
Exploiting compositionality to explore a large space of model structures

Roger B. Grosse

Comp. Sci. & AI Lab

MIT

Cambridge, MA 02139

Ruslan Salakhutdinov

Dept. of Statistics

University of Toronto

Toronto, Ontario, Canada

William T. Freeman

Comp. Sci. & AI Lab

MIT

Cambridge, MA 02139

Joshua B. Tenenbaum

Brain and Cognitive Sciences

MIT

Cambridge, MA 02193

Abstract

The recent proliferation of richly structured prob-

abilistic models raises the question of how to au-

tomatically determine an appropriate model for a

dataset. We investigate this question for a space

of matrix decomposition models which can ex-

press a variety of widely used models from unsu-

pervised learning. To enable model selection, we

organize these models into a context-free gram-

mar which generates a wide variety of structures

through the compositional application of a few

simple rules. We use our grammar to generically

and efficiently infer latent components and esti-

mate predictive likelihood for nearly 2500 struc-

tures using a small toolbox of reusable algo-

rithms. Using a greedy search over our gram-

mar, we automatically choose the decomposi-

tion structure from raw data by evaluating only

a small fraction of all models. The proposed

method typically finds the correct structure for

synthetic data and backs off gracefully to sim-

pler models under heavy noise. It learns sen-

sible structures for datasets as diverse as image

patches, motion capture, 20 Questions, and U.S.

Senate votes, all using exactly the same code.

1 Introduction

There has been much interest recently in learning hier-

archical models, which extend simpler models by intro-

ducing additional dependencies between the parameters.

While there have been many advances in modeling par-

ticular kinds of structure, as the desired structure becomes

higher level and more abstract, the correct model becomes

less obvious a priori. We aim to determine an appropri-

ate model structure automatically from the data, in order to

make hierarchical modeling usable by non-experts and to

explore a wider variety of structures than would be possi-

ble by manual engineering.

There has been much work on structure learning in partic-

ular model classes, such as undirected (Lee et al., 2006)

and directed (Teyssier and Koller, 2005) graphical models.

Most such work focuses on determining the particular fac-

torization and/or conditional independence structure within

a fixed model class. Our concern, however, is with identify-

ing the overall form of the model. For instance, suppose we

are interested in modeling the voting patterns of U.S. Sen-

ators. We can imagine several plausible modeling assump-

tions for this domain: e.g., that political views can be sum-

marized by a small number of dimensions, that Senators

cluster into voting blocks, or that votes can be described in

terms of binary attributes. Choosing the correct assump-

tions is crucial for uncovering meaningful structure. Right

now, the choice of modeling assumptions is heavily depen-

dent on the intuition of the human researcher; we are in-

terested in determining appropriate modeling assumptions

automatically.

Many common modeling assumptions, or combinations

thereof, can be expressed by a class of probabilistic mod-

els called matrix decompositions. In a matrix decomposi-

tion model, component matrices are first sampled indepen-

dently from a small set of priors, and then combined using

simple algebraic operations. This expressive model class

can represent a variety of widely used models, including

clustering, co-clustering (Kemp et al., 2006), binary latent

factors (Griffiths and Ghahramani, 2005), and sparse cod-

ing (Olshausen and Field, 1996). Nevertheless, the space

of models is compositional: each model is described re-

cursively in terms of simpler matrix decomposition mod-

els and the operations used to combine them. We propose

to exploit this compositional structure to efficiently and

generically evaluate and perform inference in matrix de-

composition models, and to automatically search through

the space of structures to find one appropriate for a dataset.

A common heuristic researchers use for designing hierar-

chical models is to fit an existing model, look for additional

dependencies in the learned representation, and extend the

model to capture those dependencies. We formalize this

process in terms of a context-free grammar. In particular,

we present a notation for describing matrix decomposition

models as algebraic expressions, and organize the space of

models into a context-free grammar which generates such

expressions. The starting symbol corresponds to a struc-

tureless model where the entries of the input matrix are

modeled as i.i.d. Gaussians. Each production rule corre-

sponds to a simple unsupervised learning model, such as

clustering or dimensionality reduction. These production

rules lie at the heart of our approach: we fit and evaluate a

wide variety of models using a small toolbox of algorithms

corresponding to the production rules, and the production

rules guide our search through the space of structures.

The main contributions of this paper are threefold. First, we

present a unifying framework for matrix decompositions

based on a context-free grammar which generates a wide

variety of structures through the compositional application

of a few simple production rules. Second, we exploit our

grammar to infer the latent components and estimate pre-

dictive likelihood in all of these structures generically and

efficiently using a small toolbox of reusable algorithms cor-

responding to different component matrix priors and pro-

duction rules. Finally, by performing greedy search over

our grammar using predictive likelihood as the criterion,

we can (in practice) typically choose the correct structure

from the data while evaluating only a small fraction of all

possible structures.

Section 3 defines our matrix decomposition formalism, and

Sections 4 and 5 present our generic algorithms for infer-

ring component matrices and evaluating individual struc-

tures, respectively. Section 6 describes how we search our

space of structures. Finally, in Section 7, we evaluate the

structure learning procedure on synthetic data and on real-

world datasets as diverse as image patches, motion capture,

20 Questions, and Senate voting records, all using exactly

the same code. Our procedure learns correct and/or plausi-

ble model structures for a wide variety of synthetic and real

datasets, and gracefully falls back to simpler structures in

high-noise conditions.

