
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

January 1997

Exploiting Dead Value Information Exploiting Dead Value Information

Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

Amir Roth
University of Pennsylvania, amir@cis.upenn.edu

Charles N. Fischer
University of Wisconsin, fischer@cs.wisc.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation

Milo Martin, Amir Roth, and Charles N. Fischer, "Exploiting Dead Value Information", . January 1997.

Copyright 1997 IEEE. Reprinted from Proceedings of the 30th annual ACM/IEEE international symposium on
Microarchitecture, pages 125-135.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

NOTE: At the time of publication, authors Milo M. Martin and Amir Roth were affiliated with the University of
Wisconsin. Currently (March 2007), they are faculty members in the Department of Computer and Information
Science at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/311
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/311
mailto:repository@pobox.upenn.edu

Exploiting Dead Value Information Exploiting Dead Value Information

Abstract Abstract
We describe Dead Value Information (DVI) and introduce three new optimizations which exploit it. DVI
provides assertions that certain register values are dead, meaning they will not be read before being
overwritten. The processor can use DVI to track dead registers and dynamically eliminate unnecessary
save and restore instructions from the execution stream at procedure calls and context switches. Our
results indicate that dynamic saves and restore instances can be reduced by 46% for procedure calls and
by 51% for context switches. In addition, save/restore elimination for procedure calls can improve overall
performance by up to 5%. DVI also allows the processor manage physical registers to efficiently, reducing
the size requirements of the physical register file. When the system clock rate is proportional to the
register file cycle time, this optimization can improve performance. All of these optimizations can be
supported with only a few new instructions and minimal additional hardware structures.

Comments Comments
Copyright 1997 IEEE. Reprinted from Proceedings of the 30th annual ACM/IEEE international symposium
on Microarchitecture, pages 125-135.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,
you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, authors Milo M. Martin and Amir Roth were affiliated with the University
of Wisconsin. Currently (March 2007), they are faculty members in the Department of Computer and
Information Science at the University of Pennsylvania.

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/311

https://repository.upenn.edu/cis_papers/311

Exploiting Dead Value Information

Milo M. Martin, Amir Roth, and Charles N. Fischer
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

{milo, amir, fischer}@cs.wisc.edu

Abstract

FVe describe Dead Value Information (DVI) and
introduce three new optimizations which exploit it.
DVI provides assertions that certain register values
are dead, meaning they will not be read before being
overwritten. The processor can use DVI to track dead
registers and dynamically eliminate unnecessary save
and restore instractions from the execution stream at
procedure calls and context switches. Our results indi-
cate that dynamic saves and restore instances can be
reduced by 46% for procedure calls and by 51% for con-
text switches. In addition, s.ave/restore elimination
for procedure calls can improve overall performance
by up to 5%. DVI also allows the processor man-
age physical registers to eficiently, reducing the size
requirements of the physical register file. When the
system clock rate is proportional to the register file cy-
cle time, this optimization can improve performance.
All of these optimizations can be supported with only a
few new instructions and minimal additional hardware
structures.

1 Introduction

Executables provide the processor with a static op-
erational description of the program. In producing an
executable, a compiler discovers many facts about the
control and data flow properties of the program. How-
ever, much of this information is not made explicit in
t,he executable and is left for the hardware to redis-
cover during esecution. In the dynamic instruction
sequence below, register rl is dead after 12. The value
of a dead register is not needed for continued correct
esecution, i.e. the register will not be read again be-
fore it is overwritten.

II: rl t (Definition of rl)
12: t rl (Use of z-1)

. . .
Many instructions that
do not use rl

13: ;; t (Redefinition of r1)

125
1072~445l/97 $10.00 0 1997 IEEE

The interval between instructions 12 and I3 presents
many opportunities for optimization. The storage re-
served for the value of rl can be reclaimed anywhere
in the interval with no effect on program correctness.
The register also need not be preserved across proce-
dure calls or context switches that occur in the inter-
val. Unfortunately, an ordinary processor executing
this sequence cannot determine that rl is dead until
it encounters 13, and therefore cannot take advantage
of these opportunities.

Dead Value Information (DVI) provides assertions
about future register usage in programs. By inserting a
DVI annotation after 12, declaring the value in register
rl dead, the compiler allows the processor to track this
information dynamically. In this paper we present and
evaluate three specific optimizations made possible by
this new form of compiler/processor collaboration.

l Physical Register File Reduction. Super-
scalar processors remove false dependences by
mapping architectural register names to a large
file of physical registers. Often on a processor’s
timing critical path, the physical register file must
be managed conservatively to maintain precise
program state. We demonstrate that the use of
DVI allows the processor to reclaim physical reg-
isters aggressively, allowing the register file to be
smaller and faster, potentially increasing proces-
sor clock rate.

l Dead Save/Restore Elimination in Proce-
dure Calls. The use of procedures facilitates
programming but incurs substantial save and re-
store overhead. Traditional static analysis that
attempts to minimize this overhead based on
static liveness information is inherently restricted
in scope and precision. We present a simple hard-
ware technique that uses dynamic liveness infor-
mation to minimize this overhead at runtime.

l Dead Save/Restore Elimination across
Context Switches. Multi-threaded programs

/

I

I
1

j

/

I

,

!

t

incur save and restore overhead on thread
switches. Preemptive switches, in particular, are
not amenable to static optimization. We show
that our hardware scheme is easily extended to
minimize thread switch overhead dynamically.

