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Abstract—The landscape towards 5G wireless communication
is currently unclear, and, despite the efforts of academia and
industry in evolving traditional cellular networks, the enabling
technology for 5G is still obscure. This paper puts forward a
network paradigm towards next-generation cellular networks,
targeting to satisfy the explosive demand for mobile data while
minimizing energy expenditures. The paradigm builds on two
principles; namely caching and multicast. On one hand, caching
policies disperse popular content files at the wireless edge, e.g.,
pico-cells and femto-cells, hence shortening the distance between
content and requester. On other hand, due to the broadcast
nature of wireless medium, requests for identical files occurred
at nearby times are aggregated and served through a common
multicast stream. To better exploit the available cache space,
caching policies are optimized with concerns on multicast trans-
missions. We show that the multicast-aware caching problem
is NP-Hard and develop solutions with performance guarantees
using randomized-rounding techniques. Trace-driven numerical
results show that in presence of massive demand for delay
tolerant content, combining caching and multicast can indeed
reduce energy costs. The gains over existing caching schemes
are 19% when users tolerate delay of three minutes, increasing
further with the steepness of content access pattern.

Index Terms—Content Caching, Multicast Delivery, Network
Optimization, 5G Wireless Networks.

I. INTRODUCTION

A. Motivation

We are witnessing an unprecedented worldwide growth of

mobile data traffic that is expected to continue at an annual rate

of 45% over the next years, reaching 30.5 exabytes per month

by 2020 [2]. To handle this “data tsunami”, the emerging

5th generation (5G) systems need to improve the network

performance in terms of energy consumption, throughput and

user experienced delay, and at the same time make a better

use of the network resources such as wireless bandwidth and

backhaul link capacity. Two candidate solutions that have been

investigated are caching and multicast.

On the first issue, there is an increasing interest for in-

network caching architectures where operators cache popular
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content files at the Evolved Packet Core (EPC) or at the

Radio Access Network (RAN), e.g., in dedicated boxes or at

the cellular base stations. The common denominator is that

they distribute storage resources near the end-user (rather than

stored in data centers). In the context of heterogeneous cellular

networks (HCNs) [3], caches can be installed at small-cell

base stations (SBSs), e.g., pico-cells and femto-cells, targeting

to offload traffic from the collocated macro-cell base station

(MBS) [4]. Measurement studies have revealed up to 66%
reduction in network traffic by using caching in 3G [5] and

4G [6] networks. Meanwhile, the wireless industry began to

commercialize systems that support caching with examples

including Altobridge’s “Data at the Edge” solution [7], Nokia

Siemens Networks’ liquid application [8] and Saguna Net-

works’ Open RAN platform [9].

On the second issue, many operators take advantage of mul-

ticast to efficiently utilize the available bandwidth of their net-

works in delivering the same content to multiple receivers [10].

For example, multicast is often used for delivering spon-

sored content, e.g., mobile advertisements in certain locations,

downloading news, stock market reports, weather and sports

updates [11]. Meanwhile, multicast has been incorporated in

3GPP specifications in which the proposed technology for LTE

is called Evolved Multimedia Broadcast and Multicast Ser-

vices (eMBMS) [12]. Commercial examples of eMBMS are

Ericsson and Qualcomm LTE Broadcast solutions [13], [14].

This technology can be used across multiple cells where the

transmission across them is synchronous using a common

carrier frequency. Hence, multicast consumes a subset of the

radio resources needed by a unicast service. The remaining

resources can be used to support transmissions towards other

users, thus enhancing network capacity.

Current proposals from academia and industry consider

caching and multicast independently one from the other and

for different purposes. On one hand, caching is used to shift

traffic from peak to off-peak hours by exploiting the periodic

pattern of traffic generation. This is realized by filling the

caches with content during off-peak hours (e.g., nighttime),

and serving requests for the stored content by the caches

during peak-time (e.g., daytime). On other hand, multicast

is used to reduce energy and bandwidth consumption by

serving concurrent user requests for the same content via a

single point-to-multipoint transmission instead of many point-

to-point (unicast) transmissions.

Intuitively, caching should be effective when there is enough

content reuse; i.e., many recurring requests for a few content

files appear over time. Multicast should be effective when there

is significant concurrency in accessing information across



users; i.e., many users concurrently generate requests for the

same content file. Such scenarios are more common during

crowded events with a large number of co-located people that

are interested in the same contents, e.g., during sporting games,

concerts and public demonstrations with often tens of thousand

attendees [15], [16]. In next generation 5G systems where the

demand for mobile data is often massive, and a variety of

new services such as social networking platforms and news

services employ the one-to-many communication paradigm,

e.g., updates in Tweeter, Facebook, etc, it is expected that

multicast will be more often applied.

Clearly, it is of paramount importance to design caching and

multicast mechanisms for servicing the mobile user requests

with the minimum possible energy expenditures. For a given

anticipated content demand, the caching problem asks for

determining in which caches to store each content file. This

becomes more challenging in HCNs where users are covered

by multiple base stations and hence content can be delivered

to requesters through multiple network paths [17]-[20]. Also,

the caching problem differs when multicast is employed to

serve concurrent requests for the same content file. Compared

to unicast communication, multicast incurs less traffic as the

requested file is transmitted to users only once, rather than with

many point-to-point transmissions. Hence, the caching prob-

lem needs to be revisited to effectively tackle the following

questions: Can caching and multicast be combined to reduce

energy costs of an operator? If yes, what is the condition and

where the gains come from?

B. Methodology and Contributions

In order to answer the above questions, we consider a HCN

model that supports caching and multicast for the service of

the mobile users. Requests for the same content file generated

during a short-time window are aggregated and served through

a single multicast transmission when the corresponding win-

dow expires (batching multicast [21]). To ensure that the user

experienced delay will be limited, the duration of this window

should be as small as possible. For example, users may tolerate

a very small start-up delay for video streaming applications,

whereas larger delay may be acceptable for downloading

news, stock market reports, weather and sports updates. The

multicast stream can be delivered either by a SBS that is

in communication range with the requesters in case that the

respective file is available in its cache, or by the MBS which

has access to the entire file library through a backhaul link.

Clearly, a MBS multicast transmission can satisfy requests

generated within the coverage areas of different SBSs that have

not cached the requested file. However, it typically induces

higher energy cost than a SBS, since the distance to the

receiver is larger and it also needs to fetch the file via its

backhaul link.

