
Exploiting Cloud Heterogeneity to Optimize Performance
and Cost of MapReduce Processing

Zhuoyao Zhang
Google Inc.

Mountain View, CA 94043, USA
zhuoyao@google.com

Ludmila Cherkasova
HewlettPackard Labs

Palo Alto, CA 94303, USA
lucy.cherkasova@hp.com

Boon Thau Loo
University of Pennsylvania

Philadelphia, PA 19104, USA
boonloo@cis.upenn.edu

ABSTRACT

Cloud computing offers a new, attractive option to customers for
quickly provisioning any size Hadoop cluster, consuming resources
as a service, executing their MapReduce workload, and then paying
for the time these resources were used. One of the open questions in
such environments is the right choice of resources (and their amount)
a user should lease from the service provider. Typically, there is a
variety of different types of VM instances in the Cloud (e.g., small,

medium, or large EC2 instances). The capacity differences of the
offered VMs are reflected in VM’s pricing. Therefore, for the same
price a user can get a variety of Hadoop clusters based on different
VM instance types. We observe that the performance of MapRe-
duce applications may vary significantly on different platforms. This
makes a selection of the best cost/performance platform for a given
workload a non-trivial problem, especially when it contains multiple
jobs with different platform preferences. We aim to solve the follow-
ing problem: given a completion time target for a set of MapReduce
jobs, determine a homogeneous or heterogeneous Hadoop cluster
configuration (i.e., the number, types of VMs, and the job schedule)
for processing these jobs within a given deadline while minimizing
the rented infrastructure cost. In this work,1 we design an efficient
and fast simulation-based framework for evaluating and selecting the
right underlying platform for achieving the desirable Service Level
Objectives (SLOs). Our evaluation study with Amazon EC2 plat-
form reveals that for different workload mixes, an optimized plat-
form choice may result in 45-68% cost savings for achieving the
same performance objectives when using different (but seemingly
equivalent) choices. Moreover, depending on a workload the hetero-
geneous solution may outperform the homogeneous cluster solution
by 26-42%. We provide additional insights explaining the obtained
results by profiling the performance characteristics of used applica-
tions and underlying EC2 platforms. The results of our simulation
study are validated through experiments with Hadoop clusters de-
ployed on different Amazon EC2 instances.

1. INTRODUCTION
Cloud computing offers a new delivery model with virtually un-

limited computing and storage resources. This is an attractive op-
tion for many users because acquiring, setting up, and maintaining
a complex, large-scale infrastructure such as a Hadoop cluster re-
quires a significant up-front investment in the new infrastructure,

1
This paper is an extended version of our ealier workshop paper [20]. This work was

originated during Z. Zhang’s internship at HP Labs. Prof. B. T. Loo is supported in part
by NSF grants CNS-1117185 and CNS-0845552.

Copyright is held by author/owner(s).

training new personnel, and then a continuous maintenance and man-
agement support, that can be difficult to justify. Cloud computing
offers a compelling, cost-efficient approach that allows users to rent
resources in a “pay-per-use” manner. For many users this creates
an attractive and affordable alternative compared to acquiring and
maintaining their own infrastructure.

A typical cloud environment provides a selection of different ca-
pacity Virtual Machines for deployment at different prices per time
unit. For example, the Amazon EC2 platform offers a choice of
small, medium, and large VM instances (among the other choices),
where the CPU and RAM capacity of a medium VM instance is two
times larger than the capacity of a small VM instance, and the CPU
and RAM capacity of a large VM instance is two times larger than
the capacity of a medium VM instance. This resource difference is
also reflected in the price: the large instance is twice (four times)
more expensive compared with the medium (small) VM instance.
Therefore, a user is facing a variety of platform and configuration
choices that can be obtained for the same cost.

To demonstrate the challenges in making an optimized platform
choice we performed a set of experiments with two popular appli-
cations TeraSort and KMeans2 on three Hadoop clusters3. deployed
with different type VM instances:

• 40 small VMs, each configured with 1 map and 1 reduce slot;

• 20 medium VMs, each configured with 2 map and 2 reduce
slots, and

• 10 large VMs, each configured with 4 map and 4 reduce slots.

Therefore, the three Hadoop clusters can be obtained for the same
price per time unit, and they have the same number of map and re-
duce slots for processing (where each slot is provisioned with the
same CPU and RAM capacities). Figure 2 shows the summary of
our experiments with TeraSort and KMeans.

 0

 1

 2

 3

 4

 5

 6

small medium large

N
o

rm
al

iz
ed

 J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

(a) TeraSort

 0

 0.5

 1

 1.5

 2

 2.5

 3

small medium large

N
o

rm
al

iz
ed

 J
o

b
 C

o
m

p
le

ti
o

n
 T

im
e

(b) KMeans

Figure 1: Normalized completion time of two applications executed on

different types of EC2 instances.

Apparently, the Hadoop cluster with 40 small VMs provides the
best completion time for a TeraSort application as shown in Fig-

2
In this work, we use a set of 13 applications released by the Tarazu project [2] with

TeraSort and KMeans among them. Table 2 in Section 6 provides application details and
corresponding job settings (the number of map/reduce tasks, datasets sizes, etc.)
3

We use Hadoop 1.0.0 in all experiments in the paper.

ure 1 (a). The completion time of TeraSort on the cluster with small

VMs is 5.5 (2.3) times better, i.e.,smaller, than on the cluster with
large (medium) VMs. Since the cost of all three clusters per time
unit is the same, the shortest completion time results in the lowest

monetary cost the customer should pay. Therefore, the Hadoop clus-
ter with 40 small VMs offers the best solution for TeraSort. By con-
trast, the Hadoop cluster with 10 large VMs is the best option for
KMeans as shown in Figure 1 (b). It outperforms the Hadoop cluster
with small VMs by 2.6 times when processing KMeans. This exper-
iment demonstrates that seemingly equivalent platform choices for a
Hadoop cluster in the Cloud might result in a different application
performance that could lead to a different provisioning cost.

The problem of optimized platform choice becomes even more
complex when a given workload contains multiple jobs with dif-
ferent performance preferences. Intuitively, if performance of jobs
in the set would benefit from the small VMs (or large VMs) then
the platform choice for a corresponding Hadoop cluster is relatively
straightforward. However, if a given set of jobs has the applications
with different performance preferences, then a platform choice be-
comes non-trivial. Figure 2 shows completion times (absolute, not
normalized) of TeraSort and KMeans on three Hadoop clusters de-
ployed with different type VM instances (these graphs resemble the
normalized results shown in Figure 1). Apparently, when making a
decision on the best platform for a Hadoop cluster to execute both of
these applications (as a set) in the most cost effective way, one needs
to look at the reduction of absolute execution times due to the choice
of a common underlying platform.

 0

 1000

 2000

 3000

 4000

 5000

 6000

small medium large

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

(a) TeraSort

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

small medium large

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

(b) KMeans

Figure 2: Completion time of two applications executed on different

types of EC2 instances.

Apparently, the absolute time benefits from processing KMeans

on the large VMs significantly overweight the benefits of processing
TeraSort on the small VMs.

In this work, we aim to solve the problem of the platform choice

to provide the best cost/performance trade-offs for a given MapRe-
duce workload and the Hadoop cluster. As shown in Figures 1, 2 this
choice is non-trivial and depends on the application characteristics.
The problem is even more difficult when the performance objective
is to minimize the makespan (the overall completion time) of a given
job set. In this work, we first offer a framework for solving the fol-
lowing two problems. Given a workload, select the type and size of
the underlying platform for a homogeneous Hadoop cluster that pro-
vides best cost/performance trade-offs: i) minimizing the cost (bud-
get) while achieving a given makespan target, or ii) minimizing the
achievable jobs makespan for a given budget.

We also observe that a user might have additional considerations
for a case with node failure(s). Hadoop is designed to support fault-
tolerance, i.e., it will finish job processing even in the case of a node
failure by using the remaining resources and restarting/recomputing
failed tasks. However, if the cluster is based on 40 small VM in-
stances then a single node failure leads to a loss of 2.5% of the over-
all resources, and it impacts only a limited number of map and re-
duce tasks. While in the cluster based on 10 large VM instances,
a single node failure leads to a loss of 10% of the overall resources
and a much higher number of impacted map and reduce tasks. We

provide an extension of the proposed framework for selecting and
sizing a Hadoop cluster to support the job performance objectives in
case of node failure(s) in the cluster.

In our earlier work [22], we discussed a framework for the opti-
mized platform selection of a single homogeneous Hadoop cluster.
However, a homogeneous cluster might not always present the best
solution. Intuitively, if a given set of jobs has the applications with
different platform preferences then a heterogeneous solution (that
combines Hadoop clusters deployed with different instance types)
might be a better choice. To support the choice of the heterogeneous
solution, we introduce an application preference ranking to reflect
the “strength” of application preference between different VM types
and the possible impact on the provisioning cost (see our discussion
related to the absolute completion times of KMeans and TeraSort

shown in Figure 2). This preference ranking guides the construc-
tion of a heterogeneous solution. In the designed simulation-based
framework, we collect jobs’ profiles from a given set, create an opti-
mized job schedule that minimizes jobs’ makespan (as a function of
job profiles and a cluster size), and then obtain the accurate estimates
of the achievable makespan by replaying jobs’ traces in the simula-
tor. Based on the cost of the best homogeneous Hadoop cluster, we
provide a quick walk through a set of heterogeneous solutions (and
corresponding jobs’ partitioning into different pools) to see whether
there is a heterogeneous solution that can process given jobs within
a deadline but at a smaller cost.