DVI can be calculated at compile time. We sug-
gest that current instruction set architectures (ISAs)
should be extended to enable the communication of
DVI to the processor. Using the above techniques,
DVI can improve system performance with minimal
added hardware complexity. In addition, we describe a
DVI implementation that supports our optimizations,
while incurring minimal runtime overhead.

The rest of this paper is organized as follows. Sec-
tion 2 describes sources of DVI, compiler support, and
encoding issues. Our experimental framework is de-
scribed in section 3. The next three sections moti-
vate, describe, and evaluate each of our proposed op-
timizations in detail. Section 4 describes register file
size optimizations. Section 5 deals with save/restore
elimination for procedure calls. Save/restore elimina-
tion in thread-switches is covered in section 6. We use
section 7 to address a variety of issues, most notably
the overhead of explicit DVI instructions. Section 8
presents related work. We discuss implications of our
work and conclude in section 9.

2 DVI Basics
DVI is available to the processor both explicitly and

implicitly. We now describe both forms.

Explicit DVI. In general, DVI must be explic-
itly encoded into the executable. Encoding ezpcplicit
DVI (EDVI) is done using E-DVI instructions which
are added to the ISA. An EDVI instruction explic-
itly states that a register is dead at that point in the
program. Figure 1 shows an EDVI instruction, E3,
marking the death of the callee saved register r16 af-
ter its last use. Our implementation of EDVI instruc-
tions defines a subset of the non-opcode bits as a kill
mask for a register subset, with a register dead if the
corresponding bit is set.

The information encoded in EDVI instructions is
computed using static, intra-procedural liveness anal-
ysis performed in standard compilers [7]. However, a
full compiler is not necessary to encode EDVI. Since
liveness information is computed for physical registers,
EDVI instructions can be added to an executable us-
ing a simple binary rewriting tool. This approach is
attractive since it requires neither compiler nor pro-
gram source code.

Runtime overhead added by EDVI instructions is
an important implementation consideration. Fortu-
nately, since EDVI is not required for correct execu-

126

Dynamic Instruction Stream Register(s)

main: proc: Killed

11: r16 t

12: t r8, r16

E3: kill r16 r16 (EDVI)

13: call proc r8 (I-DVI)
14: r8 t

15: e r8

16: return r8 (I-DVI)

17: r16 c

Figure 1: E-DVI and I-DVI example. In this ex-
ample r8 is caller-saved while r16 is callee-saved. rl6
is killed expcplicitly by the EDVI instruction E3. r8 is
killed implicitly by I-DVI deduced from the call (13)
and return (16).

tion, a range of EDVI is possible, from none to fre-
quent EDVI instructions. EDVI should be inserted
into a program binary only to the extent that its over-
head can be overcome by the optimizations it enables.
Our implementation inserts a single E-DVI instruc-
tion which contains a kill-mask for the callee-saved
registers before every procedure call. We found this
strategy to be effective for our optimizations ahd inex-
pensive. We discuss EDVI overhead in greater detail
in section 7.

Implicit DVI. EDVI can provide arbitrarily de-
tailed DVI, but incurs a runtime overhead. However,
using dynamic execution cues and the machine lan-
guage/ABI calling convention, the processor can infer
a DVI subset at no overhead. Standard RISC calling-
conventions define a set of caller-saved registers whose
values are dead at the entry and exit points of any pro-
cedure. A dynamic instance of a call or return instruc-
tion provides implicit DVI (I-DVI) for these registers.
In figure 1 the procedure call to proc (and correspond-
ing return) kills the caller-saved register r8. I-DVI in-
curs no runtime overhead, and requires no changes to
the executable or the ISA. However, I-DVI provides in-
formation only for the caller-saved registers. Because
I-DVI is available only at procedure calls and returns,
it is most useful when procedure call frequency is high.

3 Experimental F’ramework
In this section we describe our simulation environ-

ment, our benchmark suite, and our conventions in
reporting experimental results.