First, we demonstrate through simple examples how mul-

ticast affects the efficiency of caching policies. Then, we

introduce a general optimization problem (which we name

MACP) for devising the multicast-aware caching policy that

minimizes the overall energy cost. Our model explicitly takes

into consideration: (i) the heterogeneity of the base stations

which may have different cache sizes and transmission cost

parameters (e.g., due to their different energy consumption

profile [22]), and (ii) the variation of request patterns of the

users which may ask for different content files with different

intensity. We formally prove the intractability of the MACP

problem by reducing it to the set packing problem, which is

NP-Hard [23]. Following that, we develop an algorithm with

performance guarantees under the assumption that the capacity

of the caches can be expanded by a bounded factor. This

algorithm applies linear relaxation and randomized rounding

techniques. Then, we describe a simple heuristic solution

that can achieve significant performance gains over existing

caching schemes.

Using traffic information from a crowded event with over

fifty thousand attendees [15], we investigate numerically the

impact of various system parameters, such as delay tolerance

of user application, SBS cache sizes, base station transmission

costs and demand steepness. We find that the superiority of

multicast-aware caching over traditional caching schemes is

highly pronounced when: (i) the user demand for content is

high and (ii) the user requests for content are delay-tolerant.

The gains are 19% when users tolerate delay of three minutes,

increasing further with the steepness of content access pattern.

Our main technical contributions are as follows:

• Multicast-aware caching problem (MACP). We propose a

novel caching paradigm and an optimization framework

building on the combination of caching and multicast

techniques in HCNs. This is important, as content de-

livery via multicast is part of 3GPP standards and gains

increasing interest.

• Complexity Analysis. We prove the intractability of the

MACP problem by reducing it to the set packing problem

[23]. That is, we show that MACP is NP-Hard even

to approximate within a factor of O(
√
N), where N is

the number of SBSs in a macro-cell. This result reveals

how the consideration of multicast further perplexes the

caching problem.

• Solution algorithms. Using randomized rounding tech-

niques, we develop a multicast-aware caching algorithm

that achieves performance guarantees under the assump-

tion that the capacity constraints can be violated in a

bounded way. Also, we describe a simple-to-implement

heuristic algorithm that provides significant performance

gains compared to the existing caching schemes.

• Performance Evaluation. Using system parameters driven

from real traffic observations in a crowded event, we

show the cases where the next generation HCN systems

should optimize caching with concerns on multicast de-

livery. The proposed algorithms yield significant energy

savings over existing caching schemes, which are more

pronounced when the demand is massive and the user

requests can be delayed by three minutes or more.

The rest of the paper is organized as follows: Section II

describes the system model and defines the MACP problem

formally. In Section III, we show the intractability of the

problem and present algorithms with performance guarantees

and heuristics. Section IV presents our trace-driven numerical



results, while Section V reviews our contribution compared to

the related works. We conclude our work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we introduce the system model, we provide

a motivating example that highlights how multicast affects the

efficiency of caching policies and, finally, we formally define

the multicast-aware caching optimization problem.

A. System Model

We study the downlink operation of a heterogeneous cellular

network (HCN) like the one depicted in Fig. 1. A set N of

N small-cell base stations (SBSs), e.g., pico-cells and femto-

cells, are deployed within a macro-cell coexisting with the

macro-cell base station (MBS). The MBS can associate to any

user in the macro-cell, while SBSs can associate only to users

lying in their coverage areas. Each SBS n is equipped with

a cache of size Sn ≥ 0 bytes which can be filled in with

content files fetched from the core network through a backhaul

link. Since the SBS backhaul links are usually of low-capacity,

e.g., often facilitated by the consumers’ home networks such

as Digital Subscriber Line (DSL) [24], they cannot be used

to download content on demand to serve users. Instead, they

are only used to periodically refresh the content stored in the

caches [17]-[20]. In contrast, the backhaul link of the MBS

is of sufficient capacity to download the content requested by

users. Therefore, a user can be served either by the MBS or

by a covering SBS provided that the latter has cached the

requested content file.

The user demand for a set of popular files and within

a certain time period is assumed to be known in advance,

as in [17]-[20], [25]-[28] which is possible using learning

techniques [29], [30]. Let I indicate that collection of files,

with I = |I|. For notational convenience, we consider all files

to have the same size normalized to 1. This assumption can

be easily removed as, in real systems, files can be divided into

blocks of the same length [17], [27]. The SBS coverage areas

can be overlapping in general, but each user can associate to

only one SBS according to a best-server criterion (e.g., highest

SNR rule). We denote with λni ≥ 0 (requests per time unit)

the average demand for file i generated by the users associating

to SBS n. Also, λ0i ≥ 0 denotes the average demand for file

i generated by users who are not in the coverage area of any

of the SBSs1 .

The operator employs multicast (such as eMBMS) for trans-

mission of the same content to multiple receivers. In this case,

user requests within a short-time window are aggregated and

served through a single multicast stream when the correspond-

ing window expires. We denote with d (time units) the time

duration of this window, also called multicast period. Clearly,

it is important to identify which SBSs receive file requests

within the multicast period. To this end, we denote with pni the

probability that at least one request for file i is generated by

1 Notice that the current practice of operators is to deploy SBSs to certain
areas with high traffic. Hence, other less congested areas may be covered only
by the MBS.

Fig. 1. Graphical illustration of the discussed model. The circles represent the
coverage areas of the MBS and the SBSs. To ease presentation, the backhaul
links of the SBSs are not depicted.

users associating to SBS n (area n)2 during a multicast period.

Similarly, p0i indicates the respective probability for the users

that are not in the coverage area of any of the SBSs (area n0).

For example, if the number of requests for file i associated to

SBS n follows the Poisson probability distribution with rate

parameter λni, it becomes:

pni = 1− e−λnid. (1)

We then define the collection of all subsets of areas excluding

the empty set as follows:

R = (r : r ⊆ N ∪ n0, r 6= ∅). (2)

We also define with qri the probability that at least one request

for the file i ∈ I is generated within each one of the areas

r ∈ R during a multicast period. For example, if requests

are generated independently among different areas, then the

following equation holds:

qri =
∏

n∈r

(pni) ·
∏

n/∈r

(1− pni). (3)

Our model is generic, since it allows for any probability

distributions pni and qri.
The power consumption is typically higher for MBS com-

pared to SBSs, while it depends on the channel conditions and

the distance between transmitter and receiver. Let Pn (watts)

denote the minimum transmission power required by MBS

for transmitting a file to a user in area n. According to SINR

criteria this is given by [31], [32]:

Pn = Ps −Gn −Gm + Lmn +Ψn + 10 log10 Mn. (4)

In the above equation Ps is the receiver sensitivity for the

specific service, parameter Gn represents the antenna gain of

a user in area n and Gm represents the antenna gain of MBS.

Lmn is the path loss between MBS and a user in area n
which depends on the channel characteristics and the distance

between MBS and user, Ψn is the shadow component derived

2 With a slight abuse of notation we use the same index for base stations
and their covering areas.



by a lognormal distribution and Mn is the number of resource

blocks assigned to a user in area n. A similar definition holds

for the transmission power of the SBSs.

