
Exploiting Compressed Block Size as an Indicator of Future Reuse

Gennady Pekhimenko†

gpekhime@cs.cmu.edu
Tyler Huberty†

thuberty@alumni.cmu.edu
Rui Cai†

rcai@alumni.cmu.edu
Onur Mutlu†

onur@cmu.edu

Phillip B. Gibbons⋆

phillip.b.gibbons@intel.com
Michael A. Kozuch⋆

michael.a.kozuch@intel.com
Todd C. Mowry†

tcm@cs.cmu.edu

†Carnegie Mellon University ⋆Intel Labs Pittsburgh

Abstract

We introduce a set of new Compression-AwareManagement
Policies (CAMP) for on-chip caches that employ data compres-

sion. Our management policies are based on two key ideas. First,

we show that it is possible to build a more efficient management

policy for compressed caches if the compressed block size is di-

rectly used in calculating the value (importance) of a block to

the cache. This leads to Minimal-Value Eviction (MVE), a pol-

icy that evicts the cache blocks with the least value, based on both

the size and the expected future reuse. Second, we show that, in

some cases, compressed block size can be used as an efficient in-

dicator of the future reuse of a cache block. We use this idea to

build a new insertion policy called Size-based Insertion Policy
(SIP) that dynamically prioritizes cache blocks using their com-

pressed size as an indicator.

We compare CAMP (and its global variant G-CAMP) to prior

on-chip cache management policies (both size-oblivious and

size-aware) and find that our mechanisms are more effective in

using compressed block size as an extra dimension in cache man-

agement decisions. Our results show that the proposed man-

agement policies (i) decrease off-chip bandwidth consumption

(by 8.7% in single-core), (ii) decrease memory subsystem en-

ergy consumption (by 7.2% in single-core) for memory inten-

sive workloads compared to the best prior mechanism, and (iii)

improve performance (by 4.9%/9.0%/10.2% on average in single-

/two-/four-core workload evaluations and up to 20.1%) CAMP is

effective for a variety of compression algorithms and different

cache designs with local and global replacement strategies.

1. Introduction

Off-chip main memory latency and bandwidth are major per-
formance bottlenecks in modern systems. Multiple levels of
on-chip caches are used to hide the memory latency and re-
duce off-chip memory bandwidth demand. Efficient utiliza-
tion of cache space and consequently better performance is
dependent upon the ability of the cache replacement pol-
icy to identify and retain useful data. Replacement poli-
cies, ranging from traditional (e.g., [8, 14]) to state-of-the-art
(e.g., [23, 25, 26, 40, 44]), work using a combination of eviction
(identifies the block to be removed from the cache), insertion

(manages the initial block priority), and promotion (changes
the block priority over time) mechanisms. In replacement
policies proposed for conventional cache organizations, these
mechanisms usually work by considering only the locality of
the cache blocks.

A promising approach to improving effective cache capac-
ity is to use cache compression (e.g., [3, 5, 6, 11, 21, 37, 43,
53]). In compressed caches, data compression algorithms,
e.g., Frequent Pattern Compression (FPC) [4], Base-Delta-
Immediate Compression (BDI) [37], and Frequent Value Com-
pression [53], are used to achieve higher effective capacity
(storing more blocks of data) and to decrease off-chip band-
width consumption compared to traditional organizations
without compression. This compression generates variable-
size cache blocks, with larger blocks consuming more cache
space than smaller blocks. However, most cache management
policies in these compressed cache designs do not use block
size in cache management decisions [3, 5, 11, 21, 37, 43, 53].
Only one recent work—ECM [6]—uses the block size informa-
tion, but its effectiveness is limited by its coarse-grained (big
vs. small) view of block size. The need to consider size along
with temporal locality is well known in the context of web
caches [1,7,12,18,42], but proposed solutions rely on a recency
list of all objects in the web cache [1] or consider frequency of
object accesses [12] and are usually prohibitively expensive to
implement in hardware for use with on-chip caches.

In this paper, we propose a Compression-Aware Manage-

ment Policy (CAMP) that takes into account compressed cache
block size along with temporal locality to improve the per-
formance of compressed caches. Compared to prior work
(ECM [6]), our policies first use a finer-grained accounting for
compressed block size and an optimization-based approach for
eviction decisions. Second and more importantly, we find that
size is not only a measure of the cost of retaining a given block
in the cache, as previous works considered [6], but it is some-
times also an indicator of block reuse. CAMP contains two key
components, Minimal-Value Eviction (MVE) and Size-based
Insertion Policy (SIP), which significantly improve the quality
of replacement decisions in compressed caches (see Section 6
for a comprehensive analysis) at a modest hardware cost.

Minimal-Value Eviction (MVE).MVE is based on the ob-
servation that one should evict an uncompressed block with
good locality to make/retain room for a set of smaller com-
pressed blocks of the same total size, even if those blocks indi-
vidually have less locality, as long as the set of blocks collec-
tively provides more hits cumulatively. A special case of this
is that when two blocks have similar locality characteristics,
it is preferable to evict the larger cache block. MVE measures
the value of each block as a combination of its locality proper-
ties and size. When an eviction is required (to make space for
a new block), MVE picks the block with the least value as the
victim.

Size-based Insertion Policy (SIP). SIP is based on our
new observation that the compressed size of a cache block can
sometimes be used as an indicator of its reuse characteristics.
This is because elements belonging to the same data structure
and having the same access characteristics are sometimes (but
not always) compressed to the same size—e.g., in bzip2 [47],
a compressed block of 34 bytes (with BDI compression [37])
likely belongs to one particular array with narrow values (e.g.,
small values stored in large data types) as we show in Sec-
tion 2.3—and these structures more often than not have a spe-
cific pattern of access and/or reuse distance.

By dynamically inserting blocks of different sizes with ei-
ther high priority—e.g., in the most-recently-used position for
the LRU policy (ensuring blocks stay in cache longer)—or
low priority—e.g., in the least-recently-used position for the
LRU policy (ensuring blocks get evicted quickly unless reused
shortly)—SIP learns the reuse characteristics associated with
various compressed block sizes and, if such an association ex-
ists, uses this information to maximize the hit ratio.

As demonstrated later in this paper, CAMP (a combina-
tion of MVE and SIP) works with both traditional compressed
cache designs and compressed caches having decoupled tag
and data stores (e.g., V-Way Cache [41] and Indirect Index
Cache [20, 21]). It is general enough to be used with differ-
ent compression mechanisms and requires only modest hard-
ware changes. Compared to priorwork, CAMPprovides better
performance, more efficient cache utilization, reduced off-chip
bandwidth consumption, and an overall reduction in themem-
ory subsystem energy requirements.

This paper makes the following major contributions:

• We make the observation that the compressed size of a
cache block can be indicative of its reuse. We use this
observation to develop a new cache insertion policy for
compressed caches, the Size-based Insertion Policy (SIP),
which uses the size of a compressed block as one of the
metrics to predict its potential future reuse.

• We introduce a new compressed cache replacement pol-
icy, Minimal-Value Eviction (MVE), which assigns a value
to each cache block based on both its size and its reuse
and replaces the set of blocks with the least value.

• We demonstrate that both policies are generally applica-
ble to different compressed cache designs (both with local
and global replacement) and can be used with different
compression algorithms (FPC [3] and BDI [37]).

• We qualitatively and quantitatively compare CAMP (SIP
+ MVE) to the conventional LRU policy and three state-
of-the-art cache management policies: two size-oblivious
policies (RRIP [23] and a policy used in V-Way [41])
and the recent ECM [6]. We observe that CAMP (and
its global variant G-CAMP) can considerably (i) improve
performance (by 4.9%/9.0%/10.2% on average in single-
/two-/four-core workload evaluations and up to 20.1%),
(ii) decrease off-chip bandwidth consumption (by 8.7%
in single-core), and (iii) decrease memory subsystem en-
ergy consumption (by 7.2% in single-core) on average for
memory intensive workloads when compared with the
best prior mechanism.

2. Motivating Observations

Cache compression [3,5,6,11,21,37,43,53] is a powerful mech-
anism that increases effective cache capacity and decreases
off-chip bandwidth consumption.1 In this section, we show
that cache compression adds an additional dimension to cache
management policy decisions – the compressed block size (or
simply the size), which plays an important role in building
more efficient management policies. We do this in three steps.

2.1. Size Matters

In compressed caches, one should design replacement poli-
cies that take into account compressed cache block size along
with locality to identify victim blocks, because such policies
can outperform existing policies that rely only on locality. In
fact, Belady’s optimal algorithm [8] that relies only on locality
(using perfect knowledge to evict the block that will be ac-
cessed furthest in the future) is sub-optimal in the context of
compressed caches with variable-size cache blocks. Figure 1
demonstrates one possible example of such a scenario. In this
figure, we assume that cache blocks are one of two sizes: (i)
uncompressed 64-byte blocks (blocks X and Y) and (ii) com-
pressed 32-byte blocks (blocks A, B, and C). We assume the
cache capacity is 160 bytes. Initially (see ➊), the cache con-
tains four blocks: three compressed (A, B, C) and one uncom-
pressed (Y). Consider the sequence of memory requests X, A,
Y, B, C, B, Y, and A (see ➋). In this case, after a request for X,
Belady’s algorithm (based on locality) evicts blocks B and C
(to create 64 bytes of free space) that will be accessed furthest
into the future. Over the next four accesses, this results in two
misses (B and C) and two hits (A and Y).