Simulation Environment. To evaluate our opti-
mizations we used the SimpleScalar tool set [2]. The
detailed out-of-order processor simulator was modified
to support MIPS RlOOOO-style register renaming [lo]

I __.- - . ,~~y---. ., .;,‘.:-qi.x.‘.::., ;i L.‘.-‘ ~d-~,:‘.;:L, .;.\ r,:,’ ..,
-,----.T- ‘. ---;-- I, --- - ,. ,‘; __ I, ,, ; , , “,

Parameter Value

Issue Width 4

Inst. Window 64

Func. Units 4 int (2 mul/div), 2 fp (1 mul/div)

Cache Ports 2 (fully independent)

Ll D-Cache 64KB, 4-way, 1 cycle latency

Ll I-Cache 64KB, 4-way, 1 cycle latency

L2 Cache 512KB, 4way, 8 cycle latency

Branch 16-bit history, BTB, 256K entry

Predictor combinational gshare/bimod

Figure 2: Machine confgxration. Machine parameters
used in our simulations. The values were chosen to be

representative of current high-performance uniprocessors

such as the MIPS RlOOOO [lo] and DEC Alpha 21264 [ll].

Dynamic Cdl Mem Saves &

Benchmark 1nst Inst Inst Restores

Figure 3: Benchmark characterization. Dynamic in-

struction count, and calls, memory references, and saves
and restores as a percentage of total dynamic instructions.

and to exploit DVI. Figure 2 presents our specific ma-
chine parameters.

Benchmark Programs. We used seven inte-
ger benchmarks from the SPEC95 benchmark suite:
compress%, go, ijpeg, li, vortex, perl, and gee.
The benchmarks were compiled using a modified ver-
sion of GNU GCC-2.6.3 at the -02 optimization level.
The standard libraries were not recompiled to include
DVI, possibly limiting our results. All benchmarks
were simulated to completion or up to 1 billion instruc-
tions (100 million for the register file optimizations re-
sults) and used the reference data inputs, except for go
(30 10 null. in) and li (test .lsp). Figure 3 pro-
vides a brief characterization of the benchmarks.

Significance of Results. For all of our evalua-
tions, the IPC figures we report are original program
instructions per cycle, a true measure of the work done
by the program. We do not count EDVI annotations
as instructions executed, considering them as cycle
overhead only. Our baseline simulations always use
binaries which do not contain EDVI annotations.

127

Dynamic Physical Fkee
Instruction Mapping Register
Stream for -rj - List

11: rl t Pl P2 P3 ..-

12: t rl Pl p2 p3 . . .
13: kill rl (implicit or explicit) (none) p2 p3 . . . pl

[Instructions that do not
use or set rl. These may
contain branches and loops]

14: rl c P2 p3 . . . pl

Figure 4: Register File Optimization Example. An
ordinary processor can only reclaim the physical register

pl (allocated for rl) when I4 commits. Using DVI allows
the processor to reclaim pl when I3 commits, allowing pl

to be used in renaming the intermediate instructions.

4 Register File Size Reduction

Access to a large, multi-ported physical register file
is an important element of the timing-critical path in
a multiple issue processor [6, 3, 81. Access time is
quadratic in the number of read and write ports and
linear in the number of registers [S]. Current register
file optimizations reduce the number of ports through
replication or pipelining. Our technique reduces the
number of registers in the file and can be used in con-
junction with other cycle time optimizations.

The physical register file must be large enough to
hold all architectural values and all renamed desti-
nations in the instruction window. The use of DVI
allows the processor to free storage containing dead
architectural values more quickly, allowing the use of
a smaller register file without restricting renaming or
limiting instructions per cycle (IPC).

The dynamic code sequence in figure 4 demon-
strates the operation of our scheme. When I1 is re-
named, a physical register (say pl) is allocated to hold
the value of rl. Even though the value in pl is not
needed after 12, an ordinary processor cannot reclaim
pl until an instruction assigning to the same archi-
tectural register commits, such as 14. As a result, pl
cannot be used in renaming the instructions between
13 and 14. The number of dynamic instructions be-
tween 13 and 14 can be arbitrarily large. Using DVI
the processor can free pl when 13 commits. Between
13 and 14 the architectural register rl is not mapped
to any physical register.

4.1 Hardware Support

To support early reclamation of physical registers,
standard register renaming hard-ware can be extended
to exploit DVI. We add a single state bit to each en-
try of the architectural-to-physical register mapping
table. The bit is set when the value in the register is
live and clear otherwise. Collectively, we refer to this

__ -- - _-_

I

set of bits as the Live Value Mask (LVM). The LVM is
updated at the decode stage by destination renaming
and instructions that provide DVI, explicitly or im-
plicitly. Since the freeing of a “dead” physical register
is an unrecoverable action, physical registers can only
be reclaimed when the corresponding DVI instruction
is known to be non-speculative.

4.2 Evaluation

Current processors are designed with sufficient reg-
isters (64-80 physical registers) such that program
IPCs are not constrained by register renaming re-
sources. Therefore our DVI enabled register file opti-
mization will not increase peak IPC. However, reduc-
ing the size of the physical register file may enable an
increased clock rate, possibly providing performance
gains. To isolate the effect of this optimization and
present our results in a more meaningful context we
assume that the physical register file cycle time is pro-
portional to the processor’s overall cycle time. We
evaluate the effectiveness of our optimization both in
terms of register file size reduction and in terms of
overall system performance (IPC x clock rate) im-
provement.

