those from the random gene classes I and II, confirming

enrichment of Milk Yield QTL in class I and II (Fig. 4).

For Protein Yield the BayesRC Lact accuracies confirmed

some QTL enrichment in class I only. The accuracies for

Fat Yield suggested a low level of QTL enrichment in class

I and II but somewhat less than observed for Milk Yield.

Enrichment for Milk and Protein Yield QTL was further

substantiated by the accuracy of class III being lower for

BayesRC Lact than that of the random predictions (Fig. 4)

suggesting some depletion of QTL in Class III.

Table 4 Accuracya of the DANZ training predictions for Fat, Milk and Protein Yield in the Red Holstein bull and the Australian Red

cow validation sets

FAT MILK PROTEIN

Analytical Modelb Red Hol Aust Red Red Hol Aust Red Red Hol Aust Red

BayesR 800 K 0.565 (0.001) 0.344 (0.003) 0.650 (0.001) 0.317 (0.003) 0.603 (0.001) 0.200 (0.001)

BayesR SEQ 0.572 (0.001) 0.354 (0.004) 0.663 (0.002) 0.308 (0.005) 0.612 (0.001) 0.220 (0.003)

BayesRC Lact 0.576 (0.002) 0.353 (0.002) 0.664 (0.001) 0.325 (0.004) 0.616 (0.001) 0.226 (0.003)

BayesRC RLact 0.571 (0.001) 0.352 (0.002) 0.657 (0.001) 0.302 (0.005) 0.612 (0.001) 0.218 (0.002)

aEstimated as the average correlation between the genomic prediction and corrected phenotypes. The highest accuracy is in bold font in each column. Numbers

in in brackets indicate relative convergence of 5 independent Bayesian MCMC chains (estimated from [SD of the mean accuracy]/√5). Note: the numbers in

brackets should not be interpreted as a “standard error” because they are estimated from 5 Bayesian MCMC chains run on the same data set
bBayesR models used either 800 K SNP array (600,640 genotypes) or 994,019 sequence variants (SEQ). The BayesRC model definitions are given in Table 2
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Real phenotypes – QTL discovery

Use of SEQ compared to CHIP genotypes was expected

to improve QTL discovery, particularly if a causal variant

was rare and/or present in the SEQ data. We detected a

number of strong QTL signals in the SEQ analyses in re-

gions where no QTL were detected in the 800 K ana-

lyses (ie. variants with a posterior probability > 0.25 of

being a QTL effect). One such example was a rare REG

variant (MAF < 0.01 in Holstein and not segregating in

Jersey animals) that lies 2777 bp upstream of the SMEK1

(suppressor of mek1) gene coding region (Additional

file 1: Figure S3). A second example is a rare variant

(MAF of 0.02 in Holstein and 0.002 in Jersey) 4949 bp

upstream of the CSH2 (chorionic somatomammotropin

hormone 2) gene (Additional file 1: Figure S4).

Testing one SNP at a time is the most common

method of QTL analysis in genome wide association

studies (GWAS). Therefore we compared the power and

precision of QTL discovery using single SNP regression

(“GWAS”), BayesR and BayesRC in several previously

documented candidate gene regions. Figure 5 compares

QTL discovery with both GWAS and the BayesRC Lact

model for Protein and Milk Yield in and around the casein

gene cluster (CSN1S1, CSN2, CSN1S2, CSN3: caseins

account for a large proportion of milk protein). The

GWAS results showed many strong signals across the

casein cluster, while the BayesRC Lact model suggested

there may potentially be two causal variants for Protein

Yield: one associated with beta-casein gene (CSN2) and

the other with kappa-casein (CSN3). This highlights the

ability of the Bayesian model to differentiate just one or

two most probable variants compared to the GWAS ap-

proach which finds many variants in an extended region

with high –log10 p-values. There were many variants in

medium to strong LD with the top BayesRC variants at

87,180,731 and 88,741,762 (Fig. 5). In the GWAS analysis

of Protein Yield it is unclear whether the high –log10
p-values around the GC (group-specific component,

vitamin D binding) gene arise due to LD with one or

more causal variants in the nearby casein gene cluster.