In our performance study, we use a set of 13 diverse MapReduce
applications for creating three different workloads. Our experiments
with Amazon EC2 platform reveal that for different workloads, an
optimized platform choice may result in up to 45%-68% cost sav-
ings for achieving the same performance objectives when using dif-
ferent (but seemingly equivalent) choices. Moreover, depending on
a workload the heterogeneous solution may outperform the homoge-
neous one by 26-42%. The results of our simulation study are vali-
dated through experiments with Hadoop clusters deployed on differ-
ent Amazon EC2 instances.

The rest of the paper is organized as follows. Section 2 outlines
our approach and explain details of the building blocks used in our
solution. Section 3 described the general problem definition (two
separate cases) for the homogeneous cluster case and outlines both
solutions. Section 4 outlines the extension of the proposed frame-
work for a case with node failure(s). Section 5 motivates the hetero-
geneous clusters solution and provides the corresponding provision-
ing algorithm. Section 6 presents the evaluation study by comparing
the effectiveness of the proposed algorithms and their outcomes for
different workloads. Section 7 outlines related work. Section 8 sum-
marizes our contribution and gives directions for future work.

2. BUILDING BLOCKS
In this section, we outline our approach and explain details of the

following building blocks used in our solution: i) collected job traces
and job profiles; ii) an optimized job schedule to minimize the jobs’
execution makespan; iii) the Map-Reduce simulator to replay the
job traces according to the generated job schedule for obtaining the
accurate estimates of jobs performance and cost values.

1) Job Traces and Profiles: In summary, the MapReduce job
execution is comprised of two stages: map stage and reduce stage.
The map stage is partitioned into map tasks and the reduce stage is
partitioned into reduce tasks, and they are distributed and executed
across multiple machines.

Each map task processes a logical split of the input data that gen-
erally resides on a distributed file system. The map task applies the
user-defined map function on each record and buffers the resulting
output. This intermediate data is hash-partitioned for the different

reduce tasks and written to the local hard disk of the worker execut-
ing the map task.

We use the past job run(s) for creating the job traces that contain
recorded durations of all processed map and reduce tasks4. A simi-
lar job trace can be extracted from the Hadoop job tracker logs using
tools such as Rumen [1]. The obtained map/reduce task distributions
can be used for extracting the distribution parameters and generating
scaled traces, i.e., generating the replayable traces of the job execu-
tion on the large dataset from the sample job execution on the smaller
dataset as described in [13]. These job traces can be replayed using
a MapReduce simulator [12] and used for creating the compact job

profile for analytic models.
For predicting the job completion time we use a compact job

profile that characterize the job execution during map, shuffle, and
reduce phases via average and maximum task durations. The pro-
posed MapReduce performance model [14] evaluates lower bounds
T low
J and upper bounds Tup

J on the job completion time. It is based
the Makespan Theorem [13] for computing performance bounds on
the completion time of a given set of n tasks that are processed
by k servers, (e.g., n map tasks are processed by k map slots in
MapReduce environment), the completion time of the entire n tasks
is proven to be at least:

T low = avg ·
n

k
and at most

Tup = avg ·
(n− 1)

k
+max

The difference between lower and upper bounds represents the range
of possible completion times due to task scheduling non-determinism.
As was shown in [14], the average of lower and upper bounds (T avg

J)
is a good approximation of the job completion time (typically, it is
within 10%). Using this approach, we can estimate the duration of
map and reduce stages of a given job as a function of allocated re-
sources (i.e., on different size Hadoop clusters). In particular, we
apply this analytic model in the process of building an optimized job
schedule to minimize the overall jobs’ execution time.

2) An Optimized Job Schedule: It was observed [15, 21] that for
a set of MapReduce jobs (with no data dependencies between them)
the order in which jobs are executed might have a significant impact
on the jobs makespan, i.e., jobs overall completion time, and there-
fore, on the cost of the rented Hadoop cluster. For data-independent
jobs, once the first job completes its map stage and begins the re-
duce stage, the next job can start executing its map stage with the
released map resources in a pipelined fashion. There is an “overlap”
in executions of map stage of the next job and the reduce stage of
the previous one. As an illustration, let us consider two MapReduce
jobs that have the following map and reduce stage durations:

• Job J1 has a map stage duration of JM
1 = 10s and the reduce

stage duration of JR
1 = 1s.

• Job J2 has a map stage duration of JM
2 = 1s and the reduce

stage duration of JR
2 = 10s.

There are two possible executions shown in Figure 3:

• J1 is followed by J2 shown in Figure 3(a). The reduce stage
of J1 overlaps with the map stage of J2 leading to overlap of
only 1s. The total completion time of processing two jobs is
10s+ 1s+ 10s = 21s.

• J2 is followed by J1 shown in Figure 3(b). The reduce stage
of J2 overlaps with the map stage of J1 leading to a much
better pipelined execution and a larger overlap of 10s. The
total makespan is 1s+ 10s+ 1s = 12s.

4
The shuffle stage is included in the reduce task. For a first shuffle phase that overlaps

with the entire map phase, only a complementary (non-overlapping) portion is included
in the reduce task.

J1
M=10s J1

R=1s

J1
J2

M=1s J2
R=10s

J2

(a) J1 is followed by J2.

J1
M=10s J1

R=1s

J1

J2
M=1s J2

R=10s

J2

(b) J2 is followed by J1.

Figure 3: Impact of the job schedule on their completion time.

There is a significant difference in the jobs makespan (75% in the
example above) depending on the execution order of the jobs.

Since in this work we consider a problem of minimizing the cost
of rented Hadoop cluster and the jobs completion time directly im-
pacts this cost, we aim to generate the job executions order that min-
imizes the jobs’ makespan. Thus, let J = {J1, J2, . . . , Jn} be a set
of n MapReduce jobs with no data dependencies between them. For
minimizing the makespan of a given set of MapReduce jobs, we ap-
ply the classic Johnson algorithm [6] that was proposed for building
an optimal job schedule in two-stage production systems. Johnson’s
schedule can be efficiently applied to minimizing the makespan of
MapReduce jobs as it was shown in [15].

Let us consider a collection J of n jobs, where each job Ji is rep-
resented by the pair (mi, ri) of map and reduce stage durations re-
spectively. Note, we can estimates mi and ri by using bounds-based
model. Let us augment each job Ji = (mi, ri) with an attribute Di

that is defined as follows:

Di =

{

(mi, m) if min(mi, ri) = mi,
(ri, r) otherwise.

The first argument in Di is called the stage duration and denoted as
D1

i . The second argument is called the stage type (map or reduce)
and denoted as D2

i .
Algorithm 1 shows how an optimal schedule can be constructed

using Johnson’s algorithm.

Algorithm 1 Johnson’s Algorithm

Input: A setJ of n MapReduce jobs. Di is the attribute of job Ji as defined
above.
Output: Schedule σ (order of jobs execution.)

1: Sort the original set J of jobs into the ordered list L using their stage
duration attribute D1

i
2: head← 1, tail← n
3: for each job Ji in L do
4: if D2

i = m then
5: // Put job Ji from the front

6: σhead ← Ji, head← head + 1
7: else
8: // Put job Ji from the end

9: σtail ← Ji, tail← tail - 1
10: end if
11: end for

First, we sort all the n jobs from the original set J in the ordered
list L in such a way that job Ji precedes job Ji+1 if and only if
min(mi, ri) ≤ min(mi+1, ri+1). In other words, we sort the jobs
using the stage duration attribute D1

i in Di (it represents the smallest
duration of the two stages). Then the algorithm works by taking jobs
from list L and placing them into the schedule σ from the both ends
(head and tail) and proceeding towards the middle. If the stage type
in Di is m, i.e., represents the map stage, then the job Ji is placed
from the head of the schedule, otherwise from the tail. The complex-

ity of Johnson’s Algorithm is dominated by the sorting operation and
thus is O(n log n).

3) MapReduce Simulator: Since the users rent Cloud resources
in a “pay-per-use” fashion, it is important to accurately estimate the
execution time of a given set of jobs according to a generated John-
son schedule on a Hadoop cluster of a given size. In this work,
we use the enhanced version of MapReduce simulator SimMR [12].
This simulator can accurately replay the job traces and reproduce
the original job processing: the completion times of the simulated
jobs are within 5% of the original ones as shown in [12]. More-
over, SimMR is a very fast simulator: it can process over one mil-
lion events per second. Therefore, we can quickly explore the entire
solution space (in brute-force search manner).