In contrast, a size-aware replacement policy can detect that
it might be better to retain a set of smaller compressed cache
blocks that receive more hits cumulatively than a single large
(potentially uncompressed) cache block with better locality.
For the access pattern discussed above, a size-aware replace-
ment policy makes the decision to retain B and C and evict
Y to make space for X (see ➌). As a result, the cache experi-
ences three hits (A, B, and C) and only one miss (Y) and hence
outperforms Belady’s optimal algorithm.2 We conclude that

1Data compression can be also effective in increasing the size of themainmem-
ory [17,35,36] and reducing the off-chipmemory bandwidth/energy consump-
tion [36, 45].
2Later (see ➍), when there are three requests to blocks B, Y, and A (all three
hits), the final cache state becomes the same as the initial one. Hence, this
example can represent steady state within a loop.

2

CBA

miss timemiss

uncompressed
64‐byte block

compressed
32‐byte block

hit hit hit

saved cycles

misshitmiss hit miss hit hit hit

hit hit hit

X (64B) A Y B C B Y A

X (64B) A Y B C B Y A

1

2

Y

3

4

initial cache
contents

A Y X A Y CB

A X CB CBA Y

Belady’s OPT
Replacement

Size‐Aware
Replacement

time

B & C replaced X replaced

X replacedY replaced

Figure 1: Example demonstrating downside of not including block size information in replacement decisions.

using block size information in a compressed cache can lead
to better replacement decisions.

2.2. Size Varies

Figure 2 shows the distribution of compressed cache block
sizes3 for a set of representative workloads given a 2MB cache
employing the Base-Delta-Immediate (BDI) [37] cache com-
pression algorithm (our results with the FPC [3] compression
algorithm show similar trends). Even though the size of a com-
pressed block is determined by the compression algorithm, un-
der both designs, compressed cache block sizes can vary
significantly, both (i) within a single application (i.e., intra-
application) such as in astar, povray, and gcc and (ii) between
applications (i.e., inter-application) such as between h264ref

and wrf.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
size: 64 bytes

size: 56‐63

size: 48‐55

size: 40‐47

size: 32‐39

size: 24‐31

size: 16‐23

size: 8‐15

size: 0‐7

Figure 2: Compressed block size distribution for representa-

tive applications with the BDI [37] compression algorithm.

Size variation within an application suggests that size-
aware replacement policies could be effective for individual
single-core workloads. Intra-application variation exists be-
cause applications have data that belong to different common
compressible patterns (e.g., zeros, repeated values, and nar-
row values [37]) and as a result end up with a mix of com-
pressed cache block sizes. In a system with multiple cores and
shared caches, inter-application variation suggests that even if
an application has a single dominant compressed cache block
size (e.g., lbm, h264ref and wrf), running these applications
together on different cores will result in the shared cache ex-
periencing a mix of compressed cache block sizes. Hence, size-
aware management of compressed caches can be even more
important for efficient cache utilization in multi-core systems
(as we demonstrate quantitatively in Section 6.2).

3Section 5 describes the details of our evaluation methodology for this and
other experiments.

2.3. Size Can Indicate Reuse

Weobserve that elements belonging to the same data structure
(within an application) sometimes lead to cache blocks that
compress to the same size. This observation provides a new
opportunity: using the compressed size of a cache block as an
indicator of data reuse of the block.

Intuition. We first briefly provide intuition on why there
can be a relationship between compressed size and the reuse
characteristics of the cache block. As past work has shown,
an application’s key data structures are typically accessed in a
regular fashion, with each data structure having an identifiable
access pattern [2]. This regularity in accesses to a data struc-
ture can lead to a dominant reuse distance [15] range for the
cache blocks belonging to the data structure.4 The same data
structure can also have a dominant compressed cache block
size, i.e., a majority of the cache blocks containing the data
structure can be compressed to one or a few particular sizes
(e.g., due to narrow or sparse values stored in the elements
of an array). For such a data structure, the compressed cache
block size can therefore be a good indicator of the reuse be-
havior of the cache blocks. In fact, different data structures can
have different dominant compressed block sizes and different
dominant reuse distances; in such cases, the compressed block
size serves as a type of signature indicating the reuse pattern
of a data structure’s cache blocks.

Example to Support the Intuition. To illustrate the con-
nection between compressed block size and reuse behavior
of data structures intuitively, Figure 3 presents an example
loosely based on some of the data structures we observed in so-
plex. There are three data structures in this example: (i) array
A[N] of integer indexes that are smaller than value M (well-
compressible with BDI [37] to 20-byte cache blocks), (ii) small
array B[16] of floating point coefficients (incompressible, 64-
byte cache blocks), and (iii) sparse matrix C[M][N] with the
main data (very compressible zero values, many 1-byte cache
blocks). These data structures not only have different com-
pressed block sizes, but also different reuse distances. Accesses
to cache blocks for array A occur only once every iteration of
the outer loop (long reuse distance). Accesses to cache blocks
for array B occur roughly every 16th iteration of the inner
loop (short reuse distance). Finally, the reuse distance of array
C is usually long, although it is dependent on what indexes
are currently stored in array A[i]. Hence, this example shows

4Some prior works (e.g., [22,24,38,50]) captured this regularity by learning the
relationship between the instruction address and the reuse distance.

3

int A[N]; // small indices: narrow values
double B[16]; // FP coefficients: incompressible
double C[M][N];// sparse matrix: many zero values
for (int i=0; i<N; i++) {

int tmp = A[i];

for (int j=0; j<N; j++) {

sum += B[(i+j)%16] * C[tmp][j];

}

}

Figure 3: Code example: size and reuse distance relationship.

that compressed block size can indicate the reuse distance of a

cache block: 20-byte blocks (from A) usually have long reuse
distance, 64-byte blocks (fromB) usually have short reuse dis-
tance, and 1-byte blocks (from C) usually have long reuse dis-
tance. If a cache learns this relationship, it can prioritize 64-
byte blocks over 20-byte and 1-byte blocks in its management
policy. As we show in Section 3.3, our SIP policy learns exactly
this kind of relationship, leading to significant performance
improvements for several applications (including soplex), as
shown in Section 6.1.1.5

Quantitative Evidence. To verify the relationship be-
tween block size and reuse, we have analyzed 23 memory-
intensive applications’ memory access traces (applications de-
scribed in Section 5). For every cache block within an applica-
tion, we computed the average distance (measured in memory
requests) between the time this block was inserted into the
compressed cache and the time when it was reused next. We
then accumulate this reuse distance information for all differ-
ent block sizes, where the size of a block is determined with
the BDI [37] compression algorithm.

Figures 4a–4i show the results of this analysis for nine rep-
resentative applications from our workload pool (our method-
ology is described in Section 5). In seven of these applications
(bzip2, sphinx3, soplex, tpch6, leslie3d, gcc, gobmk), compressed
block size is an indicator of reuse distance (in other words,
it can be used to distinguish blocks with different reuse dis-
tances). In two of the applications (mcf and sjeng), it is not.
Each graph is a scatter plot that shows the reuse distance
distribution experienced by various compressed cache block
sizes in these applications. There are nine possible compressed
block sizes (based on the description from the BDI work [37]).
The size of each circle is proportional to the relative frequency
of blocks of a particular size that exhibit a specified reuse dis-
tance. The dark red circles indicate the most frequent reuse
distances (up to three) for every size.

Wemake threemajor observations from these figures. First,
there are many applications where block size is an indicator
of reuse distance (Figure 4a–4g). For instance, in bzip2 (Fig-
ure 4a), a large number of cache blocks are 8, 36, or 64 (un-
compressed) bytes and have a short reuse distance of less than
1000. In contrast, a significant number of blocks are 34 bytes
and have a large reuse distance of greater than 5000. This indi-
cates that the 34-byte blocks can be deprioritized by the cache
when running bzip2 to improve performance. Similarly, in
sphinx3, tpch6, and soplex (Figures 4b–4d), a significant num-

5Note that our overall proposal also accounts for the size of the block, e.g.,
that a 64-byte block takes up more space in the cache than a 20-byte or 1-byte
block, via the use of MVE policy (Section 3.2).

ber of blocks are compressed to 1-byte with a long reuse dis-
tance of around 1000, whereas most of the blocks of other sizes
have very short reuse distances of less than 100. In general, we
observe that data from 15 out of 23 of our evaluated applica-
tions show that block size is indicative of reuse [34]. This sug-
gests that a compressed block size can be used as an indicator
of future block reuse which in turn can be used to prioritize
blocks of certain sizes (Section 3.3), improving application per-
formance (e.g., see the effect on soplex in Section 6.1.1).

