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Abstract—Typical speech enhancement algorithms operate on
the short-time magnitude spectrum, while keeping the short-time
phase spectrum unchanged for synthesis. We propose a novel ap-
proach where the noisy magnitude spectrum is recombined with
a changed phase spectrum to produce a modified complex spec-
trum. During synthesis, the low energy components of the modi-
fied complex spectrum cancel out more than the high energy com-
ponents, thus reducing background noise. Using objective speech
quality measures, informal subjective listening tests and spectro-
gram analysis, we show that the proposed method results in im-
proved speech quality.

Index Terms—Magnitude spectrum, phase spectrum, speech en-
hancement.

I. INTRODUCTION

I
N the field of speech enhancement, we are interested in the
reduction of noise from noise-corrupted speech in order

to improve its intelligibility and quality. Various methods
have been investigated in the literature for performing speech
enhancement. These can be grouped into spectral subtraction
[1], MMSE estimation [2], Wiener filtering (linear MMSE)
[3], Kalman filtering [4], and subspace [5] methods. Several
of these methods employ the analysis-modification-synthesis
(AMS) framework [6]–[9].

Let us consider an additive noise model

(1)

where , , and denote discrete-time signals of
noisy speech, clean speech, and noise, respectively. Since
speech can be assumed to be quasi-stationary, it is analyzed
frame-wise in the AMS framework through the short-time
Fourier analysis. The discrete short-time Fourier transform
(DSTFT) of the corrupted speech signal is given by

(2)

where denotes the th discrete-frequency of uniformly
spaced frequencies and is an analysis window function.
In speech processing, the Hamming window with 20–40 ms du-
ration is typically employed. Using DSTFT analysis, we can
equally, subject to constraints described in [10], represent (1)
as

(3)
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where , , and are the DSTFTs of noisy
speech, clean speech, and noise, respectively. Each of these can
be expressed in terms of the DSTFT magnitude spectrum and
the DSTFT phase spectrum. For instance, the DSTFT of the
noisy speech signal can be written in polar form as

(4)

where denotes the magnitude spectrum and
denotes the phase spectrum.1

Traditional AMS-based speech enhancement methods
modify only the magnitude spectrum while keeping the noisy
phase spectrum unchanged for synthesis. In this letter, we
propose a novel approach to speech enhancement, in which the
noisy magnitude spectrum is recombined with a changed phase
spectrum to produce a modified complex spectrum. During
synthesis, low energy components of the modified complex
spectrum cancel out more than the high energy components,
resulting in background noise reduction. Thus, our method is
well suited for scenarios where the noise energy is lower than
the speech energy. Using an objective speech quality measure,
informal subjective listening tests, and spectrogram analysis,
we demonstrate that the proposed method results in improved
speech quality.

The rest of this letter is organized as follows. Section II
presents details of the proposed approach. Section III describes
the experimental setup. The results and discussion are presented
in Section IV. Conclusions are drawn in Section V.

II. PROPOSED METHOD

A. Enhancement Procedure

The proposed speech enhancement method is based on the
AMS framework commonly employed in speech processing.
The AMS framework consists of three stages: 1) the analysis
stage, where the input speech is processed using DSTFT anal-
ysis [see (2)]; 2) the modification stage, where the noisy com-
plex spectrum undergoes some kind of modification; and 3) the
synthesis stage, where the inverse discrete short-time Fourier
transform (IDSTFT) operation is followed by the overlap-add
(OLA) synthesis to reconstruct the output signal. A block dia-
gram of the proposed approach is shown in Fig. 1.

The noisy speech signal, used in the analysis stage of the
AMS framework, is a real-valued signal, and therefore, its
DSTFT is conjugate symmetric, i.e., .
In our approach, we control the degree to which the conju-
gates reinforce or cancel by altering their angles. That is, we
compute the changed phase spectrum as follows. First, the

1In our discussions, when referring to the magnitude spectrum, phase spec-
trum, and complex spectrum, the DSTFT modifier is implied unless otherwise
stated.
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Fig. 1. Block diagram of the proposed speech enhancement method.

noisy complex spectrum is offset by an additive real-valued
frequency-dependent function