The main structure of SimMR is shown in Figure 4.

Simulator engine
Makespan

costs

Workloads with

job profiles

Cluster

description

scheduler

Figure 4: MapReduce Simulator SimMR.

The basic blocks of the simulator are the following:

1. Trace Generator – a module that generates a replayable work-
load trace. This trace is generated either from the detailed job
profile (provided by the Job Profiler) or by feeding the distri-
bution parameters for generating the synthetic trace (this path
is taken when we need to generate the job execution traces
from the sampled executions on the smaller datasets).

2. Simulator Engine – a discrete event simulator that takes the
cluster configuration information and accurately emulates the
Hadoop job master decisions for map/reduce slot allocations
across multiple jobs.

3. Scheduling policy – a scheduling module that dictates the jobs’
ordering and the amount of allocated resources to different
jobs over time.

Thus, for a given Hadoop cluster size, given set of jobs, and gener-
ated Johnson’s schedule, the simulator can accurately estimate the
jobs’ completion time (makespan) by replaying the job traces ac-
cordingly to the generated schedule.

3. HOMOGENEOUS CLUSTER SOLUTION
In this work, we consider the following two problems for the ho-

mogeneous cluster case.

• For a given workload defined as a set of jobs W =
{J1, J2, . . . , Jn} to be processed within deadline D, deter-
mine a Hadoop cluster configuration (i.e., the number and
types of VM instances, and the job schedule) for processing
these jobs within a given deadline while minimizing the mon-
etary cost for rented infrastructure.

• For a given workload W = {J1, J2, . . . , Jn} and a given a
customer budget B, determine a Hadoop cluster configuration
(i.e., the number and types of VM instances, and the job sched-
ule) for processing these jobs within an allocated monetary
cost for rented infrastructure while minimizing the jobs’ pro-
cessing time.

Our solution is based on a simulation framework: in a brute-force
manner, it searches through the entire solution space by exhaustively
enumerating all possible candidates for the solution and checking
whether each candidate satisfies the required problem’s statement.
Figure 5 shows the diagram for the framework execution in decision
making process per selected platform type. For example, if the plat-

Figure 5: Outline of the homogeneous cluster solution.

forms of interest are small, medium, and large EC2 VM instances
then the framework will generate three trade-off curves. For each
platform and a given Hadoop cluster size, the Job Scheduler com-
ponent generates the optimized MapReduce job schedule. Then the
jobs’ makespan is obtained by replaying the job traces in the simu-
lator according to the generated schedule. After that the size of the
cluster is increased by one instance (in the cloud environment, it is
equivalent to adding a node to a Hadoop cluster) and the iteration is
repeated: a new job schedule is generated and its makespan is eval-
uated with the simulator, etc. We have a choice of stop conditions
for iterations: either a user can set a range of values for the cluster
size N type

max (driven by budget B, which a customer intends to spend),
or at some point, the increased cluster size does not improve the
achievable makespan. The latter condition typically happens when
the Hadoop cluster is large enough to accommodate all the jobs to
be executed concurrently, and therefore, the increased cluster size
cannot improve the jobs makespan.

Assume that a set of given jobs should be processed within dead-
line D, and let Pricetype be the price of a type VM instance per
time unit. Then a customer with budget B can rent N type

max of VMs
instances of a given type:

N type
max = B/(D · Pricetype) (1)

Algorithm 2 shows the pseudo code to determine the size of a
cluster which is based on the type VM instances for processing W
with deadline D and which results in the minimal monetary cost.

The algorithm iterates through the increasing number of instances
for a Hadoop cluster. It simulates the completion time of workload
W processed with Johnson’s schedule on a given size cluster and
computes the corresponding cost (lines 2-6). Note, that k defines the
number of worker nodes in the cluster. The overall Hadoop cluster
size is k + 1 nodes (we add a dedicated node for Job Tracker and
Name Node, which is included in the cost). The min costtype keeps
track of a minimal cost so far (lines 7-8) for a Hadoop cluster which
can process W within deadline D.

One of the reader questions might be why do we continue iterat-
ing through the increasing number of instances once we found a so-
lution which can process W within deadline D? At a glance, when
we keep increasing the Hadoop cluster – the solution becomes more
expensive cost-wise. In reality, it is not always true: where could
be a situation when a few additional nodes and a different Johnson
schedule might significantly improve the makespan of a given work-
load, and as a result the cost of this larger cluster is smaller (due

Algorithm 2 Provisioning solution for a homogeneous cluster to
process W with deadline D while minimizing the cluster cost

Input:
W = {J1, J2, ...Jn} ← workload with traces and profiles for each job;
type← VM instance type, e.g., type∈ {small, medium, large};

N
type
max ← the maximum number of instances to rent;

Pricetype← unite price of a type VM instance;
D← a given time deadline for processingW .
Output:
Ntype← an optimized number of VM type instances for a cluster;
min costtype← the minimal monetary cost for processingW .

1: min costtype ←∞
2: for k ← 1 to N

type
max do

3: // Simulate completion time for processing workloadW with k VMs
4: Cur CT = Simulate(type, k,W)
5: // Calculate the corresponding monetary cost
6: cost = Pricetype × (k + 1)× Cur CT
7: if Cur CT ≤ D & cost < min costtype then
8: min costtype ← cost, Ntype ← k
9: end if

10: end for

to significantly improved workload completion time). Later, in the
evaluation section, we will show examples of such situations.

We apply Algorithm 2 to different types of VM instances, e.g.,
small, medium, and large respectively. After that we compare the
produced outcomes and make a final provisioning decision.

In a similar way, we can solve a related problem, when for a given
a customer budget B, we need to determine a Hadoop cluster con-
figuration for processing a given workload W within an allocated
monetary cost for rented infrastructure while minimizing the jobs’
processing time.

Algorithm 3 shows the pseudo code to determine the size of a clus-
ter which is based on the type VM instances for processing W with
a monetary budget B and which results in the minimal workload
processing.

Algorithm 3 Provisioning solution for a homogeneous cluster to
process W with a budget B while minimizing the processing time

Input:
W = {J1, J2, ...Jn} ← workload with traces and profiles for each job;
type← VM instance type, e.g., type∈ {small, medium, large};

N
type
max ← the maximum number of instances to rent;

Pricetype← unite price of a type VM instance;
B ← a given monetary budget for processingW .
Output:
Ntype← an optimized number of VM type instances for a cluster;
min CT type← the minimal completion time for processingW .

1: min CT type ←∞
2: for k ← 1 to N

type
max do

3: // Simulate completion time for processing workloadW with k VMs
4: Cur CT = Simulate(type, k,W)
5: // Calculate the corresponding monetary cost
6: cost = Pricetype × (k + 1)× Cur CT
7: if Cur CT < min CT type & cost ≤ B then
8: min CT type ← Cur CT , Ntype ← k
9: end if

10: end for

Algorithms 2 and 3 follow a similar structure: in a brute-force
manner, they search through the entire solution space by exhaus-
tively enumerating all possible candidates for the solution and check-
ing whether each candidate satisfies the required problem’s state-
ment.

4. GENERAL CASE WITH NODE FAILURES
The application performance of a customer workload may vary

significantly on different platforms. Seemingly equivalent platform
choices for a Hadoop cluster in the Cloud might result in a differ-
ent application performance and a different provisioning cost, which
leads to the problem of an optimized platform choice that can be
obtained for the same budget. Moreover, there could be an addi-

tional issue for the user to consider: the impact of node failures on
the choice of the underlying platform for a Hadoop cluster. Hadoop
is designed to support fault-tolerance, i.e., it finishes job processing
even in case with node failures. It uses the remaining resources for
restarting and recomputing failed tasks. Let us consider a motivat-
ing example described in Section 1, where a user may deploy three
different clusters with different types of VM instances for the same
budget:

• 40 small VMs, each configured with 1 map and 1 reduce slot;

• 20 medium VMs, each configured with 2 map and 2 reduce
slots, and

• 10 large VMs, each configured with 4 map and 4 reduce slots.

Now, let us see how a node failure may impact cluster performance
when Hadoop nodes are based on different VM types. If a Hadoop
cluster is based on 40 small instances then a single node failure leads
to a loss of 2.5% of the overall resources and only limited number of
map and reduce tasks might be impacted. While in the cluster based
on 10 large instances a single node failure leads to a loss of 10% of
the overall resources and a much higher number of map and reduce
tasks might be impacted.

For a business-critical, production workload W , a user may con-
sider the generalized service level objectives (SLOs) that include two
separate conditions:

• a desirable completion time D for the entire set of jobs in the
workload W under normal conditions;

• an acceptable degraded completion time Ddeg for processing
W in case of 1-node failure.

So, the problem is to determine a Hadoop cluster configuration (i.e.,
the number and types of VM instances, and the job schedule) for
processing workload W with the makespan target D while minimiz-
ing the cost, such that the chosen solution also supports a degraded
makespan Ddeg in case of 1-node failure during the jobs processing.