Second, there are some applications where block size does
not have a relationship with reuse distance of the block (e.g.,
mcf and sjeng). For example, in mcf (Figure 4h), almost all
blocks, regardless of their size, have reuse distances around
1500. This means that block size is less effective as an indi-
cator of reuse for such applications (and the mechanism we
describe in Section 3.3 effectively avoids using block size in
cache management decisions for such applications).

Third, for applications where block size is indicative of
reuse, there is usually not a coarse-grained way to distinguish
between block sizes that are indicative of different reuse dis-
tances. In other words, simply dividing the blocks into big

or small blocks, as done in ECM [6], is not enough to iden-
tify the different reuse behavior of blocks of different sizes.
The distinction between block sizes should be done at a finer
granularity. This is evident for bzip2 (Figure 4a): while 8, 36,
and 64-byte blocks have short reuse distances, a significant
fraction of the 34-byte blocks have very long reuse distances
(between 5000 and 6000). Hence, there is no single block size
threshold that would successfully distinguish blocks with high
reuse from those with low reuse. Data from other applications
(e.g., soplex, leslie3d, gcc) similarly support this.

We briefly discuss why compressed size is sometimes not
indicative of reuse behavior. First, data stored in the data struc-
ture might be different, so multiple compressed sizes are pos-
sible with the same reuse pattern (e.g., for mcf). In this case,
blocks of different sizes are equally important for the cache.
Second, blocks with the same size(s) can have multiple dif-
ferent reuse patterns/distances (e.g., for milc and gromacs). In
this case, size might not provide useful information to improve
cache utilization, because blocks of the same size can be of
very different importance.

3. CAMP: Design and Implementation

Our proposed Compression-Aware Management Policy
(CAMP) consists of two components: Minimal-Value Eviction
(MVE) and Size-based Insertion Policy (SIP). These mech-
anisms assume a compressed cache structure where the
compressed block size is available to the hardware making
the insertion and replacement decisions. Without the loss
of generality, we assume that the tag-store contains double
the number of tags and is decoupled from the data-store
to allow higher effective capacity (as proposed in several
prior works [3, 11, 37]). We also propose Global CAMP (or
G-CAMP), an adaptation of CAMP for a cache with a global
replacement policy.

In this section, we first provide the background information
needed to understand some of our mechanisms (Section 3.1).
Then, we describe the design and implementation of each

4

0

2000

4000

6000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(a) bzip2

0

500

1000

1500

2000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(b) sphinx3

0

1000

2000

3000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(c) soplex

0

500

1000

1500

2000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(d) tpch6

0

500

1000

1500

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(e) leslie3d

0

1000

2000

3000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(f) gcc

0

2000

4000

6000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(g) gobmk

0

500

1000

1500

2000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(h) mcf

0

500

1000

1500

2000

1 8 16 20 24 34 36 40 64

R
e

u
s
e

 D
is

ta
n

c
e

(#
 o

f
m

e
m

o
ry

 a
c
c
e

s
s
e

s
)

Size (bytes)

(i) sjeng

Figure 4: Plots demonstrate the relationship between the compressed block size and reuse distance. Dark red circles correspond

to the most frequent reuse distances for every size. The first seven workloads ((a)–(g)) have some relation between size and

reuse, while the last two ((h)–(i)) do not show that size is indicative of reuse.

mechanism in depth (Sections 3.2-3.4). We detail the imple-
mentation of our G-CAMP mechanism assuming the struc-
ture proposed for the V-Way cache [41]. None of the mecha-
nisms require extensive hardware changes on top of the base-
line compressed cache designs (both local and global, see Sec-
tion 3.5 for an overhead analysis).

3.1. Background

Multiple size-oblivious cache management mechanisms
(e.g., [23, 25, 26, 40, 44]) were proposed to improve the perfor-
mance of conventional on-chip caches (without compression).
Among them, we select RRIP [23] as both a comparison point
in our evaluations and as a predictor of future re-reference
in some of our algorithms (see Section 3.2). This selection
is motivated both by the simplicity of the algorithm and its
state-of-the-art performance (as shown in [23]).

RRIP. Re-Reference Interval Prediction (RRIP) [23] uses an
M -bit saturating counter per cache block as a Re-Reference
Prediction Value (RRPV) to predict the block’s re-reference
distance. The key idea behind RRIP is to prioritize the blocks
with lower predicted re-reference distance, as these blocks
have higher expectation of near-future reuse. Blocks are in-
serted with a long re-reference interval prediction (RRPV =
2M − 2). On a cache miss, the victim block is a block with a
predicted distant re-reference interval (RRPV = 2M − 1). If
there is no such block, theRRPV of all blocks is incremented
by one and the process repeats until a victim is found. On a
cache hit, theRRPV of a block is set to zero (near-immediate
re-reference interval). Dynamic RRIP (DRRIP) uses set duel-
ing [39, 40] to select between the aforementioned policy (re-
ferred to as SRRIP) and one that inserts blocks with a short
re-reference interval prediction with high probability and in-

serts blocks with a long re-reference interval prediction with
low probability.

V-Way. The Variable-Way, or V-Way [41], cache is a set-
associative cache with a decoupled tag- and data-store. The
goal of V-Way is two-fold: providing flexible (variable) asso-
ciativity together with a global replacement across the entire
data store. A defining characteristic is that there are more
tag-entries than data-entries. Forward and backward pointers
are maintained in the tag- and data-store to link the entries.
This design enables associativity to effectively vary on a per-
set basis by increasing the number of tag-store entries relative
to data-store entries. Another benefit is the implementation
of a global replacement policy, which is able to choose data-
victims from anywhere in the data-store. This is in contrast
to a traditional local replacement policy, e.g., [14, 23], which
considers data-store entries only within a single set as pos-
sible victims. The particular global replacement policy de-
scribed in [41] (called Reuse Replacement) consists of a Reuse
Counter Table (RCT) with a counter for each data-store entry.
Victim selection is done by starting at a pointer (PTR) to an
entry in the RCT and searching for the first counter equal to
zero, decrementing each counter while searching, and wrap-
ping around if necessary. A block is inserted with an RCT
counter equal to zero. On a hit, the RCT counter for the block
is incremented. We use the V-Way design as a foundation for
all of our global mechanisms (described in Section 3.4).

3.2. Minimal-Value Eviction (MVE)

The key observation in our MVE policy is that evicting one
or more important blocks of larger compressed size may be
more beneficial than evicting several more compressible, less
important blocks (see Section 2). The idea behind MVE is that

5

each block has a value to the cache. This value is a function
of two key parameters: (i) the likelihood of future re-reference
and (ii) the compressed block size. For a given <prediction of
re-reference, compressed block size> tuple, MVE associates a
value with the block. Intuitively, a block with higher likelihood
of re-reference is more valuable than a block with lower likeli-
hood of re-reference and is assigned a higher value. Similarly,
a more compressible block is more valuable than a less com-
pressible block because it takes up fewer segments in the data-
store, potentially allowing for the caching of additional useful
blocks. The block with the least value in the associativity set
is chosen as the next victim for replacement—sometimes mul-
tiple blocks need to be evicted to make room for the newly
inserted block.

In our implementation ofMVE, the valueVi of a cache block
i is computed as Vi = pi/si, where si is the compressed block
size of block i and pi is a predictor of re-reference, such that a
larger value of pi denotes block i is more important and is pre-
dicted to be re-referenced sooner in the future. This function
matches our intuition and is monotonically increasingwith re-
spect to the prediction of re-reference and monotonically de-
creasing with respect to the size. We have considered other
functions with these properties (i.e., a weighted linear sum),
but found the difference in performance to be negligible.

Our mechanism estimates pi using RRIP6 [23] as the pre-
dictor of future re-reference due to its simple hardware im-
plementation and state-of-the-art stand-alone performance.7

As described in Section 3.1, RRIP maintains a re-reference
prediction value (RRPV) for each cache block which predicts
the re-reference distance. Since a larger RRPV denotes a
longer predicted re-reference interval, we compute pi as pi =
(RRPVMAX + 1 − RRPVi). Therefore, a block with a pre-
dicted short re-reference interval has more value than a com-
parable block with a predicted long re-reference interval. pi
cannot be zero, because Vi would lose dependence on si and
become size-oblivious.

Depending on the state of the cache, there are two primary
conditions in which a victim block must be selected: (i) the
data-store has space for the block to be inserted, but all tags
are valid in the tag-directory, or (ii) the data-store does not
have space for the block to be inserted (an invalid tag may or
may not exist in the tag-directory). In the first case where the
data-store is not at capacity, MVE relies solely on the predic-
tor of re-reference or conventional replacement policy, such
as RRIP. For the second case, the valid blocks within the set
are compared based on Vi and the set of blocks with the least
value is evicted to accommodate the block requiring insertion.