Since our optimization reduces the size of the phys-
ical register file and all benchmarks must use the same
size file, we must define a meaningful domain for mea-
suring performance. For this reason, we compute all
relevant quantities over an ‘<average workload,” which
we define as the unweighted arithmetic mean over all
benchmarks simulated to 100 million instructions.

Reduction of Register File Size. To quantify
the file size reduction directly, we measure IPC for a
range of physical register file sizes with no DVI, I-DVI
only and both I-DVI and EDVI. As figure 5 shows,
the use of I-DVI allows our benchmarks to achieve
roughly 90% of peak IPC at register file sizes only a
little larger than the minimum of 32 required to avoid
deadlock. The EDVI instructions we insert before
procedure calls have little added value, which leads us
to believe that a high density of EDVI is necessary to
provide any appreciable additional benefit.

System Performance Improvements. To com-
pute overall performance (IPC x clock rate), we use
a modified version of CACTI[13, 51 to generate a tim-
ing model for multiported register files (a 4 way issue
machine requires 8 read ports and 4 write ports) of
different sizes. System performance is then computed
by dividing the IPC curves of figure 5 by the access
time computed by the register file timing model. The
resulting curves in figure 6 show system performance
as a function of register file size. The overall system
performance improvement made possible by our opti-

Effect of Regisfer File Size on IPC with and v&houf DVI

20

- - =

4
1.0

_.+.e.-* -

1.8

3”p”-

'. ,P-*

1.7
D'

1.E
1.5
1.4

2 13
- 12

1.1
i.a

0.8

0.8

?
i

P’
i
i

- E-WI Md CDVI
.+ 0. ,.DN

-o-.-o- No DVI

0.7 6
0.6 I , , , 1 , , I (I , , , , , , I

34 33 42 46 50 54 58 62 66 70 74 73 82 BS W 84 OS

Physical Register File She

Figure 5: Average IPC as a function of register flle
size. Shows the IPC averaged over all benchmarks as a
function of the size of the integer physical register file.

Effect of Register File Sue on Performance with and wllhouf DVI
1.05

m 13-a

t

E 095

G

I?
m 0.54

-2

si
a: 0.85

0.80

P’ - E.DVl and I.DVf
i .+ 0. ,.D,,,

! -o-.-o- No DVI

i’
I I

34 38 42 46 50 54 53 62 66 70 74 73 82 88 Bo 04 00

Physical Register File Size

Figure 6: Performance as a function of register file
size. Shows the overall system performance calculated by
dividing the IPC by the register file cycle time. The data
is scaled relative to the peak performance with no DVI
(the horizontal line). The two vertical lines mark the peak
performance with DVI (50 registers) and without DVI (64
registers).

mization can be calculated as the ratio between the
peak performance values for the optimized and unop-
timized configurations. These peaks occurs at the op
timal number of registers for a design based on our as-
sumptions. When our DVI-enabled technique is used,
the size of the physical register file at peak perfor-
mance decreases from 64 to 50 registers, a 22% reduc-
tion, and overall performance improves by 1.1%.

5 Dead Save/Restore Elimination in
Procedure Calls

The only registers that need to be preserved across
a procedure call are those that are both (i) live at
the caller and (ii) used in the callee. To use these
heuristics intra-procedurally, ISAs define a calling con-
vention that divides the general purpose registers into
caller-saved and callee-saved sets. Caller-saved regis-

ters obey only criterion (i); they must be preserved by
the caller if their value is live across a call. Compilers
greedily use these registers to hold temporaries and
values that are not live across calls. Callee-saved reg-
isters consider only criterion (ii) and must be saved by
the callee if they are used by it. Compilers prefer to
hold values that are live across calls in these registers.

Figure 7(a,b) shows two calls to the same proce-
dure proc. Register r16 is live in callerl, requir-
ing the save (13) and restore (16) in proc to be exe-
cuted. However, r16 is dead in callerl, and the same
save and restore are nom unnecessary. Since proc
does not “know” mho is calling it, it must always save
and restore r16 so that it executes correctly if called
from callerl. Calling conventions and their associ-
ated heuristics are unable to handle context-sensitive
Ziveness. Nor can traditional interprocedural analy-
ses [14, 171 cope mith this problem. This difficulty
can only be overcome statically by compiling multiple
caller-specific procedure versions (clones), each con-
taining the appropriate save/restore sequence. How-
ever, cloning expands code and can have adverse ef-
fects on I-cache performance.