The approach, proposed in the previous Section 3, can be gen-
eralized for the case with node failures. Figure 6 shows the ex-
tended diagram for the framework execution and decision making
process per selected platform type with node failures. For exam-
ple, if the platforms of interest are small, medium, and large EC2
VM instances then the framework will generate three different trade-
off sets. For each platform and a given Hadoop cluster size N , the
Job Scheduler component generates an optimized MapReduce job
schedule, based on Johnson’s algorithm. Then the jobs’ makespan
(in the normal mode) is obtained by replaying the job traces in the
simulator according to the generated schedule. In parallel (see, the
lower branch in Figure 6, that represents a case of 1-node failure),
the jobs’ makespan is obtained by replaying the job traces accord-
ing to the same generated job schedule in the decreased cluster size
N − 1. After both branches are finished, the size of the cluster is
increased by one instance (in the cloud environment, it is equivalent
to adding a node to a Hadoop cluster) and the iteration is repeated:
a new job schedule is generated and its makespan is evaluated with
the simulator for both modes: normal and 1-node failure, etc.

Figure 6: Solution Outline.

The cluster size (for each instance type) is selected based on va-
lidity of both SLOs conditions: for normal execution to satisfy D
and in case of 1-node failure to support a degraded makespan Ddeg .
Algorithm 4 shows the pseudo-code to determine the size of a clus-
ter which is based on the type VM instances for processing W with
generalized SLOs and that results in the minimal monetary cost5.

Algorithm 4 Provisioning solution for a homogeneous cluster to
process W with a deadline D and with a degraded deadline Ddeg

in case of 1-node failure while minimizing the cluster cost

Input:
W = {J1, J2, ...Jn} ← workload with traces and profiles for each job;
type← VM instance type, e.g., type∈ {small, medium, large};

N
type
max ← the maximum number of instances to rent;

Pricetype← unite price of a type VM instance;
D← a given time deadline for processingW ,
Ddeg ← a given degraded deadline for processingW with 1-node failure.
Output:
Ntype← an optimized number of VM type instances for a cluster;
min costtype← the minimal monetary cost for processingW .

1: min costtype ←∞
2: for k ← 1 to N

type
max do

3: // Simulate completion time for processing workloadW with k VMs
4: Cur CT = Simulate(type, k,W)
5: // Simulate processingW in a degraded mode with (k − 1) VMs
6: Cur CTdeg = Simulatedeg(type, k − 1,W)
7: // Calculate the corresponding monetary cost
8: cost = Pricetype × (k + 1)× Cur CT
9: if cur CT ≤ D & cur CTdeg ≤ Ddeg & cost < min costtype

then
10: min costtype ← cost, Ntype ← k
11: end if
12: end for

The algorithm iterates through the increasing number of instances
for a Hadoop cluster. It simulates the completion time of workload
W processed with Johnson’s schedule on a cluster of a given size k.
Note, that the same job schedule is used for processing W in case of
a node failure, i.e., on a cluster of size k − 1.

The overall Hadoop cluster size is k+1 nodes (k defines the num-
ber of worker nodes in the cluster, and we add a dedicated node for
Job Tracker and Name Node, which is included in the cost). The
min costtype keeps track of a minimal cost so far (lines 7-8) for a
Hadoop cluster which can process W within deadline D under nor-
mal conditions and within deadline Ddeg in case of 1-node failure.

5
The proposed solution can be generalized for a case with multiple node failures.

5. HETEROGENEOUS SOLUTION
In Section 1, we discussed a motivating example by analyzing

TeraSort and KMeans performance on Hadoop clusters formed with
different EC2 instances, and observing that these applications benefit
from different types of VMs as their preferred choice. Therefore,
a single homogeneous cluster might not always be the best choice
for a workload mix with different applications, and a heterogeneous
solution might offer a better cost/performance outcome.

However, a single (individual) application preference choice of-
ten depends on the size of a Hadoop cluster and given performance
goals. Continuing the motivating example from Section 1, Figure 7
shows the trade-off curves for three representative applications Tera-

Sort, Kmeans, and AdjList6 obtained as a result of exhaustive simu-
lation of application completion times on different size Hadoop clus-
ters. The Y-axis represents the job completion time while the X-axis
shows the corresponding monetary cost. Each figure shows three
curves for application processing by a homogeneous Hadoop cluster
based on small, medium, and large VM instances respectively.

First of all, the same application can result in different completion
times when being processed on the same platform at the same cost.
This reflects an interesting phenomenon of “pay-per-use” model.
There are situations when a cluster of size N processes a job in
T time units, while a cluster of size 2 · N may process the same
job in T/2 time units. Interestingly, these two different size clusters
have the same cost, and if the purpose is meeting deadline D where
T ≤ D then both clusters meet the performance objective.

Second, we can see an orthogonal observation: in many cases,
the same completion time can be achieved at a different cost (on the
same platform type). Typically, this corresponds to the case when
an increased size Hadoop cluster does not further improve the job
processing time.

Finally, according to Figure 7, we can see that for TeraSort, the
small instances results in the best choice, while for Kmeans the large

instances represent the most cost-efficient platform. However, the
optimal choice for AdjList is not very clear, it depends on the dead-
line requirements, and the trade-off curves are much closer to each
other than for TeraSort and Kmeans.

Another important point is that the cost savings vary across dif-
ferent applications, e.g., the execution of Kmeans on large VM in-
stances leads to higher cost savings than the execution of TeraSort

on small VMs. Thus, if we would like to partition a given workload
W = {J1, J2, ...Jn} into two groups of applications each to be ex-
ecuted by a Hadoop cluster based on different type VM instances,

6
Table 2 in Section 6 provides details about these applications and their job settings.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10

M
ak

es
p
an

 (
s)

cost ($)

small
medium

large

(a) TeraSort

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50

M
ak

es
p
an

 (
s)

cost ($)

small
medium

large

(b) Kmeans

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10 12

M
ak

es
p
an

 (
s)

cost ($)

small
medium

large

(c) AdjList

Figure 7: Performance versus cost trade-offs for different applications.

we need to be able to rank (order) these application with respect to
their preference “strength” between two considered platforms.

In this work, we consider a heterogeneous solution that consists
of two homogeneous Hadoop sub-clusters deployed with different
type VM instances7. As an example, we consider a heterogeneous
solution formed by small (S) and large (L) VM instances. To mea-
sure the “strength” of application preference between two different
VM types we introduce an application preference score PScoreS,L

defined as a difference between the normalized costs of simulated
cost-performance curves (such as shown in Figure 7):

PScoreS,L =

∑
1≤i≤NS

max
CostSi

NS
max

−

∑
1≤i≤NL

max
CostLi

NL
max

(2)

where NS
max and NL

max are defined by Eq. 1 for Hadoop clusters
with small and large VM type instances respectively.

The value of PScoreS,L indicates the possible impact on the pro-
visioning cost, i.e, a large negative (positive) value indicates a stronger
preference of small (large) VM instances, while values closer to 0
reflect less sensitivity to the platform choice.

For optimized heterogeneous solution, we need to determine the
following parameters:

• The number of instances for each sub-cluster (i.e., the number
of worker nodes plus a dedicated node to host JobTracker and
Name Node for each sub-cluster).

• The subset of applications to be executed on each cluster.

Algorithm 5 shows the pseudo code of our heterogeneous solution.
For a presentation simplicity, we show the code for a heterogeneous
solution with small and large VM instances.

First, we sort the jobs in the ascending order according to their
preference ranking PScoreS,L. Thus the jobs in the beginning of
the list have a performance preference for executing on the small in-
stances. Then we split the ordered job list into two subsets: first one
to be executed on the cluster with small instances and the other one to
be executed on the cluster with large instances (lines 4-5). For each
group, we use Algorithm 2 for homogeneous cluster provisioning
to determine the optimized size of each sub-cluster for processing
the assigned workload with a deadline D) that leads to the minimal
monetary cost (lines 6-7). We consider all possible splits by iterating
through the split point from 1 to the total number of jobs N and use a
variable min costS+L to keep track of the found minimal total cost,
i.e, the sum of costs from both sub-clusters (lines 9-12).

7
The designed framework can be generalized for a larger number of clusters. However,

this might significantly increase the algorithm complexity without adding new perfor-
mance benefits.

Algorithm 5 Provisioning solution for heterogeneous clusters to
process W with a deadline D while minimizing the clusters cost

Input:
W = {J1, J2, ...Jn} ← workload with traces and profiles, where jobs
are sorted in ascending order by their preference score PScoreS,L;
D← a given time deadline for processingW .
Output:
NS ← number of small instances;
NL← number of large instances;
WS ← List of jobs to be executed on small instance-based cluster;
WL← List of jobs to be executed on large instance-based cluster;
min costS+L← the minimal monetary cost of heterogeneous clusters.