However, the BayesRC Protein Yield analysis indicates

good evidence for an additional causal mutation near the

GC gene because the most probable variant in this region

is not in strong LD with the highest probability variant in

the Casein cluster (Fig. 5). Furthermore, the same candi-

date variant close to the GC gene (88,741,762 bp) also had

the highest BayesRC posterior probability in this region

for Milk Yield (Fig. 5). Thus the Bayes RC analysis sug-

gests three causal variants in this region: two near the

casein genes mainly affecting Protein Yield and one

near the GC gene affecting Milk and Protein yield.

A second comparison of GWAS and BayesRC Lact is

given in Fig. 6 for a region on Chromosome 5 which

again showed strong associations with Milk and Protein

Yield. In the GWAS Protein analysis it is difficult to de-

termine the number of QTL, while in the BayesRC ana-

lysis the evidence is more compelling that there are at

least two QTL regions. The high probability variant at

75.18 Mb lies just 1635 bp downstream of the MYH9

(non-muscle myosin, heavy chain 9) gene and affects

both Milk and Protein Yield. There is evidence of another

QTL region around the NCF4 (neutrophil cytosolic factor

4) and CSF2RB (colony stimulating factor 2 receptor beta

common subunit) genes (from 75.6 to 75.9 Mb) affecting

Table 5 Accuracya of the AUS training predictions for Fat, Milk and Protein Yield in the Red Holstein bull and Australian Red cow

validation sets

Fat Yield Milk Yield Protein Yield

Analytical Modelb Red Hol Aust Red Red Hol Aust Red Red Hol Aust Red

BayesR 800 K 0.527 (0.002) 0.265 (0.001) 0.580 (0.001) 0.235 (0.005) 0.530 (0.002) 0.155 (0.004)

BayesR SEQ 0.543 (0.001) 0.275 (0.002) 0.601 (0.004) 0.258 (0.008) 0.548 (0.002) 0.174 (0.005)

BayesRC Lact 0.540 (0.003) 0.281 (0.004) 0.604 (0.002) 0.278 (0.012) 0.554 (0.002) 0.154 (0.015)

BayesRC RLact 0.541 (0.002) 0.272 (0.004) 0.602(0.004) 0.253 (0.012) 0.551 (0.002) 0.180 (0.006)

aEstimated as the correlation between the predicted genomic values and corrected phenotypes. The highest accuracy is in bold font in each column. Numbers in

in brackets indicate relative convergence of 5 independent Bayesian MCMC chains (estimated from [SD of the mean accuracy]/√5). Note: the numbers in brackets

should not be interpreted as a “standard error” because they are estimated from 5 Bayesian MCMC chains run on the same data set
bBayesR models used either 800 K SNP array (600,640 genotypes) or 994,019 sequence variants (SEQ). The BayesRC model definitions are given in Table 2

Table 6 Average number of variant effects per non-zero

distribution (variances 0.0001σ2g, 0.001σ
2
g, and 0.01σ2g) of BayesR

SEQ and BayesRC Lact modelsa

Trait Model Number of Variant Effects per Distribution

N(0,0.0001σ2g) N(0,0.001σ2g) N(0,0.01σ2g)

AUS DANZ AUS DANZ AUS DANZ

Milk Yield BayesR SEQ 4263 5239 60 91 7 9

BayesRC Lact 4276 5294 56 89 9 11

Fat Yield BayesR SEQ 4769 5969 14 28 5 8

BayesRC Lact 4774 5841 24 43 7 10

Protein Yield BayesR SEQ 4604 6292 40 38 5 6

BayesRC Lact 4641 6292 39 41 7 8

a Results are for Milk, Fat and Protein Yield in both the DANZ and AUS

training sets
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only Milk Yield. The BayesRC analysis shows several small

peaks of posterior probabilities possibly indicating that,

due to the very strong LD across this region, the analysis

cannot determine which SNP or gene is most likely to be

causal.