2 Related work

There is a long history of attempts to infer model struc-

tures automatically. The field of algorithmic information

theory (Li and Vitanyi, 1997) studies how to represent

data in terms of a short program/input pair which could

have generated it. One prominent example, Solomonoff in-

duction, can learn any computable generative model, but

is itself uncomputable. Minimum message length (Wal-

lace, 2005), minimum description length (Barron et al.,

1998), and Bayesian model comparison (MacKay, 1992)

are frameworks which can, in principle, be used to compare

very different generative models. In practice, they have pri-

marily been used for controlling complexity within a given

model class. By contrast, our aim is to choose from a very

large space of model classes by exploiting shared structure

between the models.

Other work has focused on searching within more restricted

spaces of models, such as undirected (Lee et al., 2006) and

directed (Teyssier and Koller, 2005) graphical models, and

graph embeddings (Kemp and Tenenbaum, 2008). Kemp

and Tenenbaum (2008) model human “domain structure”

learning as selecting between a fixed set of graph struc-

tures. Similarly to this paper, their structures are gener-

ated from a few simple rules; however, whereas their set

of structures is small enough to exhaustively evaluate each

one, we search over a much larger set of structures in a way

that explicitly exploits the recursive nature of the space.

Furthermore, our space of matrix decomposition structures

is especially broad, including many bread-and-butter mod-

els from unsupervised learning, as well as the building

blocks of many hierarchical Bayesian models.

We note that several other researchers have proposed uni-

fying frameworks for unsupervised learning which over-

lap substantially with our own. Roweis and Ghahramani

(1999)’s “generative model for generative models” presents

a lattice showing relationships between different models.

Srebro (2004) and Singh and Gordon (2008) each inter-

preted a variety of unsupervised learning algorithms as fac-

torizing an input matrix into a product of two factors. Ex-

ponential family PCA (Collins et al., 2002; Mohamed et al.,

2008) generalizes low-rank factorizations to other observa-

tion models in the exponential family. Our work differs

from these in that our matrix decomposition formalism is

specifically designed to support efficient generic inference

and structure learning. We defer discussion of particular

matrix decomposition models to Section 3.1, after we have

introduced our formalism.

Our work has several parallels in the field of equation dis-

covery. Langley et al. (1984) built a knowledge discovery

system called BACON which reproduced classical scien-

tific discoveries. BACON followed a greedy search proce-

dure similar to our own: it repeatedly fit statistical mod-

els and looked for additional structure in the learned pa-

rameters. Our work is similar in spirit, but uses matrices

rather than scalars as the building blocks, allowing us to

capture rich structure in high-dimensional spaces. Todor-

ovski and Dzeroski (1997) used a context-free grammar to

define spaces of candidate equations. Our approach differs

in that we explicitly use the grammar to structure posterior

inference and search over model structures.

3 A grammar for matrix decompositions

We first present a notation for describing matrix decompo-

sition models as algebraic expressions, such as MG + G.

Each letter corresponds to a particular distribution over ma-

trices. When the dimensions of all the component matrices

are specified, the algebraic expression defines a generative

model: first sample all of the component matrices indepen-

dently from their corresponding priors, and then evaluate

the expression. The component priors are as follows:

1. Gaussian (G). Entries are independent Gaussians:

uij ∼ Gaussian(0, λ−1
i λ−1

j).

This is our most generic component prior, and gives a

way of deferring or ignoring structure.1

2. Multinomial (M). Rows are independent multinomi-

als, with one 1 and the rest 0’s:

π ∼ Dirichlet(α) ui ∼ Multinomial(π).

This is useful for clustering models, where ui deter-

mines the cluster assignment for the ith row.

3. Bernoulli (B). Entries are independent Bernoullis:

πj ∼ Beta(a, b) uij ∼ Bernoulli(πj).

This is useful for binary latent feature models.

4. Integration matrix (C). Entries below the diagonal

are deterministically 1:

uij = 1i≥j .

This is useful for modeling temporal structure, as mul-

tiplying by this matrix has the effect of cumulatively

summing the rows. (Mnemonic: C for “cumulative.”)

We allow expressions consisting of addition, matrix multi-

plication, matrix transpose, elementwise multiplication (◦),

and elementwise exponentiation (exp). Some of the dimen-

sions of the component matrices are determined by the size

of the input matrix; the rest (the latent dimensions) are de-

termined automatically using the techniques of Section 4.

We observe that this notation for matrix decompositions

is recursive: each sub-expression (such as GMT + G
in the above example) is itself a matrix decomposition

model. Furthermore, the semantics is compositional: the

value of each expression depends only on the values of

its sub-expressions and the operations used to combine

them. These observations motivate our decision to define a

space of models using a context-free grammar, a formalism

which is widely used for representing recursive and com-

positional structures such as languages.

1The precision parameters λi and λj are drawn from the dis-
tribution Gamma(a, b). If i indexes a data dimension (i.e. rows
correspond to rows of the input matrix), the λis are tied. This al-
lows the variance parameters to generalize to additional rows. If
i indexes a latent dimension, the λis are all independent draws.
This allows the variances of latent dimensions to be estimated.
The same holds for the λjs.

+G M G
T

M + GM + GG

G → GM
T
+G

G

G → MG+G

Figure 1: A synthetic example showing how an input matrix with
block structure can be co-clustered by fitting the matrix decom-
position structure M(GMT + G) + G. Rows and columns are
sorted for visualization purposes.

The starting symbol in our grammar is G, a structureless

model where the entries are assumed to be independent

Gaussians. Other models (expressions) are generated by

repeatedly applying one of the following production rules:

low-rank approximation G → GG+G (1)

clustering G → MG+G | GMT +G (2)
M → MG+G (3)

linear dynamics G → CG+G | GCT +G (4)
sparsity G → exp(G) ◦G (5)

binary factors G → BG+G | GBT +G (6)
B → BG+G (7)
M → B (8)

For instance, any occurrence of G in a model may be re-

placed by GG + G or MG + G. Repeated application of

these production rules allows us to build hierarchical mod-

els by capturing additional dependencies between variables

which were previously modeled as independent.