1: min costS+L←∞
2: for split← 1 to n− 1 do
3: // Partition workloadW into 2 groups
4: JobsS ← J1, ..., Jsplit

5: JobsL ← Jsplit+1, ..., Jn

6: (ÑS ,min costS) = Algorithm 2(JobsS , small,D)

7: (ÑL,min costL) = Algorithm 2(JobsL, large,D)
8: total cost← min costS +min costL

9: if total cost < min costS+L then
10: min costS+L ← total cost
11: WS ← JobsS , WL ← JobsL

12: NS ← ÑS , NL ← ÑL

13: end if
14: end for

6. EVALUATION
In this section, we describe the experimental testbeds and MapRe-

duce workloads used in our study. We analyze the application perfor-
mance and the job profiles when these applications are executed on
different platforms of choice, e.g., small, medium, and large Ama-
zon EC2 instances. The study aims to evaluate the effectiveness of
the proposed algorithms for selecting the optimized platform for a
Hadoop cluster and compare the outcomes for different workloads.

6.1 Experimental testbeds and workloads
In our experiments, we use the Amazon EC2 platform. It offers

different capacity Virtual Machines (VMs) for deployment at differ-
ent price. Table 1 provides descriptions of VM instance types used
in our experiments. As it shows, the compute and memory capacity
of a medium VM instance (m1.medium) is doubled compared to a
small VM instance (m1.small) and similarly, a large VM instance
(m1.large) has a doubled capacity compared to the medium VM.
These differences are similarly reflected in pricing. We deployed
Hadoop clusters that are configured with different number of map
and reduce slots per different type VM instances (according to the

capacity) as shown in Table 1. Each VM instance is deployed with
100GB of Elastic Block Storage (EBS). We use Hadoop 1.0.0 in all
the experiments. The file system blocksize is set to 64MB and the
replication level is set to 3.

Instance price CPU capacity (relative) RAM #m,r
type (GB) slots

Small $0.06 ph 1 EC2 Compute Unit (1 virtual core
with 1 EC2 Compute Unit)

1.7 1, 1

Medium $0.12 ph 2 EC2 Compute Unit (1 virtual core
with 2 EC2 Compute Units)

3.75 2, 2

Large $0.24 ph 4 EC2 Compute Units (2 virtual
cores with 2 EC2 Compute Units)

7.5 4, 4

Table 1: EC2 Testbed description.

In the performance study, we use a set of 13 applications released
by the Tarazu project [2]. Table 2 provides a high-level summary of
the applications with the corresponding job settings (e.g., the num-
ber of map/reduce tasks). Applications 1, 8, and 9 process syntheti-
cally generated data. Applications 2 to 7 use the Wikipedia articles
dataset as input. Applications 10 to 13 use the Netflix movie ratings
dataset. These applications perform very different data manipula-
tions, which result in different resource requirements. To provide
some additional insights in the amounts of data flowing through the
MapReduce processing pipeline, we also show the overall size of
the input data, intermediate data (i.e., data generated between map
and reduce stages), and the output data (i.e., the data written by the
reduce stage).

Application Input data Input Interm Output #map,red

(type) data data data tasks

(GB) (GB) (GB)

1. TeraSort Synthetic 31 31 31 495, 240

2. WordCount Wikipedia 50 9.8 5.6 788, 240

3. Grep Wikipedia 50 1 1x10−8 788, 1
4. InvIndex Wikipedia 50 10.5 8.6 788, 240
5. RankInvIndex Wikipedia 46 48 45 745, 240
6. TermVector Wikipedia 50 4.1 0.002 788, 240
7. SeqCount Wikipedia 50 45 39 788, 240

8. SelfJoin Synthetic 28 25 0.014 448, 240
9. AdjList Synthetic 28 29 29 508, 240

10. HistMovies Netflix 27 3x10−5 7x10−8 428, 1

11. HistRatings Netflix 27 2x10−5 6x10−8 428, 1
12. Classification Netflix 27 0.008 0.006 428, 50
13. KMeans Netflix 27 27 27 428, 50

Table 2: Application characteristics.

6.2 Application performance analysis
We execute the set of 13 applications shown in Table 2 on three

Hadoop clusters8 deployed with different types of EC2 VM instances
(they can be obtained for the same price per time unit): i) 40 small

VMs, ii) 20 medium VMs, and iii) 10 large VM instances. We con-
figure these Hadoop clusters according to their nodes capacity as
shown in Table 1, with 1 additional instance deployed as the Na-
meNode and JobTracker.

These experiments pursue the following goals: i) to demonstrate
the performance impact of executing these applications on the Hadoop
clusters deployed with different EC2 instances; and 2) to collect the
detailed job profiles for creating the job traces used for replay by the
simulator and trade-off analysis in determining the optimal platform
choice.

8
All the experiments are performed five times, and the measurement results are aver-

aged. This comment applies to all the results.

Figure 8 (a) presents the completion times (CT) of 13 applica-
tions executed on the three different EC2-based clusters. The results
show that the platform choice may significantly impact the appli-
cation processing time. Note, we break the Y-axis as KMeans and
Classification executions take much longer time to finish compared
to other applications. Figure 8 (b) shows the normalized results with
respect to the execution time of the same job on the Hadoop clus-
ter formed with small VM instances. For 7 out 13 applications, the
Hadoop cluster formed with small instances leads to the best com-
pletion time (and the smallest cost). However, for the CPU-intensive
applications such as Classification and KMeans, the Hadoop cluster
formed with large instances shows better performance.

Tables 3-5 summarize the job profiles collected for these applica-
tions. They show the average and maximum durations for the map,
shuffle and reduce phase processing as well as the standard devia-
tion for these phases. The analysis of the job profiles show that the
shuffle phase durations of the Hadoop cluster formed with large in-
stances are much longer compared to the clusters formed with small

instances. The reason is that the Amazon EC2 instance scaling is
done with respect to the CPU and RAM capacity, while the storage
and network bandwidth is only fractionally improved. As we con-
figure a higher number of slots on large instances, it increases the
I/O and network contention among the tasks running on the same in-
stance, and it leads to significantly increased durations of the shuffle
phase. At the same time, the map task durations of most applications
executed on the Hadoop cluster with large instances are significantly
improved, e.g., the map task durations of Classification and KMeans

applications improved almost three times.
The presented analysis of job profiles show that a platform choice

for a Hadoop cluster may have a significant impact on the application
performance. This analysis further demonstrates the importance of
an effective mechanism and algorithms for helping to make the right
provisioning decisions based on the workload characteristics.

6.3 Comparison of homogeneous and hetero
geneous solutions

In this section, we use workloads created from the applications
shown in Table 2 for comparing the results of both homogeneous and
heterogeneous provisioning solutions. The following Table 6 pro-
vides an additional application characterization by reflecting the ap-
plication preference score PScoreS,L. A positive value (e.g, Kmeans,

Classification) indicates that the application is more cost-efficient on
large VMs, while a negative value (e.g., TeraSort, Wordcount) means
that the application favors small VM instances. The absolute score
value is indicative of the preference “strength”. When the preference
score is close to 0 (e.g., Adjlist), it means that the application does
not have a clear preference between the instance types.

Application PScore
S,L

1. TeraSort -3.74
2. WordCount -5.96
3. Grep -3.30
4. InvIndex -7.90
5. RankInvIndex -5.13
6. TermVector 3.11
7. SeqCount -4.23
8. SelfJoin -5.41
9. AdjList -0.7
10. HistMovies -1.64
11. HistRatings -2.53
12. Classification 19.59
13. KMeans 18.6

Table 6: Application Preference Score.

We perform our case studies with three workloads W1, W2 and
W3 described as follows:

• W1 – it contains all 13 applications shown in Table 2.

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

			
	T

er
aS

ort

W
ord

Count

			
			

			
		G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

		T
er

m
V

ec
t

			
Seq

Count

			
		S

el
fJ

oin

			
			

A
djL

ist

			
		H

isM
ov

			
			

H
isR

at

			
	C

la
ss

ifi
c

			
		K

M
ea

ns

 30000

 36000

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)
small

medium
large

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

			
	T

er
aS

or
t

W
or

dC
ou

nt

			
			

			
		G

re
p

			
	In

vI
nd

ex

R
an

kI
nv

In
d

		T
er

m
V

ec
t

			
Seq

C
ou

nt

			
		S

el
fJ

oi
n

			
			

A
dj

Lis
t

			
		H

is
M

ov

			
			

H
is
R
at

			
	C

la
ss

ifi
c

			
		K

M
ea

ns

N
o

rm
a
li

z
e
d

 C
o

m
p

le
ti

o
n

 T
im

e small
medium

large

Figure 8: Job completion times (CT) on different EC2-based clusters: (a) absolute CT, (b) normalized CT.