We consider the more general case in which both the

MBS and the SBSs employ multicast. Namely, a multicast

transmission of SBS n ∈ N satisfies the requests for a

cached file generated in area n, while a MBS multicast

transmission satisfies the requests generated in different areas

(and requests in area n0) where the associated SBSs have

not cached the requested file. Let n∗ denote the area that

requires the highest transmission power in a subset r ∈ R,

i.e., n∗ = argmaxn∈rPn. Then, to multicast a file to all the

users in r, the power consumption required by MBS is given

by [33]:

cWr = Pn∗ = maxn∈rPn. (5)

Similarly, cn denotes the power consumption required by SBS

n for multicasting a cached file to its local users, where in

general cn ≤ cWr, ∀n, r. Finally, we denote with cB ≥ 0 the

power consumed for transferring a file via the backhaul link

of the MBS [34].

Before we introduce formally the problem, let us provide

a simple example that highlights how the consideration of

multicast transmissions perplexes the caching problem.

B. Motivating Example

Let us consider a multicast service system with two SBSs

(N = {1, 2}) and three files (I = {1, 2, 3}). Each SBS can

cache at most one file because of its limited cache size. We

set cB + cWr = 1 ∀r, c1 = c2 = 0 and d = 1. We also

set the generation of request to follow a Poisson probability

distribution. Finally, we set λ11 = 0.51, λ12 = 0.49, λ13 = 0,

λ21 = 0.51, λ22 = 0, and λ23 = 0.49, which imply that

p11 = 0.3995, p12 = 0.3874, p13 = 0, p21 = 0.3995, p22 = 0
and p23 = 0.3874 (cf. equation (1)).

In a conventional system, each user request is served via

a point-to-point unicast transmission. It is well known that

placing the most popular files with respect to the local demand

in each cache is optimal (in terms of the overall energy cost)

in this setting. Hence, the optimal caching policy places file

1, which is the most popular file, to both SBS caches. By

applying the above caching policy to the multicast service

system that we consider here, all the requests for file 1 will

be satisfied by the accessed SBSs at zero cost. The requests

within SBS 1 for file 2 and the requests within SBS 2 for file 3
will be served by the MBS with cB+cWr = 1 cost each (Fig.

2(a)). Assuming independent generation of requests, the total

energy cost will be: (cB + cW1) ·p12 · (1−p23)+(cB + cW2) ·
(1− p12) · p23 + (cB + cW1 + cB + cW2) · p12 · p23 = 0.7747,

where in the last term the cost is 2 instead of 1 because two

different files are requested for download and thus two MBS

transmissions are required for serving the requests.

However, if we take into consideration the fact that the user

requests are aggregated and served via multicast transmissions

every d = 1 time unit, then the optimal caching policy

changes; it places file 2 to SBS 1 and file 3 to SBS 2. In

this case, all the requests for file 1 will be served by the MBS

via a single multicast transmission of cost cB+cWr = 1 (Fig.

(a) Conventional caching. (b) Multicast-aware caching.

Fig. 2. An example with two SBSs and three files when (a) conventional
and (b) multicast-aware caching is applied. The labels below SBSs represent
the cached files. The labels on the top represent the files delivered by MBS.

2(b)). The requests for the rest files will be satisfied by the

accessed SBSs at zero cost. Hence, the total energy cost will

be: (cB + cW1) ·p11 · (1−p21)+(cB + cW2) · (1−p11) ·p21+
(cB + cW12) · p11 · p21 = 0.6394 < 0.7747.

This example demonstrated the inefficiency of conventional

caching schemes that neglect multicast transmissions when

determining the file placement to the caches. Novel schemes

are needed that combine caching with multicast to better

exploit the available cache space.

C. Problem Formulation

Let us introduce the binary optimization variable xni that

indicates whether file i ∈ I is stored in the cache of SBS

n ∈ N (xni = 1) or not (xni = 0). These variables constitute

the caching policy of the operator:

x = (xni ∈ {0, 1} : n ∈ N , i ∈ I). (6)

We recall that the files will be transferred to the SBS caches

through the backhaul links at the beginning of the period

of study. Clearly, this operation consumes power. Power is

also consumed by the caches themselves, with the exact value

depending on the caching hardware technology, e.g., solid state

disk (SSD) or dynamic random access memory (DRAM) [35].

We capture the above cost factors by the term cS which

denotes the power consumed by storing a file in a SBS cache

amortized over a multicast period.

We also use the binary optimization variable yri to indicate

whether a MBS multicast transmission will occur when a

subset of areas r ∈ R receive requests for a file i ∈ I (yri = 1)

or not (yri = 0). These variables constitute the multicast policy

of the operator:

y = (yri ∈ {0, 1} : r ∈ R, i ∈ I). (7)

Clearly, a MBS multicast will occur (yri = 1) when at least

one requester cannot find i in an SBS cache. This implies that

at least one of the following conditions holds: (i) a request for

file i is generated within an area that is not in the coverage

area of any of the SBSs, i.e., n0 ∈ r, or (ii) a request for file

i is generated by a user associated to an SBS n ∈ r \ n0, but

the latter has not stored in its cache the requested file. Hence,



yri should satisfy the following inequalities:

yri ≥ 1{n0∈r}, ∀r ∈ R, i ∈ I, (8)

yri ≥ 1− xni, ∀r ∈ R, i ∈ I, n ∈ r, (9)

where 1{.} is the indicator function, i.e., 1{b} = 1 iff condition

b is true; otherwise 1{b} = 0.

Let us now denote with Ji(y) the energy cost for servicing

the requests for file i that are generated within a multicast

period, which clearly depends on the multicast policy y of

the operator. For each subset of areas r that may generate

requests for file i within a time period, a single MBS multicast

transmission of cost cB + cWr occurs, if a requester cannot

find i in an accessed SBS (yri = 1). In other case (yri = 0),

all the requests are satisfied by the accessed SBSs, where the

requests in area n incur cost cn. Hence:

Ji(y) =
∑

r∈R

qri ·
(
yri ·(cB+cWr)+(1−yri) ·

∑

n∈r

cn

)
. (10)

Table I summarizes the key notation used throughout the paper.

The Multicast-Aware Caching Problem (MACP) determines

the caching and multicast policies that minimize the expected

energy cost within a multicast period3 :

minimizex,y
∑

n∈N

∑

i∈I

(cS · xni) +
∑

i∈I

(Ji(y)), (11)

subject to: (8), (9),
∑

i∈I

xni ≤ Sn, ∀n ∈ N , (12)

xni ∈ {0, 1}, ∀n ∈ N , i ∈ I, (13)

yri ∈ {0, 1}, ∀r ∈ R, i ∈ I, (14)

where the first term in the objective function is the caching

cost, and the second is the servicing cost. Inequalities in (12)

ensure that the total amount of data stored in a cache will not

exceed its size. Constraints in (13), (14) indicate the discrete

nature of the optimization variables.