MVE likely remains off the critical path, but to simplify the
microarchitecture, we eliminate division in the calculation of
Vi by bucketing block sizes such that si is always a power of
two, allowing a simple right-shift operation instead of floating
point division. For the purposes of calculating Vi, si = 2 for
blocks of size 0B – 7B, si = 4 for blocks of size 8B – 15B, si = 8

6Specifically, the version of RRIP that our mechanism uses is SRRIP. We exper-
imented with DRRIP, but found it offered little performance improvement for
ourmechanisms compared to the additional complexity. All of our evaluations
assume an RRPV width M = 3.
7Other alternatives considered (e.g., [44]) provide only a binary value.

for blocks of size 16B – 31B, and so on. The most complex step,
comparing blocks by value, can be achieved with a fixedmulti-
cycle parallel comparison.

3.3. Size-based Insertion Policy (SIP)

The key observation behind SIP is that sometimes there is a
relation between cache block reuse distance and compressed
block size (as shown in Section 2.3). SIP exploits this observa-
tion and inserts blocks of certain sizes with higher priority if
doing so reduces the cache miss rate. Altering the priority of
blocks of certain sizes with short or long reuse distances helps
to ensure that more important blocks stay in the cache.

At run-time, SIP dynamically detects the set of sizes that,
when inserted with higher priority, reduce the number of
misses relative to a size-oblivious insertion policy. SIP uses
a simple mechanism based on dynamic set sampling [40] to
make the prioritization decision for various compressed sizes.
It selects the best-performing policy among competing poli-
cies during a periodic training phase and applies that policy
during steady state. The observation in dynamic set sampling
is that sampling makes it possible to choose the better pol-
icy with only a relatively small number of sets selected from
the Main Tag Directory (MTD) to have a corresponding set
in an Auxiliary Tag Directory (ATD) participating in a tourna-
ment. Only theMTD is coupledwith the data-store; the ATD is
only for deciding which block size(s) should be inserted with
high priority. Therefore, there are no performance degrada-
tions due to our sampling during training.

set A

set B

set C

set D

set E

set F

set G

set H

set I

set A

set D

set F

set I

8B

64B

8B

64B

ATD sets

(a)

set I set I

set D set D
64B

CTR64B

·
·

·

·
·

·

64B

decides policy

for steady state

+ - missmiss

(b)

Figure 5: Set selection during training and decision of best in-

sertion policy based on difference in miss rate in MTD/ATD.

Letm be the minimum number of sets that need to be sam-
pled so that dynamic set sampling can determine the best pol-
icy with high probability and n be the number of compress-
ible block sizes possible with the compression scheme (e.g.,
8B, 16B, 20B, ..., 64B). In SIP, the ATD contains m · n sets, m
for each of the n sizes. As shown in Figure 5a, each set in
the ATD is assigned one of the n sizes. The insertion policy in
these sets of the ATD differs from the insertion policy in the
MTD in that the assigned size is prioritized. For the example
in Figure 5a, there are only two possible block sizes. Sets A
and F in the ATD prioritize insertions of 8-byte blocks (e.g., by
increasing pi). Sets D and I prioritize the insertion of 64-byte
blocks. Sets B, C, E, G, and H are not sampled in the ATD.

When a set in the MTD that has a corresponding set in the
ATD receives a miss, a counter CTRi is incremented, where
i is a size corresponding to the prioritized size in the corre-
sponding ATD set. When an ATD set receives a miss, it decre-
ments CTRi for the size associated with the policy this set is

6

helping decide. Figure 5b shows the decision of the output of
CTR64B .

For each of the possible compressed block sizes, a decision
is made independently based on the result of the counter. If
CTRi is negative, prioritizing blocks of size i is negatively af-
fecting miss rate (e.g., the insertion policy in the MTD resulted
in fewer misses than the insertion policy in the ATD). There-
fore, SIP does not prioritize blocks of size i. Likewise, if CTRi

is positive, prioritizing insertion of blocks of size i is reducing
the miss rate and SIP inserts size i blocks with high priority for
best performance. For n different sizes, there are 2n possible
insertion schemes and any may be chosen by SIP.

For simplicity and to reduce power consumption, the dy-
namic set sampling occurs during a periodic training phase8

at which time the insertion policy of the MTD is unaffected
by SIP. At the conclusion of the training phase, a steady state
is entered and the MTD adopts the chosen policies and pri-
oritizes the insertion of blocks of sizes for which CTR was
positive during training.

SIP is general enough to be applicable to many replace-
ment policies (e.g., LRU, RRIP, etc). In some cases (e.g., LRU),
it is more effective to try inserting blocks with lower pri-
ority (e.g., LRU position) instead of higher priority as pro-
posed above. We evaluate SIP with RRIP where blocks by de-
fault are inserted with a predicted long re-reference interval
(RRPV = 2M − 2). Therefore, in the ATD sets, the appro-
priate sizes are prioritized and inserted with a predicted short
re-reference interval (RRPV = 0). For a 2MB cache with
2048 sets, we create an ATD with 32 sets for each of 8 possible
block sizes. For simplicity, in our implementation we limit the
number of sizes to eight by bucketing the sizes into eight size
bins (i.e., bin one consists of sizes 0 – 8B, bin two consists of
sizes 9 – 16B,. . . , and bin eight consists of sizes 57 – 64B).

3.4. CAMP for the V-Way Cache

In addition to being an effective mechanism for the traditional
compressed cache with a local replacement policy, the key
ideas behind CAMP are even more effective when applied to
a cache with a decoupled tag- and data-store and a global re-
placement policy, where the pool of potential candidates for
replacement is much larger. In this work, we apply these ideas
to the V-Way cache [41] (described in Section 3.1) with its de-
coupled tag- and data-store that increase the effectiveness of
replacement algorithms. To demonstrate this effectiveness, we
propose Global SIP (or G-SIP) and Global MVE (or G-MVE).
Together, we combine these into Global CAMP (or G-CAMP).

V-Way cache + compression. The V-Way cache [41] de-
sign can be enhanced with compression in four main steps (as
shown in Figure 6). First, the tag entries need to be extended
with the encoding bits to represent a particular compression
scheme used for a cache block (e.g., 4 bits for BDI [37], see ➊).
The number of tags is already doubled in the V-Way cache.
Second, the data store needs to be split into multiple segments
to get the benefit of compression (e.g., 8-byte segments, see
➋). As in [37], every cache block after compression consists of
multiple adjacent segments. Third, the reverse pointers (Rn)

8In our evaluations, we perform training for 10% of the time. For example, for
100 million cycles every 1 billion cycles.

that are used to perform the replacement need to track not
only the validity (v bit) but also the size of each block after
compression (measured in the number of 8-byte segments, ➌).
This simplifies the replacement policies, because there is no
need to access the tags to find block sizes. Fourth, we double
the number of reverse pointers per set, so that we can exploit
the capacity benefits from compression (➍).

tag0 tag1 tag2
...

...

status tag fptr comp

tag3
...

...
data0 data1

... ...

... ...

...

R0

64 bytes

v+s rptr

R1 R2 R3

1 2 3

4

8 bytes

Figure 6: V-Way + compression cache design.

For a 2MB V-Way-based L2 cache with 64-byte cache
blocks, the sizes of the fptr and rptr pointers are 15 (log2

2MB

64B
)

and 16 (log2
2∗2MB

64B
) bits respectively. After compression is ap-

plied and assuming 8-byte segments, fptr would increase by 3
bits to a total size of 18 bits.9 A single validity bit that was
used in V-Way cache is now enhanced to 3 bits to represent 7
different sizes of the cache blocks after compression with BDI
as well as the validity itself.

G-MVE.As in MVE, G-MVE uses a value function to calcu-
late the value of blocks. The changes required are in (i) com-
puting pi and (ii) selecting a pool of blocks from the large pool
of replacement options to consider for one global replacement
decision. To compute pi, we propose using the reuse counters
from the Reuse Replacement policy [41] as a predictor of fu-
ture re-reference. As in the Reuse Replacement policy [41] (see
Section 3.1), each data-store entry has a counter. On insertion,
a block’s counter is set to zero. On a hit, the block’s counter is
incremented by one indicating its reuse.

For the second change, we implement global replacement
by maintaining a pointer (PTR) to a reuse counter entry. Start-
ing at the entry PTR points to, the reuse counters of 64 valid
data entries are scanned, decrementing each non-zero counter
by one (as in the Reuse Replacement policy). The 64 blocks are
assigned a value, Vi, and the least-valued block(s) are evicted
to accommodate the incoming block. 64 blocks are chosen be-
cause it guarantees both an upper bound on latency and that
evicting all 64 blocks (i.e., all highly compressed blocks) in the
worst case will vacate enough data-store space for the incom-
ing block.

A few applications (i.e., xalancbmk [47]) have a majority of
blocks of very similar sizes that primarily belong to two size
bins of adjacent sizes. When considering 64 such blocks, cer-
tain blocks in the smaller size bin can essentially be “stuck”
in the cache (i.e., there is only a very small probability these
blocks will be chosen as victim, because a block with the same
prediction of re-reference that belongs in the larger size bin is
present and will be chosen). This results from the microarchi-
tectural simplifications and approximate nature of the value
function and can cause performance degradations in a few
cases. We address this shortcoming later in this section.