We propose a simple hardwarefsoftsvare technique
that overcomes these limitations without the need for
interprocedural analys’is or cloning. We use DVI to
track register value liveness along a dynamic path and
eliminate save/restore pairs of callee-saved registers at
runtime.’ Our solution, shown in figure 7(c), involves
inserting an EDVI annotation which kills r16 before
the call to proc in caller2. The LVM hardware struc-
ture keeps track of the fact that the value in r16 is
dead and dynamically eliminates the save (13) and re-
store (16) of that value. Since r16 is live at callerl,
a corresponding DVI instruction is not inserted, and
13 and 16 execute normally when proc is called along
that path.

While static techniques remove unnecessary saves
and restores from execution completely, our solution
still requires these instructions to be fetched and de-
coded. However, since dead saves and restores are not
dispatched, our method frees up bandwidth to the Ll
cache, and effectively increases commit bandlvidth and
the size of the instruction window.

5.1 Software Support

Our scheme requires two softlvare components to
enable save/restore elimination. First, saves and re-
stores must be implemented using nem store and load
variants. Live-loads and live-stores only execute if
their data registers are marked live. In figure 7 the

‘A related optimization can be used to eliminate restores of
caller-saved registers, but since it does not use DVI we do not
discuss it here.

129

save at 13 and the restore at 16 would be encoded
as a live-store and live-load. For flexibility we intro-
duce nem instructions rather than add semantics to
the callee-saved registers. Adding the new instruc-
tions allows the compiler to specify uniform behavior
for all registers, and different behavior for the same
register at different program points.

Save/restore elimination targets the callee-saved
registers. Unfortunately, I-DVI provides information
only about caller-saved registers. The second require-
ment, therefore, is that the compiler insert EDVI for
the callee-saved registers into the executable. Two ob-
servations allow us to minimize the amount of EDVI
that must be inserted. First, save/restore elimination
requires information only at call sites, bounding the
amount of overhead to a single EDVI annotation per
dynamic instruction call. Further, EDVI must be in-
serted only if a callee-saved register is both assigned
to in the procedure and dead at the call site.

5.2 Hardware Support

We present two hardware schemes for save/restore
elimination. The first scheme builds on the LVM
structure of section 4.1 and is used to eliminate saves
of &lee-saved registers. The second scheme adds a
stack to buffer LVM information from procedure en-
try points and can be used to eliminate both saves and
restores.

LVM Scheme. Elimination of saves can be per-
formed using the LVM structure introduced in section
4.1. Added decode logic detects live-store instructions
whose data register is marked dead in the LVM and
does not dispatch them. Figure 8 shows the running
code example in (a) and the operation of the LVM
scheme in (b). The kill mask in 13 sets the LVM bit to
D(ead), allowing the save instruction within the pro-
cedure to be eliminated.

LVM-Stack Scheme. We mish to eliminate a re-
store whenever its matching save has been eliminated.
For an implementation to do this, it must eliminate
restores based on the same LVM bits used to elimi-
nate the corresponding saves at the procedure entry.
The LVM itself is updated continuously as a procedure
executes and cannot be used directly for this purpose.
As shomn in figure S(b), the LVM loses track of the
live bit used to eliminate the save (13) and thus cannot
be used to eliminate the matching restore (16).

An LVM-Stack is used to overcome this limitation.
The LVM-Stack buffers an LVM “snapshot” from the
procedure entry until its exit. Restores are eliminated
based on the information at the top of the LVM-Stack,
as this is the same information used to eliminate the
matching saves. The operation of the LVM-Stack in

-_-- -
I.

. i
/

11:

12:
13:
14:
15:
16:
17:
18:

callerl: proc:
c r16

(7-16 live)
call proc

save r16
r16 t
t r16
restore r16
return

t r16

(4

11:

12:
13:

14:
15:
16:

17:
18:

caller2: proc:
t r16

(~16 dead)

call proc
save r16
r16 +
t r16
restore r16
return

r16 t

(b)

11:
E2:
12:
13:

14:
15:
16:

17:
18:

caller2: proc:
t r16
kill r16
call proc

-save-r%6
r16 t
c r16

-restor&&
return

r16 c

(4

Figure 7: Save/Restore Elimination Example. (a) shows a call to proc from caller1 where r16 is live. (b) shops

a call to proc from caller2 where r16 is dead, using a single conservatively compiled version of proc. In this cmc, 13
and 16 (in bold) are executed needlessly. (cj shows caller2 again, this time with a kill instruction inserted before the call
allowing 13 and 16 to be eliminated. The saves and restores are implemented using live-store and live-load instructions,
respectively.

11:
E2:
12:
13:
14:
15:
16:
17:
18:

callera: Droc:

t r16
kill r16

call proc
save r16

r16 c

t r16
restore r16
return

r16 t

(4

LVM
L
L
D
D
D
L
L
L
L

(b) cc.