Application avgMap maxMap avgShuffle maxShuffle avgReduce maxReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 29.1 46.7 248.5 317.5 31.2 41.3 0.82% 4.51% 0.97%
WordCount 71.5 147.0 218.7 272.0 12.1 22.4 1.16% 5.83% 3.68%
Grep 19.0 51.4 125.7 125.7 4.5 4.5 1.19% 26.43% 10.53%
InvIndex 83.9 170.0 196.8 265.2 18.2 27.6 1.33% 8.03% 3.96%
RankInvIndex 35.4 68.8 376.0 479.0 81.9 102.0 1.05% 3.79% 0.81%
TermVector 98.9 160.3 360.0 1239.5 137.2 1110.7 0.78% 2.45% 2.45%
SeqCount 101.2 230.0 256.8 454.2 54.1 82.3 1.01% 3.63% 6.62%
SelfJoin 11.9 20.4 217.9 246.5 12.3 21.4 0.70% 4.87% 3.12%
AdjList 265.9 415.9 72.7 121.8 291.1 398.1 1.53% 6.57% 0.84%
HistMovies 17.9 49.2 138.9 138.9 3.4 3.4 1.49% 40.85% 34.84%
HistRating 58.9 109.8 111.8 111.8 4.8 4.8 2.10% 35.58% 22.41%
Classif 3147.3 4047.2 58.5 61.5 4.0 6.9 1.21% 12.76% 3.13%
Kmeans 3155.9 3618.5 80.4 201.9 87.5 480.9 0.32% 30.09% 11.43%

Table 3: Job profiles on the EC2 cluster with small instances (time in sec)

Application avgMap maxMap avgShuffle maxShuffle avgReduce maxReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 36.9 46.1 466.3 553.1 26.5 34.3 1.06% 14.07% 1.21%
WordCount 83.0 127.4 562.4 771.6 11.6 23.0 0.48% 7.01% 9.09%
Grep 23.8 56.7 256.6 256.6 3.2 3.2 4.95% 24.13% 9.48%
InvIndex 101.0 150.4 449.5 536.3 13.6 20.2 0.52% 8.65% 1.62%
RankInvIndex 45.7 81.1 741.6 876.5 64.0 77.2 0.63% 9.40% 2.77%
TermVector 128.1 189.3 432.4 1451.4 71.9 576.4 0.23% 7.08% 2.81%
SeqCount 126.8 251.0 482.1 557.1 35.0 43.2 0.52% 21.70% 14.98%
SelfJoin 11.1 18.2 408.1 475.1 11.2 19.9 0.92% 13.86% 1.65%
AdjList 270.1 420.0 163.2 221.6 206.4 281.8 2.74% 8.70% 1.16%
HistMovies 20.1 47.7 246.7 246.7 3.7 3.7 3.14% 26.39% 17.04%
HistRating 71.7 103.7 240.4 240.4 5.0 5.0 0.23% 31.39% 14.22%
Classif 3013.8 4074.3 177.2 211.8 3.9 6.1 0.82% 44.03% 4.33%
Kmeans 2994.0 3681.2 189.7 392.1 51.7 280.4 3.93% 80.84% 6.96%

Table 4: Job profiles on the EC2 cluster with medium instances (time in sec)

Application avgMap maxMap avgShuffle maxShuffle avgReduce maxReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 27.3 55.7 806.4 1128.4 20.0 70.6 0.66% 7.78% 16.14%
WordCount 54.7 126.3 1028.6 1163.9 12.9 59.2 4.33% 10.24% 9.15%
Grep 18.3 59.7 791.8 791.8 4.3 4.3 3.50% 16.48% 22.81%
InvIndex 61.8 180.4 1152.6 1374.5 14.9 61.7 6.47% 5.10% 8.68%
RankInvIndex 28.3 71.5 1155.8 1308.6 40.5 88.5 1.49% 9.20% 8.19%
TermVector 85.3 194.7 1007.6 1573.9 30.2 259.2 3.88% 5.98% 10.04%
SeqCount 62.0 117.5 1046.1 1283.2 37.6 90.9 1.51% 6.70% 2.10%
SelfJoin 16.4 32.4 1015.7 1235.9 18.5 88.7 1.93% 4.86% 19.11%
AdjList 149.0 311.3 436.9 531.5 149.1 348.1 0.56% 13.34% 2.78%
HistMovies 22.3 80.2 724.2 724.2 5.2 5.2 6.97% 22.46% 17.25%
HistRating 51.4 187.8 628.6 628.6 3.6 3.6 10.59% 21.01% 40.83%
Classif 1004.6 1946.5 711.2 1113.3 3.9 9.4 0.87% 37.15% 27.74%
Kmeans 1024.6 2044.7 716.9 866.9 58.5 364.3 1.31% 10.75% 5.25%

Table 5: Job profiles on the EC2 cluster with large instances (time in sec)

 0

 50000

 100000

 150000

 200000

 0 20 40 60 80 100

M
ak

es
pa

n
(s

)

cost ($)

heterogeneous
small

medium
large

(a) Workload W1.

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70

M
ak

es
pa

n
(s

)

cost ($)

heterogeneous
small

medium
large

(b) Workload W2.

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70 80

M
ak

es
pa

n
(s

)

cost ($)

heterogeneous
small

medium
large

(c) Workload W3.

Figure 9: Performance versus cost trade-offs for different workloads.

• W2 – it contains 11 applications: 1-11, i.e., excluding KMeans

and Classification from the application set.

• W3 – it contains 12 applications: 1-12, i.e., excluding KMeans

from the application set.

Intuitively, there is a different number of applications that strongly

favor large VM instances in each workload: W1 has both KMeans

and Classification, workload W2 does not have any of them, and
workloadW3 has only Classification.

Figure 9 shows the simulated cost/performance trade-off curves
for three workloads executed on both homogeneous and heteroge-
neous Hadoop cluster(s). These trade-off curves are results of the
brute-force algorithm design, it searches through the entire solution
space by exhaustively enumerating all possible candidates for the so-
lution. So, these trade-off curves do show all the solutions that our
algorithms iterate through. For homogeneous provisioning, we show
the three trade-off curves of Algorithm 2 for Hadoop clusters based
on small, medium and large VM instances respectively.

Figure 9 (a) shows that workloadW1 is more cost-efficient when
executed on the Hadoop cluster with large VMs (among the homoge-
neous clusters). Such results can be expected because W1 contains
both KMeans and Classification that have very strong preference to-
wards large VM instances (see their high positive PScoreS,L). In
comparison, W2 cointains applications that mostly favor the small

VM instances, and as a result, the most efficient trade-off curve be-
longs to a Hadoop cluster based on the small VM instances. Fi-
nally, W3 represents a mixed case: it has Classification application
that strongly favors large VM instances while most of the remain-
ing applications prefer small VM instances. Figure 9(c) shows that a
choice of the best homogeneous platform depends on the workload
performance objectives (i.e., deadline D).

The yellow dots in Figure 9 represent the completion time and
monetary cost when we exploit a heterogeneous provisioning case
with Algorithm 5. Each point corresponds to a workload split into
two subsets that are executed on the Hadoop cluster formed with
small and large VM instances respectively. This is why instead of
the explicit trade-off curves as in the homogeneous cluster case, the
simulation results for the heterogeneous case look much more scat-
tered across the space.

To evaluate the efficiency of our provisioning algorithms, we con-
sider different performance objectives for each workload:

• D= 20000 seconds for workloadW1;

• D= 10000 seconds for workloadW2;

• D= 15000 seconds for workloadW3.

Tables 7-9 present the provisioning results for each workload with
homogeneous and heterogeneous Hadoop clusters that have minimal
monetary costs while meeting the given workload deadlines.

Among the homogeneous Hadoop clusters for W1, the cluster
with large VM instances has the lowest monetary cost of $32.86, that

Cluster type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 210 15763 55.43

medium (homogeneous) 105 15137 53.48

large (homogeneous) 39 12323 32.86

small+large heterogeneous 48 small + 20 large 14988 24.21

Table 7: Cluster provisioning results for workloadW1.

Cluster type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 87 7283 10.68

medium (homogeneous) 43 9603 14.08

large (homogeneous) 49 9893 32.98

small+large heterogeneous 76 small + 21 large 6763 14.71

Table 8: Cluster provisioning results for workloadW2.

Cluster type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 140 13775 32.37

medium (homogeneous) 70 13118 31.05

large (homogeneous) 36 13265 32.72

small+large heterogeneous 74 small + 15 large 10130 18.0

Table 9: Cluster provisioning results for workloadW3.

provides 41% cost saving compared to a cluster with small VMs.
By contrast, for workload W2, the homogeneous Hadoop cluster

with small VMs provides the lowest cost of $10.68, that provides
68% cost saving compared to a cluster with large VM instances.

For W3, all the three homogeneous solutions lead to a similar
minimal cost, and the Hadoop cluster based on medium VMs has a
slightly better cost than the other two alternatives.

Intuitively, these performance results are expected from the trade-
off curves for three workloads shown in Figure 9.

The best heterogeneous solution for each workload is shown in
the last row in Tables 7-9. For W1, the minimal cost of the hetero-
geneous solution is $24.21 which is 26% improvement compared to
the minimal cost of the homogeneous solution based on the large

VM instances. In this heterogeneous solution, the applications Self-

Join, WordCount, InvIndex are executed on the cluster with small

VMs and applications Classif, Kmeans, TermVector, Adjlist, Hist-

Movies, HistRating, Grep, TeraSort, SeqCount, RankInvInd are exe-
cuted on the cluster with large VM instances.