3.1 Examples

We now turn to several examples in which our simple com-

ponents and production rules give rise to a rich variety

of models from unsupervised learning. While the model

space is symmetric with respect to rows and columns, for

purposes of exposition, we will adopt the convention that

the rows of the input matrix correspond to data points and

columns corresponds to observed attributes.

We always begin with the model G, which assumes the en-

tries of the matrix are i.i.d. Gaussian. Applying produc-

tions in our grammar allows us to capture additional struc-

ture. For instance, starting with Rule 2(a) gives the model

MG + G, which clusters the rows (data points). In more

detail, the M represents the cluster assignments, the first G
represents the cluster centers, and the second G represents

within-cluster variation. These three matrices are sampled

independently, the assignment matrix is multiplied by the

center matrix, and the within-cluster variation is added to

the result. By applying Rule 2(b), the clustering model can

be extended to co-clustering (Kemp et al., 2006), where the

columns (attributes) form clusters as well. In our frame-

work, this can be represented as M(GMT + G) + G. We

need not stop here: for instance, there may be coherent co-

variation even within individual clusters. One can capture

this variation by applying Rule 3 to get the Bayesian Clus-

tered Tensor Factorization (BCTF) (Sutskever et al., 2009)

model (MG+G)(GMT +G)+G. This process is shown

in cartoon form in Figure 1.

For an example from vision, consider a matrix X , where

each row is a small (e.g. 12 × 12) patch sampled from

an image and vectorized. Image patches can be viewed as

lying near a low-dimensional subspace spanned by the low-

est frequency Fourier coefficients (Bossomaier and Sny-

der, 1986). This can be captured by the low-rank model

GG+G. In a landmark paper, Olshausen and Field (1996)

found that image patches are better modeled as a linear

combination of a small number of components drawn from

a larger dictionary. In other words, X is approximated as

the product WA, where each row of A is a basis function,

and W is a sparse matrix giving the linear reconstruction

coefficients for each patch. By fitting this “sparse coding”

model, they obtained a dictionary of oriented edges simi-

lar to the receptive fields of neurons in the primary visual

cortex. If we apply Rule (5), we obtain a Bayesian ver-

sion of sparse coding, (exp(G) ◦ G)G + G, similar to the

model proposed by Berkes et al. (2008). Intuitively, the

latent Gaussian coefficients are multiplied elementwise by

“scale” variables to give a heavy-tailed distribution. Many

researchers have designed models to capture the depen-

dencies between these scale variables, and such “Gaussian

scale mixture” models represent the state-of-the art for low-

level vision tasks such as denoising (Portilla et al., 2003)

and texture synthesis (Portilla and Simoncelli, 2000). One

such GSM model is that of Karklin and Lewicki (2008),

who fit a low-rank model to the scale variables. By apply-

ing Rule (1) to the sparse coding structure, we can represent

their model in our framework as (exp(GG+G)◦G)G+G.

This model has been successful at capturing higher-level

textural properties of a scene and has properties similar to

complex cells in the primary visual cortex.

Figure 2 gives several additional examples of matrix de-

composition models and highlights the relationships be-

tween them. We emphasize that our goal is not to repro-

duce existing models exactly, but to develop a formalism

powerful enough to express a wide variety of statistical as-

sumptions about the latent factors underlying the data.

We note that many of the above models are not typically

viewed as matrix decomposition structures. Describing

them as such results in a compact notation for defining

them and makes clearer the relationships between the dif-

ferent models. The above examples have in common that

complex models can be derived by incrementally adding

structure to a sequence of simpler models (in a way that

parallels the path researchers took to discover them). This

observation motivates our proposed procedures for infer-

ence and structure learning.

4 Posterior inference of component matrices

Searching over matrix decomposition structures requires a

generic and unified approach for posterior sampling of the

latent matrices. Unfortunately, for most of the structures

we consider, this posterior is complicated and multimodal,

and escaping from local modes requires carefully chosen

special-purpose sampling operators. Engineering such op-

erators for thousands of different models would be undesir-

able.

Fortunately, the compositional nature of our model space

allows us to focus the engineering effort on the relatively

small number of production rules. In particular, observe

that in a realization of the generative process, the value

of an expression depends only on the values of its sub-

expressions. This suggests the following initialization pro-

cedure: when applying a production rule P to a matrix S,

sample from the posterior for P ’s generative model condi-

tioned on it evaluating (exactly) to S. Many of our produc-

tion rules correspond to simple machine learning models

for which researchers have already expended much time

developing efficient inference algorithms:

1. Low rank. To apply the rule G → GG+G, we fit the

probabilistic matrix factorization (Salakhutdinov and

Mnih, 2008) model using block Gibbs sampling over

the two factors. While PMF assumes a fixed latent

dimension, we choose the dimension automatically by

placing a Poisson prior on the dimension and moving

between states of differing dimension using reversible

jump MCMC (Green, 1995).

2. Clustering. To apply the clustering rule to rows:

G → MG + G, or to columns: G → GMT + G,

we perform collapsed Gibbs sampling over the cluster

assignments in a Dirichlet process mixture model.

3. Binary factors. To apply the rule G → BG + G or

G → GBT + G, we perform accelerated collapsed

Gibbs sampling (Doshi-Velez and Ghahramani, 2009)

over the binary variables in a linear-Gaussian In-

dian Buffet Process (Griffiths and Ghahramani, 2005)

model, using split-merge proposals (Meeds et al.,

2006) to escape local modes.