LVM-Stack
. . stack grows -t

. . 0) push

. . D
D

: : D (2) maintain

. . D (3) eliminate

. . D (4) POP

Figure 8: LVM and LVM-Stack schemes working example. (a) shows a dynamic code sequence with a dead
save/restore pair. (b) shows the state (Live/Dead) of the r16 bit of the LVM before each instruction in the LVM schcmc.
(c) shows the same bit for the LVM and the LVM-Stack in the LVM-Stack scheme.

conjunction with the LVM is shown in figure 8(c). At
a procedure call, the current LVM is pushed onto the
LVM-Stack (1). An assignment to register r16 sets the
live bit in the LVM, but the same bit at the top of the
LVM-Stack is unchanged (2). The restore can now be
eliminated using the LVM-Stack bit (3). Finally, at
the return, the LVM-Stack is popped and its contents
copied back into the LVM (4).

Implementations of hardware stack mechanisms are
well-understood. We simulate a small circular buffer
which wraps around on overflow and assumes an
empty stack on underflow. Our simulations use a 16-
entry LVM-Stack. Our studies show that a 16-entry
mechanism captures nearly 100% of the benefit of an
unbounded size structure on all benchmarks except for
li where 94% of the benefit is achieved.

5.3 Evaluation

We begin our evaluation of save/restore elimina-
tion by directly measuring its effectiveness in eliminat-

130

ing save and restore instructions. Next, we evaluate
its impact on IPC. Finally, we perform a sensitivity
analysis to measure its interaction with relevant mi-
croarchitectural parameters.

Dynamic Saves and Restores Eliminated.
The fraction of saves and restores eliminated is a prop-
erty of the program and the amount of available DVI.
It is independent of the processor configuration. Fig-
ure 9 shows dynamic saves and restores eliminated as a
percentage of total dynamic callee saves and restores,
total memory references, and total instructions. We
present our results for the six benchmarks that exhibit
significant save and restore activity. The LVM-Stack
scheme, which handles both saves and restores, elim-
inated 46.5% of all dynamic save and restore instruc-
tions, 11.1% of all memory references, and 4.8% of
all instructions, respectively. The numbers are most
striking for perl, in which 74.6% of callee saves and
restores and 7.2% of total instructions need not be exe-

Dynamic Memory References Eliminated

m Dead saves only

fj Dead saves and restores

Dynamic Instructions Eliminated

Ii ijpeg gee pert vortex go Ii ijpeg gee pert vortex go

Figure 9: Dynamic Saves and Restores Eliminated. Shown as a percentage of (a) total saves and restores, (b) total
memory references and (c) total instructions. We show the instructions eliminated using both the LVM scheme, which
eliminates saves only, and the LVM-Stack scheme which eliminates both saves and restores.

6
IPC Speedups

1 4 Dead saves only

5 Dead saves and restores 4~

4

E
e 3

$
2

1

0

1.59 2.21 1.h
Ii ijpeg w per1 vortex go

Figure 10: IPC Speedups. Shows the IPC speedups for
both the LVM and LVM-Stack schemes. The base IPC is
given at the base of each pair of bars.

cuted. The LVM scheme, which eliminates only saves,
provides half the benefit. These numbers illustrate
the inefficiencies associated with calling conventions
and in&a-procedural static techniques.

IPC Speedups. We now examine how effective
removal of dead saves and restores translates into IPC
improvements. Figure 10 shows for each benchmark
the IPC gains achieved by eliminating saves only using
the LVM scheme, and by eliminating both saves and
restores using the LVM-Stack scheme.

We espect IPC gains to be proportional to the per-
centage of total instructions eliminated for each bench-
mark, but diminished by the fact that the total num-
ber of instructions fetched and decoded is not reduced.
Our results support this intuition. gee, perl, and li
see the greatest reduction in instructions executed and
the greatest increase in IPC, with per1 leading the

way at 4.8%. In addition, we expect a high degree of
correlation between IPC speedups and the percentage
of total memory references eliminated, since one im-
portant effect of save/restore elimination is reducing
cache bandwidth requirements. Again, the same three
benchmarks support our intuition, with per1 trans-
lating a 15.3% reduction in memory references into a
4.8% IPC increase. The fact that save elimination ac-
counts for more than half of the IPC benefit is due to
the diminishing ability to exploit the extra bandwidth
afforded by restore elimination.

Sensitivity Analysis. By definition, the memory
references removed by save/restore elimination have
no true data dependences. The primary benefit of
this optimization, therefore, is in reducing data band-
width requirements. Consequently, we expect the IPC
gains to be sensitive to the relationship between re-
quirements of the program and the data bandwidth
supplied by the processor.