We also found evidence of improved power of QTL

discovery in BayesRC Lact compared to the BayesR SEQ

model in a number of QTL regions. An example of this

is provided by the PAEP gene (alias LGB, beta lacto-

globulin) that was included in our Lact gene set. This is

an important milk whey protein and mutations in and

close to this gene have previously been shown to be as-

sociated with milk protein traits [19–21]. Figure 7 com-

pares the posterior probabilities of variants in this region

for BayesR SEQ and BayesRC Lact analysis and also

shows LD between the highest posterior probability vari-

ant (BayesRC) and all other variants in the region. A sin-

gle variant (103,304,757 bp) stands out with a very high

BayesRC posterior probability for Protein Yield (Fig. 7a)

as well as one other adjacent variant at 103,303,475

(both these variants were also the most significant in the

GWAS). In contrast, the BayesR posterior probability is

lower and spread across several variants all in strong LD

over a 50Kb segment (Fig. 7b). Also of note in Fig. 7a is

a small peak of higher posterior probability variants over

a gene labelled as uncharacterised (“UnChar”) that are not

in LD with those around PAEP. This uncharacterised gene

was not included in the Lact gene set but is now annotated

on the NCBI (National Center for Biotechnology Informa-

tion) “gene” repository (http://www.ncbi.nlm.nih.gov/gene/)

as a duplicated PAEP-like protein coding gene (RefSeq

status “MODEL”).

Table 8 provides a short list of candidate genes (with

full gene names provided in Table 9) identified by vari-

ants in or close to genes (within 5000 bp) that showed

the strongest evidence for associations with one or sev-

eral traits (AUS data). All variants listed had a posterior

probability > 0.25 in the BayesRC Lact analysis and there

was additional evidence in support of the candidate genes

listed: they were either validated in the DANZ analysis,

were associated with more than one milk trait (including

milk fat and milk protein percent), were in the Lact gene

set and/or were positively differentially expressed in lactat-

ing mammary tissue compared to 17 other tissues of a lac-

tating dairy cow [22].

Discussion

This study demonstrates that the BayesRC method can

simultaneously be used to map causal variants, to study

genetic architecture and to predict future phenotypes as

Table 7 Proportion of non-zero variant effects estimated per distribution, within each class of the BayesRC Lact model for Milk Yield

Model Class Number of
Variants

Proportion of Variant Effects per Distribution

N(0,0.0001σ2g) N(0,0.001σ2g) N(0,0.01σ2g)

AUS DANZ AUS DANZ AUS DANZ

BayesR SEQ N/A 909,143 0.86 % 0.58 % 0.01 % 0.01 % 0.002 % 0.001 %

BayesRC Lact Class I 3709 3.91 % 3.76 % 0.38 % 0.24 % 0.07 % 0.045 %

BayesRC Lact Class II 57,541 1.01 % 0.65 % 0.03 % 0.04 % 0.004 % 0.006 %

BayesRC Lact Class III 847,892 0.43 % 0.57 % 0.01 % 0.007 % 0.0003 % 0.0007 %

Results are given for both AUS and DANZ training sets, and are compared to the distribution of variant effects in the BayesR SEQ model (bold figures)

Fig. 4 Accuracy of prediction (real DANZ data) per variant class of the BayesRC Lact model compared with BayesR predictions using a matching number

of randomly selected variants (BayesR_Random). Accuracy was estimated as the correlation between the predicted value and the Red Holstein

phenotypes (for Fat, Milk and Protein Yield). The boxplot shows the median and range of values for all replicates (grey dots representing outliers)
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Fig. 5 QTL discovery with GWAS (-log10 of p-value) and BayesRC Lact (posterior probability) for Milk and Protein Yield around the casein gene

cluster (yellow highlight) and GC gene. The BayesRC variant with the top probability (real AUS data) is shown by a purple diamond in each plot

(labelled with chromosome and bp position). The strength of LD (r2) between this top variant and all others is colour coded
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Fig. 6 QTL discovery with GWAS (-log p-value) and BayesRC Lact (posterior probability) for Milk and Protein Yield across a 1 Mb region of

Chromosome 5. The BayesRC variant with the top posterior probability in a given region (real AUS data) is shown by a purple diamond (labelled

with chromosome and bp position). The LD (r2) between this variant and all others is colour coded
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did Moser et al [2] and Kemper et al [3] for BayesR.