4. Markov chains. The rule G → CG + G is equiv-

alent to estimating the state of a random walk given

noisy observations, which is done using Rauch-Tung-

Striebel (RTS) smoothing.

The remaining production rules begin with a random de-

composition of S. While some of these algorithms in-

volve fitting Bayesian nonparametric models, once the di-

mensionality is chosen, the model is converted to a finite

model of fixed dimensionality (as defined in section 3). The

no structure

clustering

co-clustering

(e.g. Kemp et al., 2006) binary features

(Griffiths and

Ghahramani, 2005)

sparse coding

(e.g. Olshausen and Field, 1996)

low-rank approximation

(Salakhutdinov and

Mnih, 2008)

Bayesian clustered tensor factorization

(Sutskever et al., 2009)

binary matrix factorization

(Meeds et al., 2006)

random walk

linear dynamical system

dependent gaussian scale mixture

(e.g. Karklin and Lewicki, 2005)

...
...

...
...

Figure 2: Examples of existing machine learning models which fall under our framework. Arrows represent models reachable using a
single production rule. Only a small fraction of the 2496 models reachable within 3 steps are shown, and not all possible arrows are
shown.

smart initialization step is followed by generic Gibbs sam-

pling over the entire model. We note that our initialization

procedure generalizes “tricks of the trade” whereby com-

plex models are initialized from simpler ones (Kemp et al.,

2006; Miller et al., 2009).

In addition to simplifying the engineering, this procedure

allows us to reuse computations between different struc-

tures. Most of the computation time is in the initialization

steps. Each of these steps only needs to be run once on the

full matrix, specifically when the first production rule is ap-

plied. Subsequent initialization steps are performed on the

component matrices, which are considerably smaller. This

allows a large number of high level structures to be fit for a

fraction of the cost of fitting them from scratch.

5 Scoring candidate structures

Performing model selection requires a criterion for scoring

individual structures which is informative yet tractable. To

motivate our method, we first discuss two popular choices:

marginal likelihood of the input matrix and entrywise mean

squared error (MSE). Marginal likelihood, the probability

of the data with all the latent variables integrated out, is

widely used in Bayesian model selection. Unfortunately,

this requires integrating out all of the latent component ma-

trices, whose posterior distribution is highly complex and

multimodal. While elegant solutions exist for particular

models, estimating the data marginal likelihood generically

is still extremely difficult. At the other extreme, one can

hold out a subset of the entries of the matrix and compute

the mean squared error for predicting these entries. MSE

is easier to implement, but we found that it was unable to

distinguish many of the the more complex structures in our

grammar.

As a compromise between these two approaches, we chose

to evaluate predictive likelihood of held-out rows and

columns. That is, for each row (or column) x of the matrix,

we evaluate p(x|XO), where XO denotes an “observed”

sub-matrix. Like marginal likelihood, this tests the model’s

ability to predict entire rows or columns. However, it can

be efficiently approximated in our class of models using

a small but carefully chosen toolbox corresponding to the

component matrix priors in our grammar. We discuss the

case of held-out rows; columns are handled analogously.

First, by expanding out the products in the expression, we

can write the decomposition uniquely in the form

X = U1V1 + · · ·+ UnVn + E, (1)

where E is an i.i.d. Gaussian “noise” matrix and the Ui’s

are any of the following: (1) a component matrix G, M ,

or B, (2) some number of Cs followed by G, (3) a Gaus-

sian scale mixture. The held-out row x can therefore be

represented as:

x = V T
1 u1 + · · ·+ V T

n un + e. (2)

The predictive likelihood is given by:

p(x|XO) =

∫
p(UO, V |XO)p(u|UO)p(x|u, V) dUO du dV

(3)

where UO is shorthand for (UO1, . . . , UOn) and u is short-

hand for (u1, . . . , un).

In order to evaluate this integral, we generate samples from

the posterior p(UO, V |X) using the techniques described

in Section 4, and compute the sample average of

ppred(x) ,

∫
p(u|UO)p(x|u, V) du (4)

If the term Ui is a Markov chain, the predictive distribu-

tion p(ui|UO) can be computed using Rauch-Tung-Striebel

smoothing; in the other cases, u and UO are related only

through the hyperparameters of the component prior. Ei-

ther way, each term p(ui|UO) can be summarized as a

Gaussian, multinomial, Bernoulli, or Gaussian scale mix-

ture distribution.

It remains to marginalize out the latent representation u of

the held-out row. While this can be done exactly in some

simple models, it is intractable in general (for instance, if

u is Bernoulli or a Gaussian scale mixture). It is important

that the approximation to the integral be a lower bound, be-

cause otherwise an overly optimistic model could be cho-

sen even when it is completely inappropriate.

Our approach is a hybrid of variational and sampling tech-

niques. We first lower bound the integral (4) in an approx-

imate model p̃ where the Gaussian scale mixture compo-

nents are approximated as Gaussians. This is done using

using the variational Bayes bound

log p̃pred(x) ≥ Eq[log p̃pred(x, u)] +H(q).

The approximating distribution q(u) is such that all

of the discrete components are independent, while the

Gaussian components are marginalized out. The ratio

ppred(x)/p̃pred(x) is then estimated using annealed im-

portance sampling (AIS) (Neal, 2001). Because AIS is an

unbiased estimator which always takes positive values, by

Markov’s inequality we can regard it as a stochastic lower

bound. Therefore, this small toolbox of techniques allows

us to (stochastically) lower bound the predictive likelihood

across a wide variety of matrix decomposition models.