I

Increasing the number of cache ports is an effective
may of providing high data bandwidth. Multiple cache
ports can be implemented through replication or bank-
ing. The former is free of bank contention and provides
more bandwidth while the latter requires significantly
fewer implementation resources. For most programs
a banked implementation can realistically achieve the
performance of 3 perfect cache ports [HI. As our sim-
ulations model a replicated (perfect) cache, we expect
our performance improvements to be more significant
on a more realistic, lower bandwidth banked configu-
ration. While adding cache ports increases the avail-
able bandwidth, increasing the issue width increases
cache bandwidth requirements. Figure 11 shows the
performance of two benchmarks for different cache
port/issue width configurations. As expected, the rel-
ative effectiveness of save/restore elimination increases

I

131 /

--. -__ I -- -__---

Data Bandwidth Sensitivity

n 1 Port

[I 2Ports

0 3 Ports

4way

!w

8way 4way

w ibe9
8way

kw

Figure 11: Cache Bandwidth Sensitivity Analy-

sis. Sensitivity of save/restore elimination optimization
to number of cache ports and issue width.

as the number of cache ports decreases. Increasing
the issue width produces two opposing effects: an in-
crease in commit bandwidth reduces the effectiveness
of save/restore elimination, while an increase in data
bandwidth required makes it more effective. In gen-
eral, for configurations at which a program is bound
by data cache bandwidth, this optimization provides
a significant benefit.

Our studies show that the effectiveness of dead
save/restore elimination is insensitive to other related
microarchitectural parameters including the size of in-
struction window and reorder buffer.

6 Dead Save/Restore Elimination
Across Context Switches

Process and thread switches normally require that
the architectural processor state, including the values
of all architectural registers, be preserved. While the
cost of saving and restoring this state is not signif-
icant for context switches [15], it dominates thread
switch overhead especially for fine-grained threaded
code [l, 91. Non-preemptive switches are implemented
using a procedure call interface allowing the compiler
to generate specialized save and restore code at these
well-defined switch points based on static liveness in-
formation [9]. Preemptive switches are not amenable
to such static analysis or optimization and must con-
servatively save and restore all registers.

We propose that DVI be used in multi-threaded
programs to optimize saves and restores dynamically.
Unlike previously proposed solutions, our solution
does not require whole program analysis or procedure
cloning and handles preemptive switches.

Reduction of Dynamic Saves and Restores
for Context Switches a0

70

60

E
50

$
$

40

a

30

20

10

0 1

n m/I
q E.DVI and I.DVI

44 38 31

nl

45

38

L
ijpeg gee per1 vortexcomp go

Figure 12: Context Switch Saves and Restores Elim-
inated. Shows the percentage of saves and restores that can
be eliminated dynamically at context switch time (per bench-
mark).

6.1 Software and Hardware Support
The LVM scheme presented in section 5.2 can

be used to support save elimination across context
switches. The only requirement is that the software
routine performing the thread switch must implement
saves and restores using live-load and live-store in-
structions described in section 5.1.

As we saw earlier, eliminating a dead save requires
only dynamic information about the liveness of the
data value being saved. Eliminating a dead restore,
however, requires that we locate the matching save
and consult its liveness status. The same holds for
restore elimination across thread switches. Since pro-
cedure calls and returns follow a stack pattern and are
hardware-managed, a hardware stack can be used to
eliminate restores. Thread blocks and resumes are ar-
bitrarily ordered and managed by software, requiring
a general-purpose software mechanism to implement
restore elimination. The basis of a simple solution
requires a pair of instructions which would allow the
LVM to be saved to and loaded from the thread or pro-
cess control block. An LVM-save instruction would be
issued before a context switch, and an LVM-load in-
struction should be issued before all register restores
when returning to the context.

6.2 Evaluation
We report the performance improvement achieved

in terms of the percentage reduction in the average
number of integer register saves and restores executed
at context switches. The number of registers saved
and restored is computed by generating a histogram
of the number of live architectural registers and cal-
culating the average number of registers holding live
values during execution.

Dyn. Static Instructions per Cycle
Inst. Code Cway set associative

Bench Count Size 32K I-cache] 64K I-cache

Figure 13: EDVI Overhead. Shows the percentage
overhead (per benchmark) in dynamic instructions fetched
and static code size, and the corresponding overheads in
IPC for two cache configurations. A negative overhead
signifies an IPC increase.

The results are summarized in figure 12. For these
benchmarks, the average number of integer saves and
restores esecuted across context switches decreased by
51% when EDVI instructions were inserted before
procedure calls. Using I-DVI only, we were able to
achieve a 42% reduction. This is a significant savings
and should easily offset the added overhead of saving
and restoring the LVM. In addition, floating point reg-
isters are often dead in integer codes and thus most of
the saves and restores of floating point registers can
be eliminated.

7 Implementation Issues
We now address several DVI implementation con-

cerns mentioned in previous sections.

E-DVI overhead. EDVI overhead can be sepa-
rated into two effects. Primarily, EDVI increases the
number of dynamic instructions that must be fetched
and decoded. The second effect arises due to an in-
crease in static code size, decreasing the effective ca-
pacity of the instruction cache. We quantify these ef-
fects and their impact on IPC. To do so, me compare
the IPC values for executables with and without E
DVI in the absence of our DVI-enabled optimizations.
Intuitively, IPC overhead should be proportional to
and smaller than the percentage overhead in dynamic
instruction count, since E-DVI annotations are effec-
tively no-ops.