The cost benefits of the heterogeneous solution is even more sig-
nificant forW3 as shown in Table 9. The minimal cost for heteroge-
neous cluster is $18.0 compared with the minimal cost for a homo-
geneous provision of $31.05, it leads to cost savings of 42% com-
pared to the minimal cost of the homogeneous solution. In this het-
erogeneous solution, the applications HistMovies, HistRating, Grep,

TeraSort, SeqCount, RankInvInd, SelfJoin, WordCount, InvIndex are
executed on the cluster with small VMs and applications Classif,

TermVector, Adjlist are executed on the cluster with large VMs.
However, for workload W2, the heterogeneous solution does not

provide additional cost benefits as shown in Table 8. One important
reason is that for a heterogeneous solution, we need to maintain ad-
ditional nodes deployed as JobTracker and NameNode for each sub-
cluster. This increases the total provisioning cost compared to the
homogeneous solution which only requires a single additional node
for the entire cluster. The workload properties also play an impor-
tant role here. As W2 workload does not have any applications that
have “strong” preference for large VM instances, the introduction of
a special sub-cluster with large VM instances is not justified.

6.4 Impact of node failures on the cluster plat
form’s selection

In this section, we show how the cluster platform’s selection may
be impacted when a user additionally considers a possibility of a
node failure(s), and he/she is interested in achieving the generalized
service level objectives (SLOs) which include two different perfor-
mance goals for workload execution under a normal scenario and a
case with 1-node failure:

• a desirable completion time D for the entire set of jobs in the
workload W under normal conditions;

• an acceptable degraded completion time Ddeg for processing
W in case of 1-node failure.

Intuitively, a node failure in the Hadoop cluster formed with small

EC2 instances may have smaller impact than a node failure in the
cluster formed with large EC2 instances.

Let us demonstrate the decision making process for two applica-
tions from our set (see Table 2): TermVector and AdjList.

The completion time versus cost curves for applicatiions TermVec-

tor and AdjList are shown in Figures 10 and 7 (c) respectively.

 0

 10000

 20000

 30000

 40000

 50000

 0 5 10 15 20 25 30 35

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

cost ($)

small
medium

large

Figure 10: Performance versus cost trade-offs for TermVector.

From these figures and the preference score PScoreS,L shown
in Table 6, we can see that TermVector slightly favors large VM
instances, while AdjList is practically neutral to the choice of small,
medium, or large EC2 instances.

For these two applications, we apply our approach for selecting
the underlying platform (a choice between small, medium, and large

EC2 instances) to achieve the following performance objectives:

• TermVector:

– D = 2900 seconds (regular case, no node failures);

– Ddeg = 2930 seconds (in case of 1-node failure).

• AdjList:

– D = 1940 seconds (regular case, no node failures);

– Ddeg = 1945 seconds (in case of 1-node failure).

Table 10 summarizes the cluster provisioning results for a regu-
lar case and a scenario with 1-node failure for TermVector. We use
abbreviations CTreg and CTfail to denote the completion time in
regular and 1-node failure cases respectively. Table 10 shows that in
a regular case scenario, a Hadoop cluster with large EC2 instances
offers the best solution. However, if a user has concerns about a
possible node failure, and aims to meet stringent performance ob-
jectives then the platform choice based on small VM instances is a
better choice.

VM Regular, No-Failure Case 1-Node Failure Scenario
type D = 2900 sec D= 2900 sec and Ddeg= 2930 sec

CTreg #VMs Cost CTreg CTfail #VMs Cost
sec $ sec sec $

Small 2898 139 6.76 2898 2903 139 6.76

Large 2877 34 6.71 2842 2877 35 6.83

Table 10: TermVector: cluster provisioning results for a regular case and

a scenario with 1-node failure.

Table 11 summarizes the cluster provisioning results for a regular
case and a scenario with 1-node failure for AdjList application.

VM Regular, No-Failure Case 1-Node Failure Scenario
type D = 1940 sec D = 1940 sec and Ddeg= 1945 sec

CTreg #VMs Cost CTreg CTfail #VMs Cost
sec $ sec sec $

Small 1939 139 4.52 1924 1939 140 4.52

Medium 1935 69 4.51 1931 1935 70 4.57

Table 11: AdjList: cluster provisioning results for a regular case and a

scenario with 1-node failure.

In a regular case scenario, a Hadoop cluster with medium EC2
instances offers the best solution for AdjList. However, in the sce-
nario with 1-node failure, the platform choice based on small VM
instances is a better choice.

The achievable cost and performance advantages are more sig-
nificant for workloads that require small-size Hadoop clusters for
achieving their performance objectives. In large Hadoop clusters, a
loss of 1-node results in a less pronounced performance impact.

6.5 Validation of the simulation results
To validate the accuracy of the simulation results, we chose work-

load W2 and select the makespan target of 20000 seconds. We use
our simulation results (shown in Figure 9 (b)) and identify four clos-
est points that represent the corresponding four solutions. The se-
lected points correspond to simulated homogeneous Hadoop clus-
ters with 28, 20, 24 nodes formed by small, medium, and large

EC2 instances respectively, and to a heterogeneous solution with two
Hadoop sub-clusters based on 26 small nodes and 20 large nodes.
We deployed the Hadoop clusters with the required number of in-
stances and have executed workload W2 (with the corresponding
Johnson job schedule) on the deployed clusters. Figure 11 shows the
comparison between the simulated and the actual measured makespan
(we repeated measurements 5 times).

 0

 5000

 10000

 15000

 20000

 25000

 30000

			small 			medium 			large 			hetero

M
ak

es
p

an
 (

s)

Simulated time
Execution time

Figure 11: Validation of the simulation results.

Table 12 summarizes validation results shown in Figure 11.
The simulated results with small and large EC2 instances, as well

as the heterogeneous solution show 2-8% error compared to mea-
sured results.

small medium large heterogeneous

Simulated time (sec) 19327 20013 19224 19612

Measured time (sec) 19625 23537 18521 21368

Table 12: Summary of the validation results.

We can see a higher prediction error (17%) for medium instances.
Partially, it is due to a higher variance in the job profile measure-
ments collected on medium instances.

6.6 Discussion
Towards a better understanding of what causes the application per-

formance to be so different when executed by Hadoop clusters based
on different VM instances, Figure 12 shows a detailed analysis of
the execution time breakdown for Terasort and Kmeans on the small,

medium, and large EC2 instances (we use the same Hadoop cluster
configurations as described in our motivating example in Section 1).

 0

 1000

 2000

 3000

 4000

 5000

 6000

small medium large

Jo
b
 C

o
m

p
le

ti
o
n
 T

im
e

(s
) map

shuffle
reduce

(a) TeraSort

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

small medium large

Jo
b
 C

o
m

p
le

ti
o
n
 T

im
e

(s
) map

shuffle
reduce

(b) KMeans

Figure 12: Analysis of TeraSort and KMeans on different EC2 instances.

Terasort performance is dominated by the shuffle phase. More-
over, the shuffle duration is increasing when executed by Hadoop
based on on medium and large instances compared to the Hadoop
execution based on the small EC2 instances. The significantly longer
shuffle time leads to an increased overall job completion time as
shown in Figure 12 (a). One explanation is that the increased size
EC2 instances are provided with a scaled capacities of CPU and
RAM, but not of the network bandwidth. As we configure more slots
on the large EC2 instances, it increases amount of the I/O and net-
work traffic (as well as the contention) per each VM, and this leads
to the increased duration of the shuffle phase. On the contrary, for
Kmeans shown in Figure 12 (b), the map stage duration dominates
the application execution time, and the map phase execution is sig-
nificantly improved when executed on large EC2 instances. This can
be explained by checking the CPU models of the underlying server
hardware used to host different types of EC2 instances.

Over a month, every day we have reserved 20 instances of small,

medium, and large EC2 instances to gather their CPU information
from the servers used for hosting these instances. Table 13 below
summarizes the CPU models’ statistics accumulated during these
sampling experiments.

Majority of large EC2 instances (75%) are hosted on a later gener-
ation, more powerful, and faster CPU model compared to the small

and medium EC2 instances. Also, practically the same CPU mod-
els are used for hosting the small and medium EC2 instances, which
explains why the performance difference between small and medium

EC2 instances were significantly smaller compared to the large ones,
e.g., see Kmeans performance shown in Figure 12 (b).

Instance type CPU type

90% Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz
Small 9% Intel(R) Xeon(R) CPU E5645 @ 2.40GHz

1% Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

83% Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz
Medium 8% Intel(R) Xeon(R) CPU E5507 @ 2.27GHz

7% Intel(R) Xeon(R) CPU E5645 @ 2.40GHz
2% Intel(R) Xeon(R) CPU E5430 @ 2.66GHz

75% Intel(R) Xeon(R) CPU E5-2651 v2 @ 1.80GHz
12% Intel(R) Xeon(R) CPU E5507 @ 2.27GHz

Large 8% Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
3% Intel(R) Xeon(R) CPU E5645 @ 2.40GHz
2% Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz

Table 13: CPU types used by different EC2 instances.