6 Search over structures

We aim to find a matrix decomposition structure which is a

good match to a dataset, as measured by the predictive like-

lihood criterion of Section 5. Since the space of models is

large and inference in many of the models is expensive, we

wish to avoid exhaustively evaluating every model. Instead,

we adopt a greedy search procedure inspired by the process

of scientific discovery. In particular, consider a common

heuristic researchers use to build probabilistic models: we

begin with a model which has already been applied to a

problem, look for additional dependencies not captured by

the model, and refine the model to account for those depen-

dencies.

In our approach, refining a model corresponds to apply-

ing one of the productions. This suggests the following

greedy search procedure, which iteratively “expands” the

best-scoring unexpanded models by applying all possible

production rules and scoring the resulting models. In par-

ticular we first expand the structureless model G. Then, in

each step, we expand the K best-performing models from

the previous step by applying all possible productions. We

then score all the resulting models. The procedure stops

when no model achieves sufficient improvement over the

best model from the previous step. We refer to the models

reached in i productions as the Level i models; for instance,

GG+G is a Level 1 model and (MG+G)G+G is a Level

2 model.

The effectiveness of this search procedure depends whether

the score of a simple structure is a strong indicator of the

best score which can be obtained from the structures de-

rived from it. In our experiments, the scores of the sim-

pler structures turned out to be a powerful heuristic: while

our experiments used K = 3, in most all cases, the cor-

rect (or best-scoring) structure would have been found with

a purely greedy search (K = 1). This results in enor-

mous savings because of the compositional nature of our

search space: while the number of possible structures (up

to a given level) grows quickly in the number of production

rules, the number of structures evaluated by this search pro-

cedure is merely linear.

The search procedure returns a high-scoring structure for

each level in our grammar. There remains a question of

when to stop. Choosing between structures of differing

complexity imposes a tradeoff between goodness of fit and

other factors such as interpretability and tractability of in-

ference, and inevitably the choice is somewhat subjective.

In practice, a user may wish to run our procedure up to

a fixed level and analyze the sequence of models chosen,

as well as the predictive likelihood improvement at each

level. However, for the purposes of evaluating our system,

we need it to return a single answer. In all of our experi-

ments, we adopt the following arbitrary but consistent cri-

terion: prefer the higher level structure if its predictive log-

likelihood score improves on the previous level by at least

one nat per row and column.2

7 Experiments

7.1 Synthetic data

We first validated our structure learning procedure on syn-

thetic data where the correct model was known. We gen-

erated matrices of size 200 × 200 from all of the models

in Figure 2, with 10 latent dimensions. The noise variance

σ2 was varied from 0.1 to 10, while the signal variance was

fixed at 1.3 The structures selected by our procedure are

shown in Table 1.

2More precisely, if
Si−Si−1

N+D
> 1, where Si is the total pre-

dictive log-likelihood for the level i model summed over all rows
and columns, and N and D are the numbers of rows and columns,
respectively. We chose to normalize by N+D because the predic-
tive likelihood improvements between more abstract models tend
to grow with the number of rows and columns in the input matrix,
rather than the number of entries.

3Our grammar generates expressions of the form · · ·+G. We
consider this final G term to be the “noise” and the rest to be the
“signal,” even though the models and algorithms do not distin-
guish the two.

— Increasing noise −→

σ2 = 0.1 σ2 = 1 σ2 = 3 σ2 = 10
low-rank GG + G GG + G GG + G 1G

clustering MG + G MG + G MG + G MG + G

binary latent features 1 (BG + G)G + G BG + G BG + G BG + G

co-clustering M(GMT + G) + G M(GMT + G) + G M(GMT + G) + G 1GMT + G

binary matrix factorization 1 (BG + G)(GBT + G) + G (BG + G)BT + G 2GG + G 2GG + G

BCTF (MG + G)(GMT + G) + G (MG + G)(GMT + G) + G 2GMT + G 3G

sparse coding (exp(G) ◦ G)G + G (exp(G) ◦ G)G + G (exp(G) ◦ G)G + G 2G

dependent GSM 1 (exp(G) ◦ G)G + G 1 (exp(G) ◦ G)G + G 1 (exp(G) ◦ G)G + G 3BG + G

random walk CG + G CG + G CG + G 1G

linear dynamical system (CG + G)G + G (CG + G)G + G (CG + G)G + G 2BG + G

Table 1: The structures learned from 200× 200 matrices generated from various distributions, with signal variance 1 and noise variance
σ2. Incorrect structures are marked with a 1, 2, or 3, depending how many decisions would need to be changed to find the correct
structure. We observe that our approach typically finds the correct answer in low noise settings and backs off to simpler models in high
noise settings.

We observe that seven of the ten structures were identi-

fied perfectly in both trials where the noise variance was

no larger than the data variance (σ2 ≤ 1). When σ2 = 0.1,

the system incorrectly chose (BG+G)G+G for the binary

latent feature data, rather than BG+G. Similarly, it chose

(BG+G)(GBT +G)+G rather than (BG+G)BT +G
for binary matrix factorization. In both cases, the sampler

learned an incorrect set of binary features, and the addi-

tional flexibility of the more complex model compensated

for this. This phenomenon, where more structured models

compensate for algorithmic failures in simpler models, has

also been noted in the context of deep learning (Salakhut-

dinov and Murray, 2008).

Our system also did not succeed in learning the dependent

Gaussian scale mixture structure (exp(GG+G)◦G)G+G
from synthetic data, instead generally falling back to the

simpler sparse coding model (exp(G) ◦ G)G + G. For

σ2 = 0.1 the correct structure was in fact the highest scor-

ing structure, but did not cross our threshold of 1 nat im-

provement over the previous level. We note that in every

case, there were nearly 2500 incorrect structures to choose

from, so it is notable that the correct model structure can be

recovered most of the time.