9Fptr and rptr pointers can be reduced in size (by 3 bits) by using regioning
(as described later in Section 3.4).

7

G-SIP. Dynamic set sampling (used by SIP) motivates that
only a select number of sets are required to be sampled to es-
timate the performance of competing policies [40]. However,
this assumption does not hold in a cache with global replace-
ment, because evictions are not limited to the set in which a
cache miss occurs and this interferes with sampling. For the
V-Way cache, we propose instead a mechanism inspired by set
dueling [39] to select the optimal insertion policy.

To apply set dueling to G-SIP, we need to divide the data-
store into n (where n is small; in our evaluations n = 8)
equal regions. Instead of considering all blocks within the
data-store, the replacement policy considers only the blocks
within a particular region. This still allows considerably more
replacement options than a traditional cache structure. We ob-
serve that this division also simplifies the V-Way cache design
with negligible impact on performance.10

During a training phase, each region is assigned a com-
pressed block size to prioritize on insertion. Figure 7a shows
this assignment for a simple cache with three regions and two
block sizes, 8-byte and 64-byte. The third region is designated
as a baseline (or control) region inwhich no blocks are inserted
with higher priority. When a miss occurs within a region, the
CTR counter is incremented for that region. For example, in
Figure 7a, a miss to set A, B, or C increments CTR8B . Like-
wise, a miss to set G, H, or I increments CTRbase and so on.
At the end of the training phase, the regionCTR counters are
compared (see Figure 7b). If CTRi < CTRbase, blocks of size
i are inserted with higher priority in steady state in all regions.
Therefore, G-SIP detects at runtime the sizes that reduce the
miss ratewhen insertedwith higher priority than other blocks.

set A

set B

set C

set D

set E

set F

set G

set H

set I

+ CTRbase

+ CTR64B

+ CTR8B

miss

miss

miss

8B

64B

(a)

decides policy

for steady state

CTR8B CTRbase

?

(b)

Figure 7: Set selection during training and update of counters

on misses to each region.

In our implementation, we have divided the data-store into
eight regions.11 This number can be adjusted based on cache
size. Because one region is designated as the baseline region,
we bin the possible block sizes into seven bins and assign one
range of sizes to each region. During the training phase, sizes
within this range are inserted with higher priority. The train-
ing duration and frequency are as in SIP. Because training is
short and infrequent, possible performance losses due to set
dueling are limited.

G-CAMP. G-MVE and G-SIP complement each other and
can be easily integrated into one comprehensive replacement
policy referred to as G-CAMP. We make one improvement

10G-MVE supports regions by simply maintaining one PTR per region.
11We conducted an experiment varying the number of regions (and therefore
the number of distinct size bins considered) from 4 to 64 and found having 8
regions performed best.

over the simple combination of these two orthogonal poli-
cies to further improve performance in the few cases where
G-MVE degrades performance. During the training phase of
G-SIP, we designate a region in which we insert blocks with
simple Reuse Replacement instead of G-MVE. At the end of
the training phase, the CTR for this region is compared with
the control region and if fewer misses were incurred, G-MVE
is disabled in all regions at the steady state. In G-MVE-friendly
applications, it remains enabled.

3.5. Overhead and Complexity Analysis

Table 1 shows the storage cost of six cache designs: base-
line uncompressed cache, BDI compressed cache with LRU,
V-Way with and without compression, as well as CAMP and
G-CAMP. On top of our reference cache with BDI and LRU
(2384kB), MVE does not add any additional metadata and the
dynamic set sampling in SIP increases the cache size in bits
by only 1.5% (total CAMP size: 2420kB). Adding BDI compres-
sion to V-Way cachewith 2x tags and 8 regions increases cache
size from 2458kB to 2556kB. G-MVE/G-SIP/G-CAMP do not
add further metadata (with the exception of eight 16-bit coun-
ters for set-dueling in G-SIP/G-CAMP). In addition, none of
the proposed mechanisms are on the critical path of the exe-
cution and the logic is reasonably modest to implement (e.g.,
comparisons of CTRs). We conclude that the complexity and
storage overhead of CAMP are modest.

Base BDI CAMP V-Way V-Way+C G-CAMP
tag-entry(bits) 21 35([37]) 35 36 a 40 e 40

data-entry(bits) 512 512 512 528 b 544 f 544
tag entries 32768 65536 73728 c 65536 65536 65536
data entries 32768 32768 32768 32768 32768 32768
tag-store (kB) 86 287 323 295 328 328
data-store (kB) 2097 2097 2097 2163 2228 2228

other 0 0 8*16 d 0 0 8*16

total (kB) 2183 2384 2420 2458 2556 2556

Table 1: Storage overhead of different mechanisms for a 2MB

L2 cache. “V-Way+C” means V-Way with compression.

a+15 forward ptr; b +16 reverse ptr; c+1/8 set sampling in SIP; dCTR’s in SIP;
e +4 for comp. encoding; f +32 (2 reverse ptrs per data entry, 13 bits each, and
2 extended validity bits, 3 bits each)

4. Qualitative Comparison with Prior Work

4.1. Size-Aware Management in On-Chip Caches

Baek et al. propose Effective Capacity Maximizer (ECM) [6].
This mechanism employs size-aware insertion and replace-
ment policies for an on-chip compressed cache. Unlike size-
oblivious DRRIP [23] on which it is built, ECM inserts big
blockswith lower priority than small blocks. The threshold for
what is considered a “big” block is determined dynamically at
runtime using an equation derived from heuristics and based
on the current effective capacity and physical memory usage.
During replacement, the biggest block in the eviction pool is
selected as the victim.

ECM is the first size-aware policy employed for com-
pressed on-chip caches. We find that this approach has sev-
eral shortcomings and underperforms relative to our proposed
mechanisms (as we show in Section 6). First, the threshold
scheme employed by ECM is coarse-grained and, especially in
multi-core workloads where a greater diversity of block sizes

8

exists across workloads, considering more sizes (as CAMP
does) yields better performance. Second, ECM’s mechanism
does not consider the relation between block reuse and size,
whereas CAMP exploits the new observation that block size
and reuse can sometimes be related. Third, due to ECM’s com-
plex threshold definition, it is unclear how to generalize ECM
to a cache with global replacement, where size-aware replace-
ment policies demonstrate highest benefit (as shown in Sec-
tion 6). In contrast, CAMP is easily adapted to work with such
caches.

Recently, Sardashti and Wood propose the decoupled com-
pressed cache (DCC) design [43] that exploits both locality and
decoupled sectored cache design to avoid recompaction (and
partially fragmentation) overhead in the previous compressed
cache designs. The DCC design is largely orthogonal to the
compression mechanisms proposed in this work and can be
used in cojunction with them.

4.2. Size-Aware Management in Web Caches

Prior works in web caches have proposed many management
strategies that consider object size, e.g., variable document
size. ElAarag and Romano [18, 42] provide one of the most
comprehensive surveys. While these proposed techniques
serve the same high-level purpose as a management policy
for an on-chip cache (e.g., making an informed decision on
the optimal victim), they do so in a much different environ-
ment. Many proposed mechanisms rely on a recency list of
all objects in the cache (e.g., [1]) or consider frequency of ob-
ject access (e.g., [12]), which are prohibitively expensive tech-
niques for an on-chip cache. In addition, these techniques do
not consider a higher density of information that comes with
the smaller blocks after compression. This higher density can
lead to a higher importance of the smaller blocks for the cache,
which was mostly ignored in these prior mechanisms.

Some prior works (e.g., [7, 9]) proposed function-based re-
placement policies that calculate the value of an object much
like our proposedMVE policy. In particular, Bahn et al. [7] pro-
posed a mechanism where the value of a block is computed as
the division of re-reference probability and the relative cost of
fetching by size. Similar to other function-based techniques,
however, these inputs cannot efficiently be computed or stored
in hardware. Our proposed technique does not suffer from this
problem and requires only simple metrics already built into
on-chip caches.

5. Methodology

We use an in-house, event-driven 32-bit x86 simulator [31]
whose front-end is based on Simics [30]. All configurations
have a two-level cache hierarchy, with private L1 caches and
a shared, inclusive L2 cache. Table 2 provides major simula-
tion parameters. All caches uniformly use a 64B cache block
size. All cache latencies were determined using CACTI [48]
(assuming a 4GHz frequency). We also checked that these
latencies match the existing last-level cache implementations
from Intel and AMD, when properly scaled to the correspond-
ing frequency.12 For single-core and multi-core evaluations,

12Intel XeonX5570 (Nehalem) 2.993GHz, 8MBL3 - 35 cycles [32]; AMDOpteron
2.8GHz, 1MB L2 - 13 cycles [10].