7. RELATED WORK
In the past few years, performance modeling and simulation of

MapReduce environments has received much attention, and different
approaches [5, 4, 14, 13] were offered for predicting performance
of MapReduce applications, as well as optimizing resource provi-
sioning in the Cloud [7, 11]. A few MapReduce simulators were
introduced for the analysis and exploration of Hadoop cluster con-
figuration and optimized job scheduling decisions. The designers of
MRPerf [16] aim to provide a fine-grained simulation of MapReduce
setups. To accurately model inter- and intra rack task communica-
tions over network MRPerf uses the well-known ns-2 network simu-
lator. The authors are interested in modeling different cluster topolo-
gies and in their impact on the MapReduce job performance. In our
work, we follow the directions of SimMR simulator [12] and focus
on simulating the job master decisions and the task/slot allocations
across multiple jobs. We do not simulate details of the TaskTrackers
(their hard disks or network packet transfers) as done by MRPerf.
In spite of this, our approach accurately reflects the job processing
because of our profiling technique to represent job latencies during
different phases of MapReduce processing in the cluster. SimMR

is very fast compared to MRPerf which deals with network-packet
level simulations. Mumak [3] is an open source Apache’s MapRe-
duce simulator. It replays traces collected with a log processing tool,
called Rumen [1]. The main difference between Mumak and SimMR

is that Mumak omits modeling the shuffle/sort phase that could sig-
nificantly affect the accuracy.

There is a body of work focusing on performance optimization of
MapReduce executions in heterogeneous environments. Zaharia et
al. [19], focus on eliminating the negative effect of stragglers on job
completion time by improving the scheduling strategy with specula-
tive tasks. The Tarazu project [2] provides a communication-aware
scheduling of map computation which aims at decreasing the com-
munication overload when faster nodes process map tasks with in-
put data stored on slow nodes. It also proposes a load-balancing
approach for reduce computation by assigning different amounts of
reduce work according to the node capacity. Xie et al. [18] try im-
proving the MapReduce performance through a heterogeneity-aware
data placement strategy: a faster nodes store larger amount of input
data. In this way, more tasks can be executed by faster nodes without
a data transfer for the map execution. Polo et al. [9] show that some
MapReduce applications can be accelerated by using special hard-
ware. The authors design an adaptive Hadoop scheduler that assigns
such jobs to the nodes with corresponding hardware.

Another group of related work is based on resource management
that considers monetary cost and budget constraints. In [10], the au-
thors provide a heuristic to optimize the number of machines for a
bag of jobs while minimizing the overall completion time under a
given budget. This work assumes the user does not have any knowl-
edge about the job completion time. It starts with a single machine

and gradually adds more nodes to the cluster based on the average
job completion time updated every time when a job is finished. In
our approach, we use job profiles for optimizing the job schedule
and provisioning the cluster.

In [17], the authors design a budget-driven scheduling algorithm
for MapReduce applications in the heterogeneous cloud. They con-
sider iterative MapReduce jobs that take multiple stages to complete,
each stage contains a set of map or reduce tasks. The optimization
goal is to select a machine from a fixed pool of heterogeneous ma-
chines for each task to minimize the job completion time or mone-
tary cost. The proposed approach relies on a prior knowledge of the
completion time and cost for a task i executed on a machine j in the
candidate set. In our paper, we aim at minimizing the makespan of
the set of jobs and design an ensemble of methods and tools to eval-
uate the job completion times as well as their makespan as a func-
tion of allocated resources. In [8], Kllapi et al. propose scheduling
strategies to optimize performance/cost trade-offs for general data
processing workflows in the Cloud. Different machines are mod-
elled as containers with different CPU, memory, and network capac-
ities. The computation workflow contains a set of nodes as operators
and edges as data flows. The authors provide both greedy and lo-
cal search algorithms to schedule operators on different containers
so that the optimal performance (cost) is achieved without violating
budget or deadline constraints. Compared to our profiling approach,
they estimate the operator execution time using the CPU container
requirements. This approach does not apply for estimating the dura-
tions of map/reduce tasks – their performance depends on multiple
additional factors, e.g., the amount of RAM allocated to JVM, the
I/O performance of the executing node, etc. The authors present
only simulation results without validating the simulator accuracy.

8. CONCLUSION
In this work, we designed a novel simulation-based framework for

evaluating both homogeneous and heterogeneous Hadoop solutions
to enhance private and public cloud offerings with a cost-efficient,
SLO-driven resource provisioning. We demonstrated that seemingly
equivalent platform choices for a Hadoop cluster might result in a
very different application performance, and thus lead to a different
cost. Our case study with Amazon EC2 platform reveals that for
different workloads an optimized platform choice may result in 45-
68% cost savings for achieving the same performance objectives. In
our future work, we plan to use a set of additional microbenchmarks
to profile and compare generic phases of the MapReduce processing
pipeline across Cloud offerings, e.g., comparing performance of the
shuffle phase across different EC2 instances to predict the general
performance impact of different platforms on the user workloads.

9. REFERENCES

[1] Apache Rumen: a tool to extract job characterization data
from job tracker logs. https://issues.apache.org/
jira/browse/MAPREDUCE-728.

[2] F. Ahmad et al. Tarazu: Optimizing MapReduce on
Heterogeneous Clusters. In Proc. of ASPLOS, 2012.

[3] Apache. Mumak: Map-Reduce Simulator.
https://issues.apache.org/jira/browse/

MAPREDUCE-751.

[4] H. Herodotou, F. Dong, and S. Babu. No One (Cluster) Size
Fits All: Automatic Cluster Sizing for Data-Intensive
Analytics. In Proc. of ACM Symposium on Cloud Computing,
2011.

[5] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin,
and S. Babu. Starfish: A Self-tuning System for Big Data

Analytics. In Proc. of 5th Conf. on Innovative Data Systems

Research (CIDR), 2011.

[6] S. Johnson. Optimal Two- and Three-Stage Production
Schedules with Setup Times Included. Naval Res. Log.

Quart.,1954.

[7] K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing
hadoop provisioning in the cloud. In Proc. of the First

Workshop on Hot Topics in Cloud Computing, 2009.

[8] H. Kllapi et al. Schedule Optimization for Data Processing
Flows on the Cloud. In Proc. of the ACM SIGMOD’2011.

[9] J. Polo et al. Performance management of accelerated
mapreduce workloads in heterogeneous clusters. In Proc. of

the 41st Intl. Conf. on Parallel Processing, 2010.

[10] J. N. Silva et al. Heuristic for Resources Allocation on Utility
Computing Infrastructures. In Proc. of MGC’2008 wokshop.

[11] F. Tian and K. Chen. Towards Optimal Resource Provisioning
for Running MapReduce Programs in Public Clouds. In Proc.

of IEEE Conference on Cloud Computing (CLOUD 2011).

[12] A. Verma, L. Cherkasova, and R. H. Campbell. Play It Again,
SimMR! In Proc. of Intl. IEEE Cluster, 2011.

[13] A. Verma, L. Cherkasova, and R. H. Campbell. Resource
Provisioning Framework for MapReduce Jobs with
Performance Goals. Proc. of the 12th Middleware Conf., 2011.

[14] A. Verma et al. ARIA: Automatic Resource Inference and
Allocation for MapReduce Environments. Proc. ICAC’2011.

[15] A. Verma et al. Two Sides of a Coin: Optimizing the Schedule
of MapReduce Jobs to Minimize Their Makespan and
Improve Cluster Performance. Proc. of MASCOTS, 2012.

[16] G. Wang, A. Butt, P. Pandey, and K. Gupta. A Simulation
Approach to Evaluating Design Decisions in MapReduce
Setups. In Intl. Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems

(MASCOTS), 2009.

[17] Y. Wang and W. Shi. On Optimal Budget-Driven Scheduling
Algorithms for MapReduce Jobs in the Hetereogeneous
Cloud. Technical Report TR-13-02, Carleton Univ., 2013.

[18] J. Xie et al. Improving mapreduce performance through data
placement in heterogeneous hadoop clusters. In Proc. of the

IPDPS Workshops: Heterogeneity in Computing, 2010.

[19] M. Zaharia et al. Improving mapreduce performance in
heterogeneous environments. In Proc. of OSDI, 2008.

[20] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting Cloud
Heterogeneity for Optimized Cost/Performance MapReduce
Processing. In Proc. of the 4th Intl. Workshop on Cloud Data

and Platforms (CloudDP’2014), 2014.

[21] Z. Zhang et al. Automated Profiling and Resource
Management of Pig Programs for Meeting Service Level
Objectives. In Proc. of IEEE/ACM ICAC’2012.

[22] Z. Zhang et al. Optimizing Cost and Performance Trade-Offs
for MapReduce Job Processing in the Cloud. In Proc. of

IEEE/IFIP NOMS, May, 2014.