In general, when the noise variance was much larger than

the signal variance, the system gracefully fell back to sim-

pler models, such as GMT +G instead of the BCTF model

(MG+G)(GMT +G) +G (see Section 3.1). At the ex-

treme, in the maximum noise condition, it chose the struc-

tureless model G much of the time. Overall, our procedure

reliably learned most of the model structures in low-noise

settings (impressive considering the extremely large space

of possible wrong answers) and gracefully fell back to sim-

pler models when necessary.

7.2 Real-world data

Next, we evaluated our system on several real-world

datasets. We first consider two domains, motion capture

and image statistics, where the core statistical assumptions

are widely agreed upon, and verify that our learned struc-

tures are consistent with these assumptions. We then turn

to domains where the correct structure is more ambiguous

and analyze the representations our system learns.

In general, we do not expect every real-world dataset to

have a unique best structure. In cases where the predictive

likelihood score differences between multiple top-scoring

models were not statistically significant, we report the set

of top-scoring models and analyze what they have in com-

mon.

Motion capture. We first consider a human motion capture

dataset (Hsu et al., 2005; Taylor et al., 2007) consisting of

a person walking in a variety of styles. Each row of the

matrix gives the person’s orientation and displacement in

one frame, as well as various joint angles. We used 200

frames (6.7 seconds), and 45 state variables. In the first

step, the system chose the Markov chain model CG + G,

which assumes that the components of the state evolve con-

tinuously but independently over time. Since a person’s

different joint angles are clearly correlated, the system next

captured these correlations with the model C(GG+G)+G.

This is slightly different from the popular linear dynamical

system model (CG + G)G + G, but it is more physically

correct in the sense that the LDS assumes the deviations of

the observations from the low-dimensional subspace must

be independent in different time steps, while our learned

structure captures the temporal continuity in the deviations.

Natural image patches. We tested the system on the

Sparsenet dataset of Olshausen and Field (1996), which

consists of 10 images of natural scenes which were blurred

and whitened. The rows of the input matrix corresponded

to 1,000 patches of size 12×12. In the first stage, the model

learned the low-rank representation GG + G, and in the

second stage, it sparsified the linear reconstruction coeffi-

cients to give the sparse coding model (exp(G)◦G)G+G.

In the third round, it modeled the dependencies between

the scale variables by recursively giving them a low-rank

representation, giving a dependent Gaussian scale mixture

(GSM) model (exp(GG + G) ◦ G)G + G reminiscent

of Karklin and Lewicki (2008). A closely related model,

(exp(GBT + G) ◦ G)G + G, also achieved a score not

significantly lower. Both of these structures resulted in a

Level 1 Level 2 Level 3
Motion capture CG+G C(GG+G) +G —
Image patches GG+G (exp(G) ◦G)G+G (exp(GG+G) ◦G)G+G
20 Questions MG+G M(GG+G) +G —

Senate votes GMT +G (MG+G)MT +G —

Table 2: The best performing models at each level of our grammar for real-world datasets. These correspond to plausible structures for
the datasets, as discussed in the text.

rank-one factorization of the scale matrix, similar to the ra-

dial Gaussianization model of Lyu and Simoncelli (2009)

for neighboring wavelet coefficients.

Dependent GSM models (see Section 3.1) are the state-of-

the-art for a variety of image processing tasks, so it is in-

teresting that this structure can be learned merely from the

raw data. We note that a single pass through the gram-

mar reproduces an analogous sequence of models to those

discovered by the image statistics research community as

discussed in Section 3.1.

20 Questions. We now consider a dataset collected by

Pomerleau et al. (2009) of Mechanical Turk users’ re-

sponses to 218 questions from the 20 Questions game about

1000 concrete nouns (e.g. animals, foods, tools). The sys-

tem began by clustering the entities using the flat clustering

model MG + G. In the second stage, it found low-rank

structure in the matrix of cluster centers, resulting in the

model M(GG+G)+G. No third-level structure achieved

more than 1 nat improvement beyond this. The low-rank

representation had 8 dimensions, where the largest vari-

ance dimension corresponded to living vs. nonliving and

the second largest corresponded to large vs. small. The 39

clusters, the 20 largest of which are shown in Figure 3, cor-

respond to semantically meaningful categories.

We note that two other models expressing similar assump-

tions, M(GBT +G)+G and (MG+G)G+G, achieved

scores only slightly lower. What these models have in

common is a clustering of entities (but not questions) cou-

pled with low-rank structure between entities and ques-

tions. The learned clusters and dimensions are qualitatively

similar in each case.

Senate voting records. Finally, we consider a dataset of

roll call votes from the 111th United States Senate (2009-

2010). Rows correspond to Senators, and the columns cor-

respond to all 696 votes, most of which were on proce-

dural motions and amendments to bills. Yea votes were

mapped to 1, Nay and Present were mapped to -1, and ab-

sences were treated as unobserved. In the first two stages,

our procedure clustered the votes and Senators, giving the

clustering model GMT + G and the co-clustering model

(MG+G)MT +G, respectively. Senators clustered along

party lines, as did most of the votes, according to the party

of the proposer. The learned representations are all visual-

ized in Figure 4.

In the third stage, one of the best performing models was

Bayesian clustered tensor factorization (BCTF) (see sec-

tion 3.1), where Senators and votes are each clustered in-

side a low-rank representation.4 This low-rank represen-

tation was rank 5, with one dominant dimension corre-

sponding to the liberal-conservative axis. The BCTF model

makes it clearer that the clusters of Senators and votes are

not independent, but can be seen as occupying different

points in a low-dimensional representation. This model im-

proved on the previous level by less than our 1 nat cutoff.5

The models in this sequence increasingly highlight the po-

larization of the Senate.