Processor 1–4 cores, 4GHz, x86 in-order
L1-D cache 32KB, 64B cache-line, 2-way, 1 cycle, uncompressed
L2 caches 1–16 MB, 64B cache-line, 16-way, 15–48 cycles
Memory 300-cycle latency, 32 MSHRs

Table 2: Major parameters of the simulated system.

we use benchmarks from the SPEC CPU2006 suite [47], two
TPC-H queries [49], and an Apache web server. All results are
collected by running a representative portion (based on Pin-
Points [33]) of the benchmarks for 1 billion instructions. We
build our energymodel based onMcPAT [29], CACTI [48], and
on RTL of BDI [37] synthesized with Synopsys Design Com-
piler with a 65nm library (to evaluate the energy of compres-
sion/decompression with BDI).

Evaluation Metrics.We measure performance of our bench-
marks using IPC (instruction per cycle), effective compres-
sion ratio (effective increase in L2 cache size without meta-
data overhead, e.g., 1.5 for 2MB cache means effective size
of 3MB), and MPKI (misses per kilo instruction). For multi-
programmed workloads we use weighted speedup [19, 46] as
the performance metric.

Energy. We measure the memory subsystem energy, which
includes the static and dynamic energy consumed by L1 and
L2 caches, memory transfers, and DRAM, as well as the energy
of BDI’s compressor/decompressor units. Energy results are
normalized to the energy of the baseline system with a 2MB
compressed cache and an LRU replacement policy. BDI was
fully implemented in Verilog and synthesized to create some
of the energy results used in building our power model. The
area overhead of the compression and decompression logic is
0.014mm2 (combined). Decompression power is 7.4 mW, and
compression power is 20.59 mW on average.

Our results show that there are benchmarks that are almost
insensitive (IPC improvement is less than 5%with 32x increase
in cache size) to the size of the L2 cache: dealII, povray, cal-
culix, gamess, namd. This typically means that their working
sets mostly fit into the L1D cache, leaving almost no poten-
tial for any L2/memory optimization. Therefore, we do not
present data in detail for these applications, although we ver-
ified that our mechanism does not affect their performance.

Parameters of Evaluated Schemes. For FPC (BDI), we used
a decompression latency of 5 cycles [4] (1 cycle [37]), respec-
tively. We use a segment size of 1 byte for both designs to
get the highest compression ratio as described in [4, 37], and
an 8-byte segment size for V-Way-based designs. As in prior
works [3,37], we assume double the number of tags compared
to the conventional uncompressed cache (and hence the com-
pression ratio cannot be larger than 2.0).

6. Results and Analysis

6.1. Single-core Results

6.1.1. Effect on Performance. Figures 8 and 9 show the per-
formance improvement of our proposed cache management
policies over the baseline design with a 2MB compressed13 L2
cache and an LRU replacement policy. Figure 8 compares the
performance of CAMP’s local version (and its components:
MVE and SIP) over (i) the conventional LRU policy [14], (ii)
the state-of-the-art size-oblivious RRIP policy [23], and (iii)

13Unless otherwise stated, we use 2MB BDI [37] compressed cache design.

9

0.8

0.9

1

1.1

1.2

1.3

N
o
r
m
a
li
z
e
d

 IP
C

RRIP

ECM

MVE

SIP

CAMP

1.31

Figure 8: Performance of our local replacement policies vs. RRIP and ECM, normalized to LRU.

0.8

0.9

1

1.1

1.2

1.3

N
o
r
m
a
li
z
e
d

 IP
C

RRIP

V‐WAY

G‐MVE

G‐SIP
G‐CAMP

1.711.63 1.97

Figure 9: Performance of our global replacement policies vs. RRIP and V-Way, normalized to LRU.

the recently proposed ECM policy [6]. Figure 9 provides the
same comparison for G-CAMP (with its components: G-MVE
and G-SIP) over (i) LRU, (ii) RRIP, and (iii) V-Way design [41].
Both figures are normalized to the performance of a BDI-cache
with LRU replacement. Table 3 summarizes our performance
results. Several observations are in order.

Mechanism LRU RRIP ECM

MVE 6.3%/-10.7% 0.9%/-2.7% 0.4%/-3.0%

SIP 7.1%/-10.9% 1.8%/-3.1% 1.3%/-3.3%

CAMP 8.1%/-13.3% 2.7%/-5.6% 2.1%/-5.9%

Mechanism LRU RRIP ECM V-Way

G-MVE 8.7%/-15.3% 3.2%/-7.8% 2.7%/-8.0% 0.1%/-0.9%

G-SIP 11.2%/-17.5% 5.6%/-10.2% 5.0%/-10.4% 2.3%/-3.3%

G-CAMP 14.0%/-21.9% 8.3%/-15.1% 7.7%/-15.3% 4.9%/-8.7%

Table 3: Performance (IPC) / Miss rate (MPKI) comparison be-

tween our cache management policies and prior works, 2MB

L2 cache. All numbers are pairwise percentage improvements

over the corresponding comparisonpoints and averaged across

fourteen memory-intensive applications.

First, our G-CAMP and CAMP policies outperform all prior
designs: LRU (by 14.0% and 8.1%), RRIP (by 8.3% and 2.7%), and
ECM (by 7.7% and 2.1%) on average across fourteen memory-
intensive applications (GMeanIntense, with MPKI > 5). These
performance improvements come from both components in
our design, which significantly decrease applications’ miss
rates (shown in Table 3). For example, MVE and G-MVE are
the primary sources of improvements in astar, sphinx3 and
mcf, while SIP is effective in soplex andGemsFDTD. Note that if
we examine all applications, then G-CAMP outperforms LRU,
RRIP and ECM by 8.9%, 5.4% and 5.1% (on average).

Second, our analysis reveals that the primary reasons why
CAMP/G-CAMP outperforms ECM are: (i) ECM’s coarse-
grain view of the size (only large vs. small blocks are differen-
tiated), (ii) ECM’s difficulty in identifying the right threshold
for an application. For example, in soplex, ECM defines every
block that is smaller than or equal to 16 bytes as a small block
and prioritizes it (based on ECM’s threshold formula). This

partially helps to improve performance for some important
blocks of size 1 and 16, but our SIP mechanism additionally
identifies that it is even more important to prioritize blocks of
size 20 (a significant fraction of such blocks have short reuse
distance as we show in Section 2.3). This in turn leads to much
better performance in soplex by using CAMP (and G-CAMP).

Third, in many applications, G-MVE significantly improves
performance (e.g., soplex and sphinx3), but there are some no-
ticeable exceptions (e.g., xalancbmk). Section 3.4 describes
the main reason for this problem. Our final mechanism (G-
CAMP), where we use set dueling [39] to dynamically de-
tect such situations and disable G-MVE (for these cases only)
avoids this problem. As a result, our G-CAMP policy gets the
best of G-MVE when it is effective and avoids degradations
otherwise.

Fourth, global replacement policies (e.g., G-CAMP) are
more effective in exploiting the opportunities provided by the
compressed block size. G-CAMP not only outperforms local
replacement policies (e.g., RRIP), but also global designs like
V-Way (by 3.6% on average across all applications and by 4.9%
across memory intensive applications).

We summarize the performance gains and the decrease in
the cache miss rate (MPKI) for all our policies in Table 3. Based
on our results, we conclude that our proposed cache manage-
ment policies (G-CAMP and CAMP) are not only effective in
delivering performance on top of the existing cache designs
with LRU replacement policy, but also provide significant im-
provement over state-of-the-art mechanisms.

6.1.2. Sensitivity to the Cache Size. The performance ben-
efits of our policies are significant across a variety of different
systems with different cache sizes.

Figure 10 shows the performance of designs where (i) L2
cache size varies from 1MB to 16MB, and (ii) the replacement
policies also vary: LRU, RRIP, ECM, V-Way, CAMP, and G-
CAMP.14 Two observations are in order.

14All results are normalized to the performance of the 1MB compressed L2
cache with LRU replacement policy. Cache access latency is modeled and ad-
justed appropriately for increasing cache size, using CACTI.

10

1

1.1

1.2

1.3

1.4

1.5

1.6

1M 2M 4M 8M 16M

N
o
r
m
a
li
z
e
d

 IP
C LRU RRIP ECM CAMP V‐WAY G‐CAMP

Figure 10: Performance with 1M – 16MB L2 caches.

First, G-CAMP outperforms all prior approaches for all cor-
responding cache sizes. The performance improvement varies
from 5.3% for a 1MB L2 cache to as much as 15.2% for an 8MB
L2 cache. CAMP also outperforms all local replacement de-
signs (LRU and RRIP).

Second, the effect of having size-aware cache management
policies like G-CAMP, in many cases, leads to performance
that is better than that of a twice-as-large cache with the con-
ventional LRU policy (e.g, 4MB G-CAMP outperforms 8MB
LRU). In some cases (e.g., 8MB), G-CAMP performance is bet-
ter than that of a twice-as-large cache with any other replace-
ment policy. We conclude that our management policies are
efficient in achieving the performance of higher-capacity last-
level cache without making the cache physically larger.
6.1.3. Effect on Energy. By decreasing the number of trans-
fers between LLC and DRAM, our management policies also
improve the energy consumption of the whole main memory
hierarchy. Figure 11 shows this effect on the memory subsys-
tem energy for two of our mechanisms (CAMP and G-CAMP)
and three state-of-the-art mechanisms: (i) RRIP, (ii) ECM, and
(iii) V-Way. Two observations are in order.