However, our new BayesRC method is potentially more

powerful than BayesR because it enables flexible integra-

tion of a priori biological information. We provided evi-

dence that BayesRC can increase the accuracy of genomic

prediction and QTL discovery compared to BayesR and

GBLUP with informative prior biological information. We

also showed that using imputed sequence data in coding

regions increased prediction accuracy and power to detect

rare causal variants compared to dense SNP array

genotypes.

A desirable feature of Bayes RC is that the prior know-

ledge is incorporated objectively. In the case of GWAS

for example, prior knowledge is only used post-analysis

to confirm candidate genes. However, it is often possible

to make a plausible case for many genes potentially af-

fecting a trait. In Bayes RC, classes of sequence variants

expected to differ in the proportion of variants having

an effect on the trait are defined a priori. This leads to

an objective estimate of the enrichment of effects within

a class of variants. This enrichment is then used by the

analysis in estimating the probability that any individual

variant in the class has a non-zero effect.

BayesRC is somewhat similar to BayesRS [6] which

uses prior knowledge of the variance explained by each

segment of the genome, and then allocates a segment

specific prior for the mixing proportions of variant effects

expected in the four distributions. A key difference in

BayesRC is that the prior is the same for the mixture pro-

portions in all variant classes (i.e., a symmetric Dirichlet

distribution). Thus the classes only differ in their esti-

mated distribution of variant effects if this is supported by

the data. Also, in BayesRC, the classification of variants to

classes is flexible and straightforward to apply, incorporat-

ing information from a range of independent sources ran-

ging from very broad to specific (such as lists of candidate

Fig. 7 a and b. QTL discovery: posterior probabilities of variants in the PAEP gene region for BayesRC Lact (a) and BayesR SEQ analysis (b). The

BayesRC Lact variant with the top posterior probability (real DANZ data) is shown by a purple diamond in each plot (labelled with chromosome

and bp position) and the LD (r2) between this variant and all others is colour coded. The position of the SEQ variants fitted in the model is also

shown above
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genes, and known causal mutations). For example, in our

BayesRC Lact analysis of simulated Trait 1, most variants

in classes I and II were not QTL variants, but enrichment

for QTL (13 % and 6 %) in these classes resulted in more

power and precision than BayesR and GBLUP. Even when

one third or one half of the 4000 QTL for Trait 1 were

mis-assigned to class III (ie. reduced enrichment in Class I

and II) the BayesRC model still showed the higher accur-

acy than BayesR (Additional file 1: Table S3). We used the

Lact gene model to simulate 4000 QTL because previous

studies have suggested that the number of loci affecting

complex traits is at minimum several hundred up to several

Table 8 Candidate genes identified by listed variants in coding or regulatory regions with a posterior probability ≥ 0.25 for Milk,

Protein or Fat Yield (AUS BayesRC Lact)

Gene_ID (see names in Table 9) DEa Milk Y Prot.Y Fat Y P% F% Evidenceb Variant type (distance from
gene or SIFT prediction)

Variant position (chrom : bp)

ROBO1 n + + P upstream (1823 bp) 1:26212317

SLC37A1 ++ + L,D downstream (4005 bp) 1:144441230

PSMB2 n - - P,L missense (SIFT:deleterious) 3:110752811

OGDH n + + P downstream (4105 bp) 4:77454411

MYH9 n + + P,L upstream (1635 bp) 5:75181544

NCF4 n + - - P,L,V missense (SIFT:tolerated) 5:75659419

ARNTL2 n - - P upstream (3413 bp) 5:82942569

MGST1 + + - - P,V,D upstream (4589 bp)
intron

5:93954751
5:93945655

CSN2 ++++ + L,V,D intron 6:87180731

CSN3 ++++ - - P,L,D missense (SIFT:tolerated)
upstream (2036 bp)