(5)

where should be made anti-symmetric about (half
the sampling rate) to achieve the cancellation effect. In this
letter, we employ a simple anti-symmetric function given
by

(6)

where is a real-valued constant and is the length of fre-
quency analysis assumed to be even. Second, is used
to compute the changed phase spectrum through a four-quad-
rant version of the arctangent function

(7)

where and denote imaginary and real operators, re-
spectively. We shall refer to the changed phase spectrum as the
pseudo-phase spectrum, since it need not possess the properties
of a true2 phase spectrum. The pseudo-phase spectrum is recom-
bined with the noisy magnitude spectrum to produce a modified
complex spectrum

(8)

In the synthesis stage, the IDSTFT is used to convert frequency-
domain frames, , to time-domain representation. Note
that due to the additive offset introduced in (5), the resulting
time-domain frames may be complex. In the proposed method,
the imaginary component is discarded. The enhanced time-do-
main signal, , is produced by employing the OLA proce-
dure.

2In other words, one that is computed from a real-valued signal.

Fig. 2. Vector diagrams: modification of DSTFT conjugate symmetry. Top row

(a): �
��
� � � �. Bottom row (b): �

��
� � � �. Column one: conjugate vectors,

��
�

and
��
� , as well as their addition vector,

������
� �� . Column two: the real parts

of the conjugate vectors are offset by � and ��, respectively. Thus, the angles

of vectors
��
� and

��
� are altered, while their magnitudes are kept unchanged to

produce vectors
��
� and

��
� , respectively [see (8)]. Column three: the resulting

vectors are added to produce the
������
� � � vector. Column four: the imaginary

part of the
������
� � � addition vector is discarded.

Fig. 3. Anti-symmetric ���� function employed in our evaluations, where �
is a constant and � is the �th discrete-frequency component of � uniformly
spaced frequencies.

B. Explanation Using Vector Diagrams

The noise cancellation can be described by viewing the fre-
quency-domain signal as groupings of conjugates. The conju-
gates arise naturally from the symmetry of the magnitude spec-
trum and anti-symmetry of the phase spectrum and are a re-
sult of applying the DSTFT to a real-valued signal. During the
IDSTFT operation, the conjugates sum together to produce a
larger real-valued signal. By modifying the conjugates, we can
influence the degree to which they sum together and thus con-
tribute to the reconstructed time-domain signal. We achieve this
by modifying their angles. Two cases of conjugate vector phase
modification are presented in Fig. 2. In the first case, Fig. 2(a),

the magnitudes of the conjugates, i.e., and , are larger
than (the magnitude of the function).3 This results in lim-
ited change of the original signal. In the second case, Fig. 2(b),
the vector magnitudes are smaller than . A significant change

occurs, as the two conjugate vectors, and , are pushed
toward the real-axis facing 0 and radians, respectively. Sum-
mation produces a significant cancellation, leaving little or no
real-valued component. As can be seen in Fig. 2, the strength of
cancellation for a given is dependent on the DSTFT magnitude

of the noisy speech, , with larger magnitude compo-
nents being less attenuated and smaller magnitude components
being more attenuated. Typically, noise frequency components

3For the purposes of this section, we adopt a vector notation. Also, for clarity,
we drop both time and frequency indexes.
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Fig. 4. Empirically determined � as a function of input speech SNR for white
Gaussian noise (solid line), train noise (broken line), and babble noise (dotted
line).

Fig. 5. Mean PESQ improvement scores as a function of input speech SNR
for white Gaussian noise (solid line), train noise (broken line), and babble noise
(dotted line).

are assumed to have much lower magnitudes than signal com-
ponents. This assumption is the basis for many noise cancella-
tion and noise estimation algorithms. Using this assumption, we
can tune the additive function so as to induce significant
phase modification that results in cancellation among noise vec-
tors while limiting the modification effect upon signal carrying
vectors.

III. ENHANCEMENT EXPERIMENTS

A. Speech Corpus and Noise Types

In our evaluations, we use the NOIZEUS speech corpus [11].
NOIZEUS is composed of 30 phonetically-balanced sentences
belonging to six speakers (three males and three females). The
corpus is sampled at 8 kHz and filtered to simulate receiving
frequency characteristics of telephone handsets. The NOIZEUS
corpus comes with nonstationary noises at different SNRs. In
our evaluation, we use the train and babble noises. We also gen-
erate a corresponding stimuli set corrupted by additive white
Gaussian noise at four SNR levels: 0 dB, 5 dB, 10 dB, and 15
dB.