MACP is an integer programming problem, and hence, is in

general hard to solve. Also, its objective function in (11) has

an exponentially long description in the number of SBSs N ,

since the summation in Ji(y) is over all subsets r ∈ R. As

we formally prove in the next section, MACP is an NP-Hard

problem.

III. COMPLEXITY AND SOLUTION ALGORITHMS

In this section, we prove the high complexity of the MACP

problem and present solution algorithms with performance

guarantees and heuristics.

A. Complexity

In this subsection, we prove that the MACP problem cannot

be approximated within any ratio better than the square root of

the number of SBSs. The proof is based on a reduction from

the well known NP-Hard set packing problem (SPP) [23]. In

3 We emphasize that our model is focused on the energy consumed
for caching and transmitting data to users. Hence, other factors such as
cooling [22] are left outside the scope of our study.

TABLE I
KEY NOTATIONS

Symbol Physical Meaning

n0 Area that is out of coverage of all SBSs

n SBS (area) belonging to the set N
r Subset of areas belonging to the collection R
i File belonging to the set I
Sn Cache capacity of SBS n

cS Energy cost for storing a file in a SBS cache

cB Energy cost for multicasting a file via MBS backhaul

cWr Energy cost for multicasting a file from MBS to areas r

cn Energy cost for multicasting a file from SBS n

λni Average demand in area n for file i

d Duration of multicast period

pni Probability that requests for file i appear in area n within d

qri Probability that requests for file i appear in areas r within d

xni Caching decision for file i to SBS n

yri Indicator of MBS multicast for serving file i in areas r

Ji(y) Energy cost for servicing the requests for file i

other words, we prove that SPP is a special case of MACP.

Particularly, the following theorem holds:

Theorem 1. It is NP-Hard to approximate MACP within any

ratio better than O(
√
N).

Theorem 1 is of high importance, since it reveals how

the consideration of multicast transmissions further perplexes

the caching problem. In order to prove Theorem 1 we will

consider the corresponding (and equivalent) decision problem,

called Multicast-Aware Caching Decision Problem (MACDP).

Specifically:

MACDP: Given a set N of SBSs, a set I of files, the cache

sizes Sn ∀n ∈ N , the costs cS , cB , cWr and cn ∀r ∈ R, n ∈
N , the multicast period d, the probabilities qri ∀r ∈ R, i ∈ I,

and a real number Q ≥ 0, we ask the following question: do

there exist caching and multicast policies x, y, such that the

value of the objective function in (11) is less or equal to Q
and constraints (8),(9),(12),(13),(14) are satisfied?

The set packing decision problem is defined as follows:

SPP: Consider a finite set of elements E and a list L
containing subsets of E . We ask: do there exist k subsets in

L that are pairwise disjoint?

Lemma 1. SPP problem is polynomial-time reducible to the

MACDP.

Proof: Let us consider an arbitrary instance of the SPP
decision problem and a specific instance of MACDP with N =
|E| SBSs, i.e., N = {1, 2, . . . , |E|}, I = |L| files, i.e., I =
{1, 2, . . . , |L|}, unit-sized caches (Sn = 1 ∀n ∈ N ), cS = 0,

cB + cWr = 1 and cn = 0 ∀r ∈ R, n ∈ N . Parameter d is

any positive number, and the question is if we can satisfy all

the user requests with energy cost Q = 1 − k
|L| , where k is

the parameter from the SPP. The important point is that we

define the qri probabilities as follows:

qri =

{
1/|L|, if r = L(i)
0, else

(15)

where L(i) is the ith component of the list L. Notice that

with the previous definitions, L(i) contains a certain subset



Fig. 3. An example of the reduction from SPP with E = {1, 2, 3}, L =
{{1}, {1, 2}, {2, 3}} and k = 2. In the MACDP instance there are N =
|E| = 3 SBSs and I = |L| = 3 files. There is a solution to MACDP of

cost Q = 1 − 2

3
that places file 1 to SBS 1 and file 3 to SBSs 2 and 3.

Accordingly, the solution to SPP picks k = 2 subsets: L(1) = {1} and
L(3) = {2, 3}.

of elements of E . For the MACDP, under the above mapping,

this corresponds to a subset of SBSs asking with a non-zero

probability file i. Moreover, with (15) we assume that these

probabilities are equal for all files i ∈ I and have value 1/|L|.
If the MBS serves all the requests, then the MACDP

problem has a value (cost) of cB + cWr = 1 (the worst case

scenario). For each file i that the operator manages to serve

completely through local caching at the SBSs, the operator

reduces its cost by (cB + cWr) · qri = 1/|L|. This reduction

is ensured only if the file is cached in all the SBSs n ∈ r for

which qri = 1/|L|. Therefore, in order to achieve the desirable

value Q = 1− k
|L| , we need to serve locally the requests for k

files. That is, to find k subsets of SBSs where the file requested

by these SBSs will be cached (so as to avoid MBS multicasts).

Notice that each cache can store up to one file. Hence, the

caching decisions should be disjoint with respect to the SBSs.

For example, in Fig. 3, SBS 1 cannot store both files 1 and 2,

because S1 = 1. This ensures that the subsets {1} and {1, 2}
in the SPP problem will not be both selected. In other words,

the value of the objective function in (11) can be less or equal

to 1− k
|L| , if there exist k subsets in L that are pairwise disjoint.

Conversely, if a Set Packing for some k exists, then for each

subset L(i) that is picked in it, one can place the file i to the

cache of each one of the SBSs n ∈ L(i) corresponding to

this subset. At most one file is placed in each cache, since the

selected subsets in the list are pairwise disjoint. The cost will

be equal to 1− k
|L| .

SPP is NP-Hard and moreover it is inapproximable within

O(
√
|E|) [23]. According to the reduction, we create a SBS

for each one of the elements in E , and hence it holds |E| = N ,

which completes the proof of Theorem 1.

B. Algorithm with performance guarantees

In this subsection, we present a caching algorithm with

performance guarantees. We first note that, based on Theorem

1, it is unlikely to find a tight approximate solution to the

MACP problem. Hence, we follow an alternative approach by

letting the solution to violate the cache capacity constraints

Algorithm 1: Randomized rounding algorithm with pa-

rameter µ ∈ (0, 1
2 )

1 Let (x†,y†) be the optimal solution to LR(MACP);

2 Choose m ∈ [ 12 − µ, 1
2 + µ] uniformly at random;

3 Let A = {(r, i) : r ∈ R, i ∈ I, y†ri ≥ m};
4 Let B = {(r, i) : r ∈ R, i ∈ I, y†ri < m};
5 Set yri = 1 ∀(r, i) ∈ A, and yri = 0 ∀(r, i) ∈ B;

6 for n ∈ N , i ∈ I do

7 if ∃ r : yri = 0 and n ∈ r then
xni ← 1;

else
xni ← 0;

end

end

8 Output x,y;

in equation (12) by a bounded factor. Such a constraint

violation turns out to greatly facilitate the solution of the

problem. Following that, we present a provably near-optimal

solution algorithm applying linear relaxation and randomized

rounding techniques, variants of which have been also used

for optimizing graph cuts [36].