6:87390576
6:87376362

GC n + + - - P,L,V upstream (2582 bp) 6:88741762

RDH8 n - L missense (SIFT:deleterious) 7:15815974

TTC7B + + D downstream (3086 bp) 10:103182221

PROM2 ++ - D missense (SIFT:tolerated) 11:2003275

PAEP ++++ + + - P,L,V,D missense (SIFT:tolerated) 11:103303475

ABO ++ + L,D downstream (2688 bp) 11:104229609

DGAT1 n + + - - - P,L,V intron
missense (SIFT:tolerated)

14:1801116
14:1802266

COX6C n + + P,L downstream (1091 bp)
downstream (3684 bp)

14:66648812
14:66651404

TRIM29 +++ - + P, D downstream (658 bp) 15:31212485

KRT19 +++ - - P,L,D missense (SIFT:tolerated) 19:42366926

PTRF + - - P,D upstream (4742 bp) 19:43166907

ERGIC1 ++ - L,D intron 20:4543452

GHR + + D,V downstream (4947 bp) 20:31885789

SMEK1 n + + - P,V downstream (2777 bp) 21:56798101

WARS + - - P,L,D intron 21:66916247

MLH1 n - L,V synonymous 22:10493668

GMDS + + D intron 23:51280200

MARF1 n + + P downstream (24 bp) 25:14138518

SCD +++ + D downstream (1134 bp) 26:21140458

PRDX3 n - - P,L upstream (3744 bp) 26:39685136

The relative direction of the variant effect on milk traits is shown as ‘+’ or ‘-‘. The direction of effects for fat and protein percent (F%, P%) are included if their

posterior probability was > 0.2 (AUS BayesRC Lact) as further validation of the Yield traits
aThe strength of RNAseq differential gene expression in lactating mammary tissue compared to 17 other body tissues [22]. Differential expression is indicated if

log2 fold change (LFC) > 1 (ie. >21 increase in expression) and p-value < 1.0e-4 and “n” indicates no differential expression. The strength of expression is indicated

as + for a LFC value between 1 to 2, ++ for 2 to 5, +++ for 5 to10 and ++++ for above 10
bEvidence for candidate genes included one or more of the following: a member of the Lact gene set (L), associated with more than one milk trait (P), differentially

expressed in mammary tissue (D), and/or validated in the DANZ analysis (V)
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thousand [23–26]. Several studies have also provided strong

evidence that within a QTL region, there are multiple al-

leles segregating that affect the trait (eg [23, 27]). However,

provided that there is good prior biological information

available, the BayesRC model should provide an advantage

independent of the exact distribution of QTL effects.

In real dairy cattle data the increase in accuracy of

genomic prediction with BayesRC was only modest at

best. This is probably because the class I and II enrich-

ment for non-zero effects was low (similar to the BayesRC

Seq model for simulated Trait 2) and most of the genetic

variance was explained by class III variants. For instance,

for Milk Yield the proportion of variance explained by

each class was approximately 6 % for class I, 13 % for class

II and 81 % for class III. Thus to increase the accuracy of

prediction, we need better prior biological information

about the genes and sites in the genome that are likely to

affect a particular trait. In human genetics the ENCODE

annotations may well provide this [28]. Also, we expected

the most difference between methods to be apparent in

the Australian Red validation (least related to the training

animals) but the lower reliability of these cow phenotypes

may have partially masked real differences.

Another factor limiting prediction accuracy with Bayes

RC in the real data is imperfect imputation of sequence

and/or missing causal variants. In addition to imperfect

imputation, we did not attempt to analyse full genome

sequence but concentrated on gene coding regions, so

undoubtedly a proportion of causal variants are missed.