0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

a
st
a
r

ca
ct
u
sA
D
M

g
cc

g
o
b
m
k

h
2
6
4
re
f

so
p
le
x

ze
u
sm

p

b
zi
p
2

G
e
m
sF
D
T
D

g
ro
m
a
cs

le
sl
ie
3
d

p
e
rl
b
e
n
ch

sj
e
n
g

sp
h
in
x
3

x
a
la
n
cb
m
k

m
il
c

o
m
n
e
tp
p

li
b
q
u
a
n
tu
m

lb
m

m
cf

tp
ch
2

tp
ch
6

a
p
a
ch
e

G
M
e
a
n
In
te
n
se

G
M
e
a
n
A
ll

N
o
rm

a
li
ze
d

 E
n
e
rg
y RRIP ECM CAMP V‐WAY G‐CAMP

Figure 11: Effect on memory subsystem energy.

First, as expected, G-CAMP is the most effective in de-
creasing energy consumption due to the highest decrease in
MPKI (described in Table 3). The total reduction in energy
consumption is 15.1% on average for memory-intensive work-
loads (11.8% for all applications) relative to the baseline system
and 7.2% relative to the best prior mechanism. We conclude
that our cache management policies are more effective in de-
creasing the energy consumption of the memory subsystem
than previously-proposed mechanisms.

Second, applications that benefit the most are usually the
same applications that also have the highest performance im-
provement and the highest decrease in off-chip traffic, e.g., so-
plex and mcf. At the same time, there are a few exceptions,
like perlbench, that demonstrate significant reduction in en-
ergy consumed by the memory subsystem, but do not show
significant performance improvement (as shown in Figures 8
and 9). For these applications, the main memory subsystem
is usually not a performance bottleneck due to the relatively

small working set sizes that fit into the 2MB L2 cache and
hence the relative improvements in the main memory subsys-
tem might not have noticeable effects on the overall system
performance.
6.1.4. Effect on Cache Capacity.We expect that size-aware
cache management policies increase the effective cache capac-
ity by increasing the effective compression ratio. Figure 12
aims to verify this expectation by showing the average com-
pression ratios for applications in our workload pool (both the
overall average and the average for memory-intensive appli-
cations). We make two major observations.

First, as expected, our size-aware mechanisms (CAMP/G-
CAMP) significantly improve effective compression ratio over
corresponding size-oblivious mechanisms (RRIP and V-Way)
– by 16.1% and 14.5% (on average across all applications). The
primary reason for this is that RRIP and V-Way are designed
to be aggressive in prioritizing blocks with potentially higher
reuse (better locality). This aggressiveness leads to an even
lower average compression ratio than that of the baseline LRU
design (but still higher performance shown in Section 6.1.1).
Second, both CAMP and G-CAMP outperform ECM by 6.6%
and 6.7% on average across all applications for reasons ex-
plained in Section 4. We conclude that our policies achieve the
highest effective cache ratio compression in the cache com-
pared to the other three state-of-the-art mechanisms.

1.5

1.55

1.6

1.65

1.7

1.75

GMeanIntense GMeanAll

C
o
m
p
re
ss
io
n

 R
a
ti
o

LRU RRIP ECM CAMP V‐WAY G‐CAMP

Figure 12: Effect on compression ratio with a 2MB L2 cache.

6.1.5. Comparison with Uncompressed Cache. Note that
the overhead of using a compressed cache design is mostly
due to the increased number of tags (e.g, 7.6% for BDI [37]). If
the same number of bits (or even a larger number, e.g., 10%)
is spent on having a larger L2 cache (i.e., a 2.2MB uncom-

pressed L2 cache with RRIP replacement), we find that the per-
formance is 2.8% lower than the performance of the baseline
system with 2MB compressed L2 and LRU replacement, and
12.1% lower than the performance of the system with the 2MB
L2 cache and G-CAMP policy. We conclude that using a com-
pressed cache with CAMP provides a reasonable tradeoff in
complexity for significantly higher performance.

6.2. Multi-core Results

We classify our applications into two distinct categories (ho-
mogeneous and heterogeneous) based on the distributions of the
compressed sizes that they have. A homogeneous application
is expected to have very few different compressed sizes for
its data (when stored in the LLC). A heterogeneous applica-
tion, on the other hand, has many different sizes. To formalize
this classification, we first collect the access counts for differ-
ent sizes for every application. Then, we mark the size with
the highest access count as a “peak” and scale all other access
counts with respect to this peak’s access count. If a certain size

11

within an application has over 10% of the peak access count, it
is alsomarked as a peak. The total number of peaks is ourmea-
sure of the application’s heterogeneity with respect to block
size. If the application’s number of peaks exceeds two, we clas-
sify it as heterogeneous (or simply Hetero). Otherwise, the ap-
plication is considered to be homogeneous (or simply Homo).
This classification matches our intuition that applications that
have only one or two common sizes (e.g., one size for uncom-
pressed blocks and one size for most of the compressed blocks)
should be considered homogeneous. These two classes en-
able us to construct three different 2-core workload groups: (i)
Homo-Homo, (ii) Homo-Hetero, and (iii) Hetero-Hetero. We
generate 20 2-core workloads per group (60 total) by randomly
selecting applications from different categories.

Figures 13a and 13b show the performance improvement
provided by all CAMP designs as well as previously proposed
designs: (i) RRIP, (ii) ECM, and (iii) V-Way over a 2MB base-
line compressed cache designwith LRU replacement. We draw
three major conclusions.

0.95

1.00

1.05

1.10

N
o

rm
a

li
ze

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

RRIP ECM MVE SIP CAMP

(a) Local replacement.

0.95

1

1.05

1.1

1.15

1.2

N
o

rm
a

li
ze

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

RRIP V-WAY G-MVE

G-SIP G-CAMP

(b) Global replacement.

Figure 13: Normalizedweighted speedup, 2-cores with 2MBL2.

First, both G-CAMP and CAMP outperform all prior ap-
proaches in all categories. Overall, G-CAMP improves system
performance by 11.3%/7.8%/6.8% over LRU/RRIP/ECM (CAMP
improves by 5.9%/2.5%/1.6% over the same designs). The effect
on system fairness, i.e., maximum slowdown [13,16,27,28,51]
by our mechanisms is negligible.

Second, the more heterogeneity present, the higher the
performance improvement with our size-aware management
policies. This effect is clearly visible in both figures, and espe-
cially for global replacement policies in Figure 13b. G-CAMP
achieves the highest improvement (15.9% over LRU and 10.0%
over RRIP) when both applications are heterogeneous, and
hence there are more opportunities in size-aware replacement.

Third, when comparing relative performance of MVE vs.
SIP from Figure 13a and the similar pair of G-MVE vs. G-SIP
from Figure 13b, we notice that in the first pair the relative
performance is almost the same, while in the second pair G-
MVE is significantly better than G-SIP. The primary reason for
this difference is that G-MVE can get more benefit from global
cache replacement, because it can easily exploit size variation
between different sets. At the same time, G-SIP gets its per-
formance improvement from the relation between the size and
corresponding data reuse, which does not significantly change
between local and global replacement.

We conducted a similar experiment15 with 30 4-core work-

15We increased the LLC size to 4MB to provide the same core to cache capacity
ratio as with 2-cores.

loads and observe similar trends to the 2-core results pre-
sented above. G-CAMP outperforms the best prior mecha-
nism by 8.8% on average across all workloads (by 10.2% across
memory-intensive workloads).

6.3. Sensitivity to the Compression Algorithm

So far, we have presented results only for caches that use BDI
compression [37], but as described in Section 2, our proposed
cache management policies are applicable to different com-
pression algorithms. We verify this by applying our mecha-
nisms to a compressed cache design based on the FPC [3] com-
pression algorithm. Compared to an FPC-compressed cache
with LRU replacement, CAMP and G-CAMP improve perfor-
mance of memory-intensive applications by 7.8% and 10.3% re-
spectively. We conclude that our cache management policies
are effective for different compression designs where they de-
liver the highest overall performance when compared to the
state-of-the-art mechanisms.

6.4. SIP with Uncompressed Cache

Our SIP policy can be applied to a cache without a compressed
data-store, while still using knowledge of a block’s compress-

ibility as an indicator of reuse. We evaluate such a design to
isolate the “reuse prediction” benefit of SIP independently of
its benefits related to cache compression. Our single-/two-
core evaluations of G-SIP show a 2.2%/3.1% performance im-
provement over an uncompressed LRU cache design, and a
1.3%/1.2% performance improvement over the state-of-the-art
PC-based cache management mechanism [52] (evaluated as
comparison to a state-of-the-art “reuse predictor”).16 We con-
clude that using compressibility as an indicator of future reuse
can improve the performance of even uncompressed caches.