To start, we introduce the linear relaxation of the MACP

problem, which we refer to as LR(MACP). This differs from

MACP in that the variables in x and y can take any real value

within [0, 1], i.e., constraints (13) and (14) are replaced by

xni ∈ [0, 1], ∀n ∈ N , i ∈ I and yri ∈ [0, 1], ∀r ∈ R, i ∈ I.

The objective function and the constraints of the LR(MACP)

problem are linear with respect to the optimization variables.

Hence, it can be solved using standard linear optimization

techniques [37]. We need to emphasize at this point that the

number of optimization variables in the LR(MACP) problem

is non-polynomial to the number of SBSs N , since there is

a variable for each subset r ∈ R (equation (9)). In practice

though, the number of SBSs in a macro-cell is small (e.g.,

a few tens), and hence we can apply software toolboxes like

CPLEX and Mosek [38] to efficiently solve LR(MACP).

Having found a fractional solution to the LR(MACP) prob-

lem, denoted with (x†,y†), the proposed algorithm applies

randomized rounding techniques to approximate the (integer)

solution of the MACP problem. Specifically, given an input

parameter value µ ∈ (0, 1
2 ), the algorithm decides uniformly at

random a threshold value m ∈ [ 12−µ, 1
2 +µ]. Then, iteratively

it rounds each yri variable to 1 if its (fractional) value exceeds

m (subsetA); otherwise it takes the 0 value (subset B). Finally,

a variable xni will take the value 1, if there exists yri variable

with n ∈ r that was rounded to 0; otherwise it takes the 0

value. The procedure is summarized in Algorithm 1. Then,

we prove the following theorem.

Theorem 2. Given that cS = 0, Algorithm 1 outputs a solution

of energy cost at most 2
1−2µ times the optimal. The expected

amount of data placed in each cache is at most 1
2µ times its

capacity.

Proof: Let Vopt and V1 indicate the optimal solution value



for the MACP problem and the one achieved by Algorithm 1

respectively. Then, it holds that:

Vopt ≥
≥

∑

r∈R

∑

i∈I

qri

(
y†ri(cB + cWr) + (1− y†ri)

∑

n∈N

cn

)

≥
∑

(r,i)∈A

qriy
†
ri(cB + cWr) +

∑

(r,i)∈B

qri(1− y†ri)
∑

n∈N

cn

≥
∑

(r,i)∈A

qri(
1

2
− µ)(cB + cWr) +

∑

(r,i)∈B

qri(
1

2
− µ)

∑

n∈N

cn

= (
1

2
− µ)V1, (16)

where the first inequality is because the optimal solution of the

linear relaxed problem provides a lower bound to the optimal

solution value of the initial problem. The second inequality

is because we kept in the summation only a subset of the

terms and all the terms are positive, i.e., qri ≥ 0, y†ri ≥ 0,

1 − y†ri ≥ 0, cB + cWr ≥ 0, cn ≥ 0. The third inequality is

because: y†ri ≥ m ≥ 1
2 −µ, ∀(r, i) ∈ A and y†ri < m ≤ 1

2 +µ,

∀(r, i) ∈ B.

We also note that the m value is picked uniformly at random

from an interval of size 2µ. According to step 7 of Algorithm

1, a file i will be placed at a SBS cache n (xni = 1) only if

there exists r ∈ R for which n ∈ r and yri = 0. Variable yri
takes the zero value when m is larger than y†ri, which happens

with probability at most
1−y†

ri

2µ . Hence, the probability that xni

takes the value 1 is at most:

1− min
r∈R:n∈r

y†ri

2µ

(9)

≤ x†
ni

2µ
(17)

Summing over all the files yields that the expected amount of

data placed in a SBS cache n ∈ N is at most:

∑

i∈I

(x†
ni

2µ

) (12)

≤ 1

2µ
· Sn (18)

For example, picking the value µ = 1
6 will result a solution

of cost that is at most three times larger than the optimal

violating cache capacities by a factor less than three. Picking

a lower value µ yields a tighter performance guarantee, but

increases the factor within which the cache capacities are

violated. Hence, the parameter value µ can be used to control

the trade off between performance and robustness of the

solution, where different operators may decide different µ
values based on their priorities.

Constructing a feasible solution. We note that, as the

cache capacities of the SBSs may be violated by a factor of
1
2µ when applying Algorithm 1, the operator may not be able

to store and deliver through the SBSs all the files required

to ensure the performance guarantee of our algorithm ( 2
1−2µ ).

In this case, an option for the operator is to expand the cache

capacities by a factor of 1
2µ . Nevertheless, the operator is often

unwilling (or, incapable) to perform additional investments.

Hence, it is needed to convert the solution of Algorithm 1

into a feasible solution, i.e., a solution that satisfies equation

(12).

Algorithm 2: Heuristic algorithm

1 x← [0, ..., 0] ;

2 In ← 0, ∀n ∈ N ;

3 D ← N × I ;

4 for t = 1, 2, ...,
∑

n∈N (Sn) do

5 (n∗, i∗)← argmin(n,i)∈Df(x, n, i);

6 xn∗i∗ = 1;

7 D ← D \ (n∗, i∗);
8 In∗ ← In∗ + 1;

9 if In∗ = Sn∗ then

10 for i ∈ I such that (n∗, i) ∈ D do
D ← D \ (n∗, i)

end

end

end

11 Set y using equation (19);

12 Output x, y;

To obtain such a solution, we first note that for a given

caching policy x, we can compute the multicast policy y as

follows:

yri = max
{

max
n∈r\n0

{1− xni},1{n0∈r}

}
. (19)

Here, the external max term is equal to 1 if at least one of the

two internal terms is equal to 1, i.e., if a request for file i is

generated in area n0 ∈ r or a request for file i is generated

in an area n ∈ r and SBS n has not stored this file (cf.

inequalities (8),(9)). Keeping that in mind, we can write the

energy cost as a function of the caching policy x only. Then,

starting with the x solution outputted by Algorithm 1, we

iteratively perform the removal from a file to a SBS cache that

yields the minimum energy cost increment. At each iteration,

we ensure that the SBSs with remaining amount of cached

data, that is lower or equal to their capacities, are excluded

from content removal. The procedure ends when there is not

any available SBS to remove content.