8 Discussion

We have presented an effective and practical method for

automatically determining the model structure in a partic-

ular space of models, matrix decompositions, by exploit-

ing compositionality. However, we believe our approach

can be extended beyond the particular space of models

presented here. Most straightforwardly, additional compo-

nents can be added to capture other motifs of probabilistic

modeling, such as tree embeddings and low-dimensional

embeddings. More generally, it should be fruitful to in-

vestigate other model classes with compositional structure,

such as tensor decompositions.

In either case, exploiting the structure of the model space

becomes increasingly essential. For instance, the number

of models reachable in 3 steps is cubic in the number of

production rules, whereas the complexity of the greedy

search is linear. For tensors, the situation is even more over-

whelming: even if we restrict our attention to analogues of

GG+G, a wide variety of provably distinct generalizations

have been identified, including the widely used Tucker3

and PARAFAC decompositions (Kolda and Bader, 2007).

4The other models whose scores were not significantly differ-
ent were: (MG+G)MT+BG+G, (MG+G)MT+GMT+G,

G(GMT +G) +GMT +G, and (BG+G)(GMT +G) +G.
All of these models include the clustering structure but account
for additional variability within clusters.

5BCTF results in a more compact representation than the co-
clustering model, but our predictive likelihood criterion doesn’t
reward this except insofar as overfitting hurts a model’s ability to
generalize to new rows and columns. We speculate that a fully
Bayesian approach using marginal likelihood may lead to more
compact structures.

1. Miscellaneous. key, chain, powder, aspirin, umbrella, quarter, cord, sunglasses, toothbrush, brush

2. Clothing. coat, dress, pants, shirt, skirt, backpack, tshirt, quilt, carpet, pillow, clothing, slipper, uniform

3. Artificial foods. pizza, soup, meat, breakfast, stew, lunch, gum, bread, fries, coffee, meatballs, yoke

4. Machines. bell, telephone, watch, typewriter, lock, channel, tuba, phone, fan, ipod, flute, aquarium

5. Natural foods. carrot, celery, corn, lettuce, artichoke, pickle, walnut, mushroom, beet, acorn

6. Buildings. apartment, barn, church, house, chapel, store, library, camp, school, skyscraper

7. Printed things. card, notebook, ticket, note, napkin, money, journal, menu, letter, mail, bible

8. Body parts. arm, eye, foot, hand, leg, chin, shoulder, lip, teeth, toe, eyebrow, feet, hair, thigh

9. Containers. bottle, cup, glass, spoon, pipe, gallon, pan, straw, bin, clipboard, carton, fork

10. Outdoor places. trail, island, earth, yard, town, harbour, river, planet, pond, lawn, ocean

11. Tools. knife, chisel, hammer, pliers, saw, screwdriver, screw, dagger, spear, hoe, needle

12. Stuff. speck, gravel, soil, tear, bubble, slush, rust, fat, garbage, crumb, eyelash

13. Furniture. bed, chair, desk, dresser, table, sofa, seat, ladder, mattress, handrail, bench, locker

14. Liquids. wax, honey, pint, disinfectant, gas, drink, milk, water, cola, paste, lemonade, lotion

15. Structural features. bumper, cast, fence, billboard, guardrail, axle, deck, dumpster, windshield

16. Non-solid things. surf, fire, lightning, sky, steam, cloud, dance, wind, breeze, tornado, sunshine

17. Transportation. airplane, car, train, truck, jet, sedan, submarine, jeep, boat, tractor, rocket

18. Herbivores. cow, horse, lamb, camel, pig, hog, calf, elephant, cattle, giraffe, yak, goat

19. Internal organs. rib, lung, vein, stomach, heart, brain, smile, blood, lap, nerve, lips, wink

20. Carnivores. bear, walrus, shark, crocodile, dolphin, hippo, gorilla, hyena, rhinocerous

Figure 3: (left) The 20 largest clusters discovered by our Level 2 model M(GG + G) + G for the 20 Questions dataset. Each line
gives our interpretation, followed by random items from the cluster. (right) Visualizations of the Level 1 representation MG + G
and the Level 2 representation M(GG + G) + G. Rows = entities, columns = questions. 250 rows and 150 columns were selected at
random from the original matrix. Rows and columns are sorted first by cluster, then by the highest variance dimension of the low-rank
representation (if applicable). Clusters were sorted by the same dimension as well. Blue = cluster boundaries.

(a) Level 1: GMT + G (b) Level 2: (MG + G)MT + G (c) Level 3: (MG + G)(GMT + G) + G

Figure 4: Visualization of the representations learned from the Senate voting data. Rows = Senators, columns = votes. 200 columns were
selected at random from the original matrix. Black = yes, white = no, gray = absence. Blue = cluster boundaries. Rows and columns are
sorted first by cluster (if applicable), then by the highest variance dimension of the low-rank representation (if applicable). Clusters are
sorted by the same dimension as well. The models in the sequence increasingly reflect the polarization of the Senate.

What is the significance of the grammar being context-

free? While it imposes no restriction on the models them-

selves, it has the effect that the grammar “overgenerates”

model structures. Our grammar licenses some nonsensical

models: for instance, G(MG+G) +G, which attempts to

cluster dimensions of a latent space which is defined only

up to affine transformation. Reassuringly, we have never

observed such models being selected by our search proce-

dure — a useful sanity check on the output of the algorithm.