B. Evaluation Methods

For evaluation purposes, we employ an objective speech
quality measure, namely, the perceptual estimation of speech
quality (PESQ). The PESQ algorithm [12] is a fusion of two
other perceptually motivated objective speech quality mea-
sures: PAMS and PSQM99. PESQ produces robust estimates
of speech quality in the presence of a wide range of noise types.
PESQ prediction maps mean opinion score (MOS) estimates
to a range between 0.5 and 4.5, where 1.0 corresponds to

Fig. 6. Spectrograms of sp10.wav utterance, “The sky that morning was clear
and bright blue,” by a male speaker from the NOIZEUS corpus: (a) clean speech;
(b, d, f) speech degraded by white noise, train noise, and babble noise, respec-
tively (10 dB SNR); (c, e, g) corresponding enhanced speech.
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TABLE I
MEAN PESQ SCORES FOR THE WHITE NOISE CASE FOR THE PROPOSED,

SPECTRAL SUBTRACTION (SSUB), AND MMSE METHODS

bad and 4.5 corresponds to distortionless. In our evaluation,
we compute mean PESQ scores over a subset of the NOIZEUS
corpus. In addition, we employ informal subjective listening
tests and spectrogram analysis.

C. Experimental Procedure

To evaluate the approach described in Section II, we employ
the modified AMS procedure shown in Fig. 1. We zero-mean
and normalize samples of each of the sentence files to be be-
tween 1.0 and 1.0. In our experiments, the frame duration
is set to 32 ms and the frame shift to 4 ms. The Hamming
window is used as the analysis window. We employ FFT length
of 1024 samples. We use an anti-symmetric function given
in (6) and shown in Fig. 3. The value of for use in our evalua-
tions was determined empirically in such a way as to maximize
both PESQ and SNR scores. The empirical mappings were per-
formed using a gender balanced subset of the NOIZEUS corpus.
The subset consisted of 14 utterances. The remainder of the
corpus was used for testing. Fig. 4 shows the resulting mappings
as a function of input speech SNR for white, train, and babble
noises. Note that in practice, a voice activity detection (VAD) or
adaptive noise estimation algorithms [13] could be employed to
control .

IV. RESULTS AND DISCUSSION

Mean PESQ improvement scores for the three noise cases in-
vestigated in our experiments are shown in Fig. 5. These scores
show that the proposed method performs best in the case of
white noise, with lower improvements attained for the train and
babble noise cases.

The results of spectrogram analysis are shown in Fig. 6. The
enhanced signal for the white noise case does not exhibit speech
distortion, while the background noise has been attenuated. In
the train and babble noise cases, though the background noise
is suppressed, a small amount of signal distortion is also intro-
duced. This can be attributed to the use of a simple func-
tion given in (6), which is constant across frequency . Tuning
the function may improve the results for the nonwhite
noise cases and will be investigated in the future.

We have also conducted informal listening experiments
where the listeners were provided with the clean signal, the
noisy signal, and the enhanced signal. For the white noise
case in particular, we found the residual noise present in the
enhanced speech to be nondistracting and easy to ignore.

In this letter, we give indicative performance of the proposed
method against two popular speech enhancement techniques,
namely, the spectral subtraction [1] and minimum mean
squared error (MMSE) [2] methods, for the white noise case.
The mean PESQ results are shown in Table I. The proposed
method achieves results comparable to these two methods. A
more detailed comparison with other techniques reported in the
literature will be presented in future work.

V. CONCLUSION

In this letter, we presented a novel approach to speech
enhancement. In the proposed method, the noisy short-time
magnitude spectrum is recombined with a changed short-time
phase spectrum to produce a modified short-time complex
spectrum. During synthesis, the low energy components of
the modified complex spectrum cancel out more than the high
energy components, thus reducing background noise. Using an
objective speech quality measure, informal subjective listening
tests, as well as spectrogram analysis, we showed that the
proposed method results in improved speech quality.
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