Please notice that, the above conversion may deteriorate

the quality of the solution of Algorithm 1. Unfortunately, we

cannot derive a tight theoretical performance bound for the

obtained solution due to hardness of the MACP problem (as

we described in Theorem 1). However, as we show with an

extensive numerical study in the next section, the obtained

solution operates very close to the optimal one in realistic

settings.

C. Heuristic algorithm

Finally, we present an alternate algorithm firstly proposed in

our preliminary work in [1]. In contrast to the previous algo-

rithm, this algorithm finds a solution to the MACP problem in

a greedy manner, rather than using a systematic optimization

procedure. The proposed iterative algorithm starts with all the

caches being empty. At each iteration, it greedily places the

file to a cache that improves the objective function the most,

terminating if all the caches become full. The procedure is

summarized in Algorithm 2.



Specifically, In is the number of files already stored at the

cache of SBS n at every iteration of the algorithm, and (×)
denotes the cartesian product of two sets. The set D includes

all the pairs (n, i) for which the placement of file i at the

cache of SBS n has not been performed yet, and the cache of

n has not been filled up yet. Let f(x, n, i) be the energy cost

for the caching policy x, where we additionally set xni = 1.

Recall that, for a given caching policy the multicast policy y

can be found using equation (19). This way, f(.) is expressed

as a function of x only. At every iteration, Algorithm 2 picks

the pair (n∗, i∗) ∈ D with the lowest cost value f(x, n∗, i∗)
provided that this is lower than in the previous iteration. This

corresponds to the placement of the file i∗ at the cache of the

SBS n∗. If the cache of SBS n∗ becomes full, Algorithm 2

excludes all the pairs (n∗, i) ∀i from D. This way, no more

files will be stored at cache n∗.

Algorithm 2 terminates in
∑N

n=1(Sn) iterations. At each

iteration it evaluates f(.) after each one of N ·I candidate file

placements. Despite the lack of any theoretical performance

guarantees, Algorithm 2 performs markedly better than ex-

isting caching schemes, as we show numerically in the next

section. Moreover, Algorithm 2 can be extended to handle

scenarios where multiple MBSs share a backhaul link and

may coordinate their downloads over it to avoid unnecessary

data retransmissions. Consider for example two MBSs that

receive requests for file i from areas r1 ∈ R1 and r2 ∈ R2

respectively. File i can be multicasted to MBSs via the

backhaul link when at least one MBS requests it, i.e., when

yr1i = 1 or yr2i = 1. We denote with zr1∪r2 ∈ {0, 1} the

above event. Then, the energy cost for delivering file i is:

Ĵi(y, z) = (20)

=
∑

r1∈R1,r2∈R2

qr1∪r2i ·
(
zr1∪r2i · cB + yr1i · cWr1+

+ (1− yr1i) ·
∑

n∈r1

cn + yr2i · cWr2 + (1− yr2i) ·
∑

n∈r2

cn

)
,

where it is needed that zr1∪r2i ≥ yr1i and zr1∪r2i ≥
yr2i ∀r1 ∈ R1, r2 ∈ R2. Algorithm 2 can be directly extended

by considering the above function in place of Ji(y).

IV. PERFORMANCE EVALUATION

In this section, we numerically evaluate the energy savings

achieved by the proposed multicast-aware caching algorithms

over existing caching strategies. The main part of the eval-

uation is carried out for a sporting event with thousand

attendees [15] covered by a MBS and several SBSs. Additional

scenarios differing in the population density, number of SBSs

and energy costs are evaluated, which lead to an understanding

of how the savings vary in different regions and markets.

Overall, we find that moving from a conventional caching

scheme to one enhanced with multicast-awareness can indeed

reduce energy costs, and the benefits are higher when the

demand is massive and the user requests for content are delay-

tolerant. These benefits are up to 19% when the multicast

streams are delivered every 3 minutes, increasing further

with the steepness of content access pattern. In the rest of

this section, we discuss these results in detail; we begin by

Fig. 4. A stadium-wide deployment of SBSs. The dashed circles represent
the coverage areas of the SBSs. A user can be served either by the neighbor
SBS or by the collocated MBS.

describing the algorithms and the simulation setup used in the

later evaluations.

A. Algorithms and evaluation setup

Throughout, we compare the performance of five schemes:

1) Popularity-Aware Caching & Unicast Transmissions

(PAC-UT): The standard mode of operation currently in

use in many caching systems. Each SBS stores in its

cache the locally most popular files independently from

the others. Each user request is served by a separate

unicast transmission.

2) Popularity-Aware Caching & Multicast Transmissions

(PAC-MT): Similar to PAC-UT, differing in that all the

requests for the same file within the same multicast

period are served by a single multicast transmission (cf.

equation (19)).

3) Linear-Relaxed Multicast-Aware Caching & Multicast

Transmissions (LMAC-MT): We apply Algorithm 1 with

µ = 1/6 to decide the cache placement. The placement

is further processed to yield a feasible solution as

described in the end of Subsection III-B. All the user

requests for the same file within the same multicast

period are served by a single multicast transmission (cf.

equation (19)).

4) Greedy Multicast-Aware Caching & Multicast Trans-

missions (GMAC-MT): Similar to LMAC-MT, differing

in that we apply Algorithm 2 to decide the cache

placement.

5) Lower-bound (LB): The lower bound to the optimal

solution of the MACP problem found by solving the

linear relaxed problem (LR(MACP)). Since, this solution

is not feasible, it is only used as a benchmark for

measuring the efficacy of the proposed algorithms.

We need to emphasize that, in order to solve the linear

problem in LMAC-MT and LB schemes, we executed code

from the Visual Studio environment using the Mosek Opti-

mization Toolbox [38]. The main part of the code we wrote is

publicly available online in [39]. Hence, the presented results

can be easily verified for correctness, while we believe this
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Fig. 5. Energy cost achieved by PAC-UT, PAC-MT, LMAC-MT, GMAC-MT and LB schemes for various values of: (a) the multicast time

period, (b) the cache size of each SBS and (c) the base station transmission costs.

will encourage future experimentation with wireless caching

algorithms for the benefit of the research community.

The main part of the evaluation is carried out for a sporting

event with macrocell coverage and stadium-wide deployment

of N = 14 SBSs as in Fig. 4. The system parameters are

set using the measured trace of content requests collected

during the 2013 Superbowl in February at the New Orleans

Superdome [15]. During this event, over fifty thousand users

generated around three thousand requests for a set of I =
1, 000 popular files. Considering that all requests appear during

the four-hour period of the game, this results to an average rate

of ≈ 12.5 requests per minute. To model the user demand

in our evaluation, we uniformly spread the requests in the

trace across the coverage regions of the 14 SBSs. We further

spread these requests across files using a Zipf popularity

distribution with shape parameter z [40]. This results the

demand values λni for each SBS n and file i. We also set

λ0i = 0, ∀i ∈ I. For the computation of pni and qri, we

assume that request generation follows an independent Poisson

distribution (equations (1), (3)). Unless otherwise specified, all

files are of size 30MB and each SBS is equipped with a cache

that can store up to 20% of the entire file library size. Finally,

we set z = 1.2 (as in [40]) and d = 3 minutes, while our

evaluation also covers a wide range of z and d values.