The only drawback is that the system wastes some time

evaluating meaningless models. Just as context-free gram-

mars for English can be augmented with attributes to en-

force contextual restrictions such as agreement, our gram-

mar could be similarly extended to rule out unidentifiable

models. Such extensions may become important if our ap-

proach is applied to a much larger space of models.

Our context-free grammar formalism unifies a wide vari-

ety of matrix decomposition models in terms of composi-

tional application of a few production rules. We exploited

this compositional structure to efficiently and generically

sample from and evaluate a wide variety of latent variable

models, both continuous and discrete, flat and hierarchi-

cal. Greedy search over our grammar allows us to select a

model structure from raw data by evaluating only a small

fraction of all models. This search procedure was effec-

tive at recovering the correct structure for synthetic data

and sensible structures for real-world data. More generally,

we believe this paper is a proof-of-concept for the practi-

cality of selecting complex model structures in a composi-

tional manner. Since many model spaces other than matrix

factorizations are compositional in nature, we hope to spur

additional research on automatically searching large, com-

positional spaces of models.

Acknowledgments

This work was partly funded by the ARO grant W911NF-08-1-

0242 and by an NDSEG fellowship to RBG.

References

A. Barron, J. Rissanen, and B. Yu. The minimum description
length principle in coding and modeling. Transactions on In-
formation Theory, 1998.

P. Berkes, R. Turner, and M. Sahani. On sparsity and overcom-
pleteness in image models. In Advances in Neural Information
Processing Systems, 2008.

T. Bossomaier and A. W. Snyder. Why spatial frequency process-
ing in the visual cortex? Vision Research, 26(8):1307–1309,
1986.

M. Collins, S. Dasgupta, and R. Schapire. A generalization of
principal component analysis to the exponential family. In
Neural Information Processing Systems, 2002.

Finale Doshi-Velez and Zoubin Ghahramani. Accelerated sam-
pling for the Indian buffet process. In Int’l. Conf. on Machine
Learning, 2009.

P. J. Green. Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination. Biometrika, 1995.

T. Griffiths and Z. Ghahramani. Infinite latent feature models and
the indian buffet process. Technical report, Gatsby Computa-
tional Neuroscience Unit, 2005.

E. Hsu, K. Pulli, and J. Popovic. Style translations for human
motion. In ACM Transactions on Graphics, 2005.

Y. Karklin and M. S. Lewicki. Emergence of complex cell prop-
erties by learning to generalize in natural scenes. Nature, 457:
83–86, January 2008.

Charles Kemp and Joshua B. Tenenbaum. The discovery of struc-
tural form. PNAS, 2008.

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths,
Takeshi Yamada, and Naonori Ueda. Learning systems of con-
cepts with an infinite relational model. In AAAI, pages 381–
388, 2006.

T. G. Kolda and B. W. Bader. Tensor decompositions and appli-
cations. SIAM Review, 2007.

Pat Langley, Herbert A. Simon, and Gary L. Bradshaw. Heuris-
tics for empirical discovery. In Knowledge Based Learning
Systems. Springer-Verlag, London, UK, 1984.

S. Lee, V. Ganapathi, and D. Koller. Efficient structure learning
of Markov networks using L1-regularization. In NIPS, 2006.

M. Li and P. Vitanyi. An introduction to Kolmogorov complexity
and its applications. Springer, 1997.

S. Lyu and E. P. Simoncelli. Nonlinear extraction of indepen-
dent components of natural images using radial Gaussianiza-
tion. Neural Computation, 21(6):1485–1519, 2009.

DJC MacKay. Bayesian interpolation. Neural Computation,
1992.

E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modelling
dyadic data with binary latent factors. In NIPS, volume 20,
pages 1002–1009, 2006.

K. T. Miller, T. L. Griffiths, and M. I. Jordan. Nonparametric
latent feature models for link prediction. In Advances in Neural
Information Processing Systems, 2009.

S. Mohamed, K. Heller, and Z. Ghahramani. Bayesian exponen-
tial family PCA. In NIPS, 2008.

R. M. Neal. Annealed importance sampling. Statistics and Com-
puting, 11(2):125–139, April 2001.

B. A. Olshausen and D. J. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images. Nature, 381:607–9, June 1996.

D. Pomerleau, G. E. Hinton, M. Palatucci, and T. M. Mitchell.
Zero-shot learning with semantic output codes. In NIPS, 2009.

J. Portilla and E. P. Simoncelli. A parametric texture model based
on joint statistics of complex wavelet coefficients. Interna-
tional Journal of Computer Vision, 40(1):49–71, 2000.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Im-
age denoising using scale mixtures of Gaussians in the wavelet
domain. IEEE Transactions on Signal Processing, 12(11):
1338–1351, 2003.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear
gaussian models. In Neural Computation, volume 11, pages
305–345, 1999.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix fac-
torization. In Advances in Neural Information Processing Sys-
tems, 2008.

Ruslan Salakhutdinov and Iain Murray. On the quantitative anal-
ysis of deep belief networks. In Int’l. Conf. on Machine Learn-
ing, 2008.

Ajit P. Singh and Geoffrey J. Gordon. A unified view of matrix
factorizations. In European Conference on Machine Learning,
2008.

N. Srebro. Learning with matrix factorizations. PhD thesis, MIT,
2004.

I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. Modelling
relational data using Bayesian clustered tensor factorization. In
NIPS, pages 1821–1828. 2009.

Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Mod-
eling human motion using binary latent variables. In NIPS,
2007.

M. Teyssier and D. Koller. Ordering-based search: a simple and
effective algorithm for learning Bayesian networks. In UAI,
2005.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equa-
tion discovery. In Int’l. Conf. on Machine Learning, 1997.

C.S. Wallace. Statistical and inductive inference by minimum
message length. Springer, 2005.