However, the use of imputed sequence variants in coding

regions did generally increase the accuracy of genomic

prediction in simulated and real data compared to high

density SNP genotypes (Tables 4 and 5). In the real data it

also enabled the discovery of a number of rare variants

associated with milk traits that were not detected as

QTL regions using only high density SNP genotypes:

we gave two examples close to SMEK1 and CSH2 genes

(Additional file 1: Figure S3 and S4).

SMEK1 to our knowledge has not been documented

by other research groups as affecting milk production in

dairy cattle and was not in our Lact gene set. However,

it had a very high posterior probability and is a potential

candidate gene because it is plays a regulatory role in

the Insulin/IGF-1 signalling pathway [29] and is known

to be involved in mammalian hepatic gluconeogenesis

[30]. The Insulin/IGF-1 pathway influences key physio-

logical processes related to mammary gland development

such as cell proliferation and apoptosis. It is of course pos-

sible that the rare REG variant with the highest posterior

probability (AUS analysis) may not be the actual causal

mutation. A second REG variant, 1589 bp downstream

from SMEK1, was excluded from our analysis because it

was in perfect LD with our candidate REG variant. Also,

both these REG variants are in very high LD (r2 > 0.75)

with an NSC variant in SMEK1 which is predicted to have

a deleterious effect on the protein (based on SIFT [31]).

CSH2 codes for a chorionic somatomammotropin

hormone (a placental lactogen) which has been demon-

strated to play a role in bovine mammogenesis and milk

production [32] possibly by directly influencing the

proliferation of luminal mammary cells [33]. Again, the

variant identified in our study may not be the causal

mutation, but could be in high LD with one regulating

the expression of CSH2.

Table 9 Full names of the candidate genes listed in Table 8

Official Gene
Symbol

Gene Name

ROBO1 roundabout, axon guidance receptor, homolog 1
(Drosophila)

SLC37A1 similar to solute carrier family 37 member 1

PSMB2 proteasome (prosome, macropain) subunit, beta
type, 2

OGDH oxoglutarate (alpha-ketoglutarate) dehydrogenase
(lipoamide)

MYH9 myosin, heavy chain 9, non-muscle

NCF4 neutrophil cytosolic factor 4

ARNTL2 aryl hydrocarbon receptor nuclear translocator-like 2

MGST1 microsomal glutathione S-transferase 1

CSN2 beta casein

CSN3 kappa casein

GC group-specific component (vitamin D binding protein)

RDH8 retinol dehydrogenase 8 (all-trans)

TTC7B tetratricopeptide repeat domain 7B

PROM2 prominin 2

PAEP beta lactoglobulin

ABO ABO blood group (transferase A, alpha
1-3-N-acetylgalactosaminyltransferase; transferase B,
alpha 1-3-galactosyltransferase)

DGAT1 diacylglycerol O-acyltransferase homolog 1

COX6C cytochrome c oxidase subunit VIc

TRIM29 tripartite motif containing 29

KRT19 keratin 19

PTRF polymerase I and transcript release factor

ERGIC1 endoplasmic reticulum-golgi intermediate
compartment 1

GHR growth hormone receptor

SMEK1 SMEK homolog 1, suppressor of mek1

WARS tryptophanyl-tRNA synthetase

MLH1 mutL homolog 1, colon cancer, nonpolyposis type 2

GMDS GDP-mannose 4,6-dehydratase

MARF1 Meiosis arrest female 1(alias: KIAA0430)

SCD stearoyl-CoA desaturase (delta-9-desaturase)

PRDX3 peroxiredoxin 3
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The candidate GC gene (Group-specific Component)

in Fig. 5 encodes the vitamin D binding protein (VDBP)

which is the main transporter of vitamin D in plasma.