Following recent measurement traces in 3G networks, we

approximate the power required by MBS for transmitting a file

to a user in an area n by Pn = 825/GMBS Watts (cf. Fig. 3

in [22]). Here, GMBS denotes the bandwidth capacity of the

MBS. Since, the MBS capacities are typically dimensioned

based on the anticipated demand, we set GMBS to be capable

of handling all the user requests in our simulation, i.e.,

GMBS = 12.5 · d (requests per multicast period); therefore

it is Pn = 825/(12.5 ·d) ∀n. Then, using equation (5) we set:

cWr = maxn∈r Pn ∀r. We later study the impact of hetero-

geneous cWr values, with power consumption increasing with

the distance between MBS and user. SBS energy consumption

is typically lower than the one for the MBS, due to the closer

proximity to the users, with the actual value depending on the

type of the SBS and its coverage. As a canonical scenario we

set cn = cWr/2, while our evaluation also covers the cases

where: cWr

cn
∈ {1, 2, ..., 10} [34]. The power consumption of

a wired backhaul link includes the power consumed at the

aggregation switches (1− α)Agswitch

Agmax
Pmax [34]. Here, Pmax

represents the maximum power consumption of the switch,

Agswitch is the amount of carried traffic, Agmax is the maxi-

mum amount of traffic a switch can handle and α ∈ (0, 1). We

set Pmax = 300 (Watts), Agmax = GMBS and α = 0.1 (as in

Table II in [34]); therefore it is cB = 30/(12.5 ·d). Finally, we

consider a caching cost of 6.25 · 10−12 Watts per bit (suitable

for SSD hardware technology [35]) and set cS accordingly.

B. Evaluation results

We compare the energy cost achieved by the above schemes

as a function of the duration of multicast period, the cache

sizes and the base station transmission costs. Following that,

we repeat the experiments for two macro-cells sharing a

backhaul link. Finally, we investigate how the population

density, the steepness of demand and the number of SBSs

impact the results.

Impact of the duration of the multicast period: Intu-

itively, multicast will be effective when there is significant

concurrency in accessing content across users, i.e., many

requests for the same file frequently appear within a multicast

period. Although, this may occasionally be the case for typical

urban macrocells with a few hundred or thousand users, our

analysis reveals that it may be particularly relevant during

crowded events with tens of thousand people collocated in

the same area. For the specific sporting event that we consider

in the evaluation, Fig. 5(a) shows the energy cost achieved

by the discussed schemes when the duration of the multicast

period d is varied within 1 to 10 minutes. We observe that

the performance gap between each one of the schemes that

enable mulitcast (PAC-MT, LMAC-MT, GMAC-MT and LB)

and the PAC-UT increases with d. This was expected, since

increasing d increases the probability of receiving multiple

requests for a file within a period. Importantly, the proposed

multicast-aware caching schemes (LMAC-MT, GMAC-MT)

consistently outperform PAC-MT, with the gains increasing

with d (up to 31%). Even for a relatively small value of d, the

proposed schemes achieve significant gains over PAC-MT. For

example, the gains are 19% for d = 3. This is important since

users are unlikely to tolerate large delays in receiving content.

Interestingly, the proposed schemes operate very close to LB

and hence the optimal solution (less than 7% gap).
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Fig. 6. The impact of (a) cost heterogeneity and (b) coordination between MBSs on algorithms’ performance.

Impact of cache sizes: We analyze the impact of the cache

sizes on the algorithms’ performance in Fig. 5(b). Here, the

cache size of each SBS is varied from 5% to 50% of the

entire file library size. As expected, increasing cache sizes

reduces energy costs for all schemes as more requests are

satisfied locally (without the participation of the MBS). PAC-

UT results in the largest energy cost compared to the rest

schemes (up to 35% difference), since the latter schemes

serve many aggregated requests via a single multicast instead

of many unicast transmissions. The proposed multicat-aware

caching schemes (LMAC-MT and GMAC-MT) consistently

outperform the popularity-aware caching scheme PAC-MT,

with the gains increasing with cache sizes (up to 20%). More

importantly, LMAC-MT and GMAC-MT operate very close

to LB -and hence the optimal solution- for all the cache sizes

(less than 7% worse).

Impact of base station transmission costs: We explore

the impact of the base station transmission cost parame-

ters on the algorithms’ performance in Fig. 5(c). Particu-

larly, we keep cWr constant and alter the cn values within

{cWr/1, cWr/2, ..., cWr/10}. We observe that as the ratio

cWr/cn increases, the energy cost achieved by all the schemes

decreases since the cost incurred by the service from the SBSs

becomes lower. The popularity-aware caching schemes (PAC-

UT and PAC-MT) are the most sensitive to this alteration.

Again, LMAC-MT and GMAC-MT outperform the popularity-

aware schemes, especially for low values of cWr/cn. For

cWr = cn, the gains are 51% and 27% when compared

to the PAC-UT and PAC-MT scheme respectively. However,

when cn values become relatively low compared to cWr, the

performance of the PAC-MT scheme comes very close to the

multicast-aware schemes. This is because, the file popularity

distribution is the same across all the SBSs (homogeneous

demand) in our experiment, and hence simply replicating the

(same) most popular files at all the caches drastically reduces

the number of multicast-transmissions employed by the MBS.

We explored the impact of heterogeneous demand across the

SBSs in our prior work [1] using synthetic data, where we

showed that GMAC-MT exhibits substantial gains over PAC-

MT and PAC-UT for arbitrarily low cn values.

The numerical results presented so far assume homogeneous

power consumption of the MBS across SBS areas, i.e., the

Pn values are the same. Nevertheless, the power consumption

typically varies depending on the distance between MBS and

receiver and the conditions of the channel. To capture the

above, we consider Pn to increase proportionally to the square

of the distance between MBS and SBS n. Then, we randomly

deploy the SBSs such that their distances from MBS range

within [1, 1], [0.5, 1.5] and [0, 2] km (Fig. 6(a)). In the

first case, all the SBSs are deployed on a perfect circle of

radius 1km around MBS and the power consumption of the

MBS is homogeneous as before (Pn = 825/(12.5 · d) ∀n).

In the rest scenarios Pn is heterogeneous. We observe that

the energy cost slightly increases for all the schemes as

Pn becomes more heterogeneous. Interestingly, the proposed

schemes consistently outperform the rest.