7. Conclusion

This paper presents Compression-Aware Management Poli-
cies (CAMP) – a set of new and simple, yet efficient size-
aware replacement policies for compressed on-chip caches.
CAMP improves system performance and energy efficiency
compared to three state-of-the-art cache replacement mech-
anisms. Our policies are based on two key observations. First,
we show that direct incorporation of the compressed cache
block size into replacement decisions can be a basis for a more
efficient replacement policy. Second, we find that the com-
pressed block size can be used as an indicator of a block’s
future reuse in some applications. Our extensive evaluations
show that CAMP, applied to modern last-level-caches (LLC),
improves performance by 4.9%/9.0%/10.2% (on average for
memory-intensive workloads) for single-core/two-/four-core
workloads over the best state-of-the-art replacement mech-
anisms we evaluated. We conclude that CAMP is an effi-
cient and low-complexity management policy for compressed
caches in both single- and multi-core systems. We also hope
that our observation that compressed block size indicates
reuse behavior could be useful in other contexts.

16In contrast to [52], SIP does not require a special hardware table and tracking
of PC with cache blocks.

12

Acknowledgements

We thank the reviewers for their valuable suggestions. We
thank Hadi Esmaeilzadeh from Georgia Tech for his helpful
comments on earlier version of this paper. We thank the
SAFARI group members for the feedback and stimulating re-
search environment they provide. We acknowledge the sup-
port of our industrial partners: Facebook, Google, IBM, Intel,
Microsoft, Qualcomm, VMware, and Samsung. This research
was partially supported by NSF (grants 0953246, 1212962,
1065112, 1423172), the Semiconductor Research Corporation
and the Intel Science and Technology Center for Cloud Com-
puting. Gennady Pekhimenko is supported by a Microsoft Re-
search Fellowship and a Qualcomm Innovation Fellowship.

References
[1] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams.

Removal Policies in Network Caches for World-Wide Web Documents.
In SIGCOMM, 1996.

[2] K. K. Agaram, S. Keckler, C. Lin, and K. S. McKinley. DecomposingMem-
ory Performance: Data Structures and Phases. In ISMM-5, 2006.

[3] A. R. Alameldeen and D. A. Wood. Adaptive Cache Compression for
High-Performance Processors. In ISCA-31, 2004.

[4] A. R. Alameldeen and D. A. Wood. Frequent Pattern Compression: A
Significance-Based Compression Scheme for L2 Caches. Tech. Rep., 2004.

[5] A. Arelakis and P. Stenstrom. SC2: A Statistical Compression Cache
Scheme. In ISCA-41, 2014.

[6] S. Baek, H. G. Lee, C. Nicopoulos, J. Lee, and J. Kim. ECM: Effective Ca-
pacityMaximizer for High-Performance Compressed Caching. InHPCA-
19, 2013.

[7] H. Bahn, S. H. Noh, S. L. Min, and K. Koh. Using Full Reference History
for Efficient Document Replacement in Web Caches. In USITS, 1999.

[8] L. A. Belady. A Study of Replacement Algorithms for a Virtual-Storage
Computer. IBM Systems Journal, 5:78–101, 1966.

[9] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Algorithms. In
USENIX Symposium on ITS, 1997.

[10] J. Chen and W. W. Iii. Multi-Threading Performance on Commodity
Multi-core Processors. In Proceedings of HPCAsia, 2007.

[11] X. Chen, L. Yang, R. Dick, L. Shang, and H. Lekatsas. C-Pack: A High-
Performance Microprocessor Cache Compression Algorithm. In T-VLSI
Systems, 2010.

[12] K. Cheng and Y. Kambayashi. A Size-Adjusted and Popularity-Aware
LRU Replacement Algorithm for Web Caching. In COMPSAC-24, 2000.

[13] R. Das et al. Application-aware prioritization mechanisms for on-chip
networks. In MICRO-42, 2009.

[14] P. J. Denning. The Working Set Model for Program Behavior. Commun.
ACM, 1968.

[15] C. Ding and Y. Zhong. Predicting Whole-program Locality Through
Reuse Distance Analysis. In PLDI, 2003.

[16] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source
Throttling: A Configurable and High-performance Fairness Substrate
for Multi-core Memory Systems. In ASPLOS XV, 2010.

[17] M. Ekman and P. Stenstrom. A Robust Main-Memory Compression
Scheme. In ISCA-32, 2005.

[18] H. ElAarag and S. Romano. Comparison of function based web proxy
cache replacement strategies. In SPECTS-12, 2009.

[19] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for
Multiprogram Workloads. IEEE Micro, 28(3):42–53, 2008.

[20] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-Managed
Cache Design. In ISCA-27, 2000.

[21] E. G. Hallnor and S. K. Reinhardt. A Unified Compressed Memory Hier-
archy. In HPCA-11, 2005.

[22] M. Hayenga, A. Nere, and M. Lipasti. MadCache: A PC-aware Cache
Insertion Policy. In JWAC, 2010.

[23] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High Performance
Cache Replacement Using Re-reference Interval Prediction (RRIP). In
ISCA-37, 2010.

[24] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement Based
on Reuse-Distance Prediction. In ICCD, 2007.

[25] S. M. Khan, A. R. Alameldeen, C.Wilkerson, O.Mutlu, and D. A. Jiménez.
Improving cache performance using read-write partitioning. In HPCA,
2014.

[26] M. Kharbutli and R. Sheikh. LACS: A Locality-Aware Cost-Sensitive
Cache Replacement Algorithm. In Transactions on Computers, 2013.

[27] Y. Kim et al. ATLAS: A scalable and high-performance scheduling algo-
rithm for multiple memory controllers. In HPCA-16, 2010.

[28] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Clus-
ter Memory Scheduling: Exploiting Differences in Memory Access Be-
havior. In MICRO-43, 2010.

[29] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. Mc-
PAT: An Integrated Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. MICRO-42, 2009.

[30] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A.Moestedt, and B.Werner. Simics: A Full System
Simulation Platform. Computer, 35:50–58, February 2002.

[31] Mem-Sim. http://www.ece.cmu.edu/∼safari/tools.html.

[32] D. Molka, D. Hackenberg, R. Schone, and M. Muller. Memory Perfor-
mance and Cache Coherency Effects on an Intel Nehalem Multiproces-
sor System. In PACT-18, 2009.

[33] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing Representative Portions of Large Intel Itanium Programs
with Dynamic Instrumentation. MICRO-37, 2004.

[34] G. Pekhimenko et al. Exploiting Compressed Block Size as an Indicator
of Future Reuse. In SAFARI Technical Report No. 2013-003, 2013.

[35] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry. Linearly Compressed Pages: A Main
Memory Compression Framework with Low Complexity and Low La-
tency. In PACT, 2012.

[36] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry. Linearly Compressed Pages: A Low
Complexity, Low Latency Main Memory Compression Framework. In
MICRO-46, 2013.

[37] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry. Base-Delta-Immediate Compression: A Practical Data
Compression Mechanism for On-Chip Caches. In PACT-21, 2012.

[38] T. Piquet, O. Rochecouste, and A. Seznec. Exploiting Single-Usage for
Effective Memory Management. In ACSAC-07, 2007.

[39] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive
Insertion Policies for High Performance Caching. In ISCA-34, 2007.

[40] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-
Aware Cache Replacement. In ISCA-33, 2006.

[41] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way Cache: Demand
Based Associativity via Global Replacement. In ISCA-32, 2005.

[42] S. Romano and H. ElAarag. A Quantitative Study of Recency and Fre-
quency Based Web Cache Replacement Strategies. In CNS, 2008.

[43] S. Sardashti and D. A. Wood. Decoupled Compressed Cache: Exploiting
Spatial Locality for Energy-optimized Compressed Caching. In MICRO-
46, 2013.

[44] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The Evicted-
Address Filter: A Unified Mechanism to Address Both Cache Pollution
and Thrashing. In PACT-21, 2012.

[45] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. MemZip: Ex-
ploring Unconventional Benefits from Memory Compression. In HPCA-
20, 2014.

[46] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultane-
ous Multithreaded Processor. ASPLOS-9, 2000.

[47] SPEC CPU2006 Benchmarks. http://www.spec.org/.

[48] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.
Technical Report HPL-2008-20, HP Laboratories, 2008.

[49] Transaction Processing Performance Council. http://www.tpc.org/.

[50] G. Tyson, M. Farrens, J. Matthews, and A. Pleszkun. A Modified Ap-
proach to Data Cache Management. In MICRO-28, 1995.

[51] H. Vandierendonck and A. Seznec. Fairness Metrics for Multi-Threaded
Processors. Computer Architecture Letters, 10(1):4–7, Jan 2011.

[52] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely Jr., and
J. Emer. SHiP: Signature-based Hit Predictor for High Performance
Caching. In MICRO-44, 2011.

[53] J. Yang, Y. Zhang, and R. Gupta. Frequent Value Compression in Data
Caches. In MICRO-33, 2000.

13