To our knowledge, no other independent studies have

suggested this gene is associated with milk traits although

it was included in our Lact gene set. The GC gene appears

to be actively involved in the transport of vitamin D3: first

transporting the sterol vitamin D3 from skin to liver, then

its 25(OH)D3 derivative from liver to kidney and finally

the active form, 1,25(OH)2D3, from kidney to the mam-

mary gland and other tissues (reviewed by [34]). In vitro

studies indicate that vitamin D3 is involved in regulating

growth and differentiation of mammary epithelial cells

[35–37] and these cells play a key role in determining the

level of milk production.

The candidate gene MYH9 (Fig. 6) codes for a cellular

myosin and to our knowledge has not been previously

published as a candidate gene affecting milk traits, but

was in our Lact gene list. It is known to play a role in

the actin cytoskeleton and has been found to be highly

expressed in terminal end buds of murine mammary tis-

sue [38] implying a key role in mammary gland develop-

ment. It may also be involved in controlling milk secretion

through involvement in tight junctions [39]. Of the other

two potential candidate genes for Milk Yield in Fig. 6,

NCF4 was included in our Lact gene set while CSF2RB

was not. However, CSF2RB was found to be highly over-

expressed in lactating mammary tissue compared to 17

other tissues [40]. CSF2RB codes for the β subunit of cyto-

kine receptors for the interleukin-3 family. The majority

of cytokine receptors, in addition to playing a key role in

immune signalling pathways, are involved in activation of

the JAK/STAT pathway [41] which is known to be import-

ant for regulating mammary gland development.

The two NSC variants identified with the highest

BayesRC Lact posterior probability in the PAEP (alias

beta-lactoglobulin) gene (Fig. 7a) are the “causal mutations”

that distinguish the well-known A and B forms of the

beta-lactoglobulin protein in milk whey [20]. A number

of studies have consistently found that animals homo-

zygous for the A form of beta-lactoglobulin have higher

concentrations of protein in their milk compared to those

homozygous for the B form (eg. [20, 42–44]). Our results

were in agreement with this: AA individuals having higher

Protein Yields than the AB and BB individuals. Although

the genetic basis of this effect has not yet been discovered,

it is possible that there is a regulatory variant in strong LD

with these two NSC variants (differentiating the A and B

protein) which leads to increased transcription of the A

form compared to the B form. The LD around the PAEP

gene region is extremely high in our data, in keeping with

the results of [20], possibly as a result of selection for pro-

tein yield in dairy cattle. We excluded 61 variants in a

10Kb region just upstream of PAEP from our analysis

because they were in perfect LD with our highest prob-

ability variant. It is therefore possible that any one of these

variants may be the causal mutation.

A number of the other candidate genes listed in Table 8

confirm previously documented examples of genes asso-

ciated with milk traits including: CSN2 and CSN3 (both

casein genes), DGAT1 and SCD (genes involved in fatty

acid synthesis), MGST1, TTC7B (lipid metabolism) and

GHR (growth hormone receptor) [45–52].

Some other genes in Table 8 that have not been previ-

ously documented as candidate genes for milk traits do

fall in previously identified QTL regions. An example of

this is KRT19 in which a NSC variant showed a strong

association with Milk Yield and was also in our Lact

gene set. This gene is one of a family of cytokeratins re-

sponsible for the structural integrity of epithelial cells

and is one of a tight cluster of 3 keratin genes (KRT19,

KRT15 and KRT17) all found to be highly over-expressed

in lactating mammary tissue compared to 17 other tissues

[40]. The KRT19 gene is a very plausible candidate gene

because it potentially affects the integrity of mammary

tissue, thereby indirectly affecting milk production. Some

REG variants in Table 8 lie closest to the gene listed, but

may in fact be associated with regulation of a different

gene in the same region that affects the trait.

Caveats

In theory it is possible to use many more classes in

BayesRC than the three used here. However, although

the biological priors are relatively uninformative, it is

likely that the Dirichlet prior distribution may still have

a moderately strong influence on the posteriors when

the number of variants in one class is relatively low. When

priors carry much uncertainty, such as our Lact classes, we

recommend maintaining reasonable class sizes (more than

1000 variants) to ensure that the data has a strong influence

on the posterior parameters. The main motivation for cre-

ating more than two classes should be the expectation that

enrichment for QTL may differ between classes of variants.