Extension to multiple MBSs: We now evaluate the scenario

of two MBSs sharing a backhaul link towards the core

network. The MBSs may operate independently one another or

coordinate their data downloading through the backhaul link.

Therefore, a natural question that arises is what benefits such

coordination may yield. Fig. 6(b) aims to shed light on this

question by considering the cases that the backhaul link is

wired or wireless. For the latter, we set the cB cost to be ten

times higher than the wired case. We find that coordination

can indeed reduce energy cost, but the gains are low (≤ 1%
and ≤ 5% for the wired and wireless case respectively). This

can be explained noting that most of the energy is consumed

at the links between MBS and users rather than the backhaul.

Impact of demand patterns and number of SBSs: The

demand patterns used in Fig. 5 and 6 may seem contrived,

but in fact, they are very much in line with recent traffic

measurements reported during crowded events [15]. To obtain

a holistic view of the benefits of enhancing the caching

scheme with multicast-awareness, we repeat the experiments

for different values of population density and steepness of

demand. Specifically, we consider ten scenarios with five to

fifty thousand users generating requests for files. The intensity

of demand for the case of fifty thousand people matches the

one used for the sporting game in Fig. 5 and 6. For the rest

choices, the demand intensity is scaled down proportionally

to the number of users. For each scenario, five different

choices of the Zipf shape parameter z are evaluated. Here,

z = 0.4 indicates an almost uniform content popularity
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Fig. 7. Gains of multicast-aware caching (GMAC-MT) over conventional caching (PAC-MT) as a function of (a) the intensity and

steepness of demand for content and (b) the number of SBSs.

distribution, whereas z = 2 stands for a high-steep distribution.

The 3-D barplot in Fig. 7(a) shows that the energy gains

of a multicast-aware caching scheme (GMAC-MT) over a

conventional caching scheme (PAC-MT) increase as either the

intensity or the steepness of demand increases. In the best

scenario, with fifty thousand users and z = 2, the gains are

more than 90%.

Finally, we explore how the number of SBSs N impacts

the results. Fig. 7(b) shows that the gains of GMAC-MT over

PAC-MT increase as N increases. For example, the gains grow

from 6.6% when N = 4 to 17.7% when N = 12, and further

increase to 20.1% for N = 20. This is because, increasing

N makes it more likely that concurrent requests for the same

file occur at different SBSs, which implies a higher number of

MBS multicast transmissions. This in turn calls for a careful

cache-design that intelligently balances the number of requests

served via MBS and SBS multicast.

V. RELATED WORK

The idea of leveraging storage for improving network

performance is gaining increasing interest with applications

in content distribution [25], [26], IPTV [27], social [28] and

heterogeneous cellular networks [17]-[20], [41], [42]. Caching

popular files at the SBSs has been studied from an optimiza-

tion [17]-[20] and a game theoretic point of view [41], [42]

with the results spanning a wide range of techniques, such

as discrete/convex optimization, content-centric networking al-

gorithms, facility location algorithms, coalition formation and

matching games. The SBS caching problem was reconsidered

in [43]-[44] for the special case that mobile users request

videos at different qualities. Here, each video is encoded into

multiple segments (called versions and layers), and caching

decisions are taken per segment, rather than per video. The

impact of caching on the energy consumption and backhaul

usage for renewable energy powered small cell networks with

limited battery capacity and backhaul bandwidth was inves-

tigated in [45]. Additional SBS caching schemes targeting to

the minimization of user equipment energy consumption have

been derived in [46],[47]. A mixed-timescale optimization of

MIMO precoding and cache control was proposed in [48] for

the case that SBSs cooperate when transmitting data to users.

All the above works assume that the users’ demand profiles

are perfectly known and optimize caching decisions based on

content demand solely, an assumption that was firstly relaxed

in [29], [30]. In our recent work in [49], we proposed the

caching policy design with concerns on both the user mobility

statistics and the content demand. More recently, Yue et

al. [50] considered the case that the SBSs are privately owned

and proposed an auction-based caching mechanism. However,

this is the first work, building on our initial study [1], that per-

forms SBS caching with concerns on multicast-transmissions.

Despite the plethora of work related to multicast, previous

efforts have mainly focused on homogeneous networks [51].

Among the few works for multicast in heterogeneous cellu-

lar networks, protocols that enable cooperation between the

macro-cell and femto-cell base stations to support multicast

services were presented in [52], [53]. A mechanism to provide

seamless handover between different networks and ubiquitous

support for multicast/broadcast service was proposed in [54].

Another multicast mechanism that adaptively selects the cell

and the wireless technology for each mobile host to join the

multicast group was presented in [55]. However, none of the

above multicast mechanisms considers caching at the SBSs.

The optimal multicast scheduling policy for a given cache

placement at a base station has been explored in [33]. Joint

caching and broadcast scheduling policies for information

delivery in conventional cellular networks (i.e., without SBSs)

were presented in [56], [57]. In these systems, users are

equipped with caches in order to store in advance broadcasted

content and retrieve later when they need it. More recently,

Maddah-Ali et al. [58] developed a joint caching and multicast

scheduling scheme aimed at reducing the peak traffic rate for

serving a set of users, each one requesting a single file. In

their subsequent work [59], the authors extended the scheme

to minimize the average traffic rate, assuming that the file

popularity distribution is uniform across all users. In contrast

to these works, we consider cache-capable SBSs and design

multicast-aware caching policies that minimize the average

cost incurred for serving users with heterogeneous requests.

Finally, we emphasize that, compared to our initial study [1]

that focused on the benefits of a heuristic multicast-aware

caching algorithm over traditional schemes using synthetic



data, in this paper we additionally derive an algorithm with

theoretical performance guarantees and provide a careful trace-

driven numerical analysis.

VI. CONCLUSIONS

In this paper, we proposed a caching paradigm able to

reduce the energy costs for serving the massive mobile data

demand in 5G wireless networks. In contrast to the traditional

caching schemes that simply bring popular content close to

users, our caching strategy is carefully designed so as to

additionally exploit multicast. This is of high importance

nowadays, since multicast attracts attention as a technique for

efficient content delivery in the evolving cellular networks.

To overcome the NP-Hardness nature of the revisited caching

problem, we introduced an algorithm with performance guar-

antees and also a simple heuristic algorithm, and evaluated

their efficacy through a careful trace-driven numerical anal-

ysis. The results demonstrated that combining caching and

multicast can indeed reduce energy costs when the demand for

delay-tolerant content is massive. The gains over conventional

caching schemes are 19% when users tolerate delay of three

minutes, increasing further with the steepness of content access

pattern. Overall, our work can be seen as an attempt to

combine caching and multicast in a systematic way as a means

of improving energy efficiency in 5G wireless networks.
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