A drawback of the BayesR and BayesRC methods is

that they are computationally demanding, so it is import-

ant to develop faster Bayesian analytical approaches [53].

For 10,300 training individuals with ~994,000 SEQ

variants and 40,000 MCMC iterations, a multi-threaded

C++ version of the program took ~300 h per thread

with ~80Gb memory (where each thread runs one of

the replicate MCMC chains). Computation time increased

approximately linearly with number of individuals and

number of variants. Speed and Balding [54] proposed a

very computationally efficient “MultiBLUP” method which

differs from the standard GBLUP approach by allowing a

mixture of normal distributions of SNP effects to be fitted

similar to Bayesian approaches. The “biological priors” re-

quired for the MultiBLUP method are estimates of
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genome segment variance which are then used to partition

variants into groups representing different expected effect-

size variances. The authors reported an increased accuracy

of genomic prediction compared to standard GBLUP par-

ticularly where some causal variants with a large effect

were segregating. The prior biological information required

for MultiBLUP is very similar to the requirements for

BayesRS [6] but the former is likely to be considerably

more computationally efficient. However, it is unlikely that

MultiBLUP would show an advantage over standard

GBLUP using our broad biological classifications because

in one class there can be a wide range in the size of vari-

ant effects. Also, for QTL discovery, MultiBLUP would

likely still show similar limitations as the standard GBLUP

because the effect of a single true causal variant will tend

to be spread over multiple SNP within segments.

If LD is very high across extended regions of the gen-

ome, and QTL effects are many and small, there is likely

to be little difference between Bayesian and GBLUP gen-

omic prediction when very dense markers are used [5].

We argue that for domestic species with small effective

population sizes and resulting long-range LD, it is useful

to combine data from more than one breed to reduce

the strength of long-range LD. Also, prior filtering of

sequence data helps to reduce the likelihood of finding

extended regions of dense variants in strong LD with a

single causal variant. The accuracy of genomic prediction

using sequence variants will then persist better in less re-

lated individuals because QTL effect estimates are more

precise (i.e., less likely to be spread across multiple vari-

ants in extended chromosome segments). Notably, our re-

sults demonstrate that when training and validation sets

are very highly related there will be little difference in the

observed accuracy between methods. Therefore, to expose

the true precision of the QTL effect estimates, it is im-

portant to compare methods using validation sets which

are not highly related to the training sets (Fig. 1).

Conclusion

Our new BayesRC method provides a flexible approach to

improving the accuracy of genomic prediction and QTL dis-

covery, by taking advantage of prior biological knowledge

that is already available for a range of traits and species. The

approach used in BayesRC to incorporate biological priors is

appealing because it is straightforward to apply and is incor-

porated objectively based on evidence from the data being

analysed. Further research on discovering functional regions

of the genome, as well as improving sequence and imput-

ation accuracy of rare variant prediction are critical to realis-

ing the full potential of this and other similar methods.

Data availability

The 1000 Bull Genomes Project (Run 2) has published

the sequences of 129 Holstein and 15 Jersey bulls [40]

that were used as our reference for sequence imputation.

Project accession code (NCBI Sequence Read Archive -

SRA), SRP039339 and run accessions; SRR1188706,

SRR1262533, SRR1262536, SRR1262538, SRR1262539,

SRR1262660 - SRR1262778, SRR1262780, SRR1262783,

SRR1262785- SRR1262787, SRR1262789 – SRR1262803).

An additional 19 sequences were included in our reference

(12 Jersey and 7 Holstein) from Run3.0 1000 Bull Genomes

Project. The list of 2.875 million sequence variants used

for the analysis are available on request. The list of “Lacta-

tion” candidate genes are available in Additional file 2.

BayesR code is available at: http://www.cnsgenomics.com/

software/. The BayesRC compiled program is available on

request for non-commercial research.
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