As figure 13 shows, EDVI overhead (or impact) is
negligible and is due primarily to an increase in dy-
namic instruction count. Small increases in code size
perturb I-cache alignment and instruction fetch, pro-
ducing only slight fluctuations in performance. This
result underscores the fact. that EDVI overhead is not
a fundamental problem. E-DVI instructions do not
introduce false dependences or consume functional or
renaming resources. While they do increase the num-

ber of instructions that must be fetched, they do not
increase the number of branches. A sufficiently large
I-cache and fetch queue can absorb most of this cost.

Meaning of precise program state. Our regis-
ter file optimizations rely on creating situations where
certain architectural register names are not bound to
values. What is the meaning of precise program state
in this scenario? By definition, the meaning of any
dead value is irrelevant to the remaining execution of
the program. In that sense, any value assigned to an
unbound architectural name results in correct execu-
tion.

Hardware and ABI interactions. In order to
deduce I-DVI from call and return instructions the
processor must know which registers are caller-saved,
a set defined by the ABI calling convention. To avoid
ABI dependence, I-DVI should be inferred for those
registers set in an ABI supplied mask. A clear mask
indicates that no I-DVI should be inferred, and can be
used in debugging.

Effect of DVI on program correctness. Al-
though DVI is not required for the correct execution
of the program, it has a definite (and often unrecov-
erable) effect on processor state. Incorrect EDVI will
almost certainly lead to incorrect execution; the com-
piler is held responsible to provide only correct EDVI.
Errors in EDVI should be considered compiler errors.

Speculative updates of hardware structures.
LVM and LVM-Stack updates occur at decode time
and are often speculative. To ensure correct execu-
tion in the event of mis-speculation, these structures
can be checkpointed and recovered by the same mech-
anism which supports such actions for the mapping
table. This same mechanism can keep track of re-
claimed physical registers, conserving space in the re-
order buffer.

Non-standard call-return sequences and con-
text switches. Exceptions, non-standard call-return
sequences (i.e. longjmpO), and even context-switches
disrupt the function of the LVM and LVM-Stack mech-
anisms. A simple strategy to handle this class of
events would be to flush these structures and safely
assume that all registers are live. Alternatively, sup-
port could be added to save and restore the contents
of the LVM (as is already required for our restore elim-
ination across thread switches) and the LVM-Stack.

8 Related Work

The idea of using DVI for register file optimiza-
tions is not new. Sohi and Franklin [S] study register
instance lifetimes and describe horn compiler support

133

can be used to minimize these lifetimes and reduce
traffic. Lozano and Gao [3] use DVI to reduce write-
back traffic between the reorder buffer and the physi-
cal register file. More recently, the Multiscalar [16] ar-
chitecture uses summary masks to streamline register
communication. These techniques try to reduce the
number of datapaths to the register file. Our method
reduces the size of the physical register file.

The VAX [4] uses compiler-supplied masks to en-
code saves and restores in the callee based on intra-
procedural use information. Huguet and Lang [12]
extend this mechanism to eliminate some of these
encoded saves and restores in hardware dynamically.
In their solution, called Policy-G, register values are
saved when they are overwritten by the calIee and re-
stored on a demand basis in the caller. This strategy is
based on dynamic register use rather than on compiler
communicated, hardware-tracked liveness. Policy-G
can effectively eliminate restores in a flow-sensitive
manner which our technique cannot handle, but does
not eliminate saves based on liveness. In addition,
Policy-G requires a large amount of critical path hard-
ware, and more involved changes to existing instruc-
tion sets.

Kurlander and Fischer [14] use interprocedural
analysis and profile information to produce a stati-
cally optima1 interprocedura1 spihing strategy. Their
technique attacks all registers, but does not consider
path information and must therefore produce con-
servative save/restore code. Our soIution deaIs with
callee-saved registers only, but dynamically stream-
lines save/restore code using runtime information
without the need for interprocedural analysis. Kur-
lander and Fischer report an average 5% reduction
in execution time on an inorder machine. Our 4.8%
average reduction in dynamic instruction count is a
comparable result.

Grunwald and Neves [9] use interprocedural anal-
ysis to determine the live registers at each non-
preemptive thread-switch call site and compile custom
save-restore code for each call. Their solution requires
cloning and does not handle preemptive switches. Our
method, on the other hand, does not require cloning
or interprocedural analysis and easily handles preemp-
tive switches.

9 Conclusions
We make the following contributions in this paper:

l We describe the concept of Dead Value Informa-
tion (DVI). We introduce minimal ISA extensions
that can encode DVI efficiently. We also observe
that implicit DVI is inherent in programs due to
the ISA calling conventions.

l We describe a technique that uses DVI to reduce
the size requirements of the physical register file
by efficientIy reclaiming physical registers which
contain dead values. We show that decreasing
register file size potentially increases system clock
speed, and improves overal performance.

l We show that a simple hardware mechanism can
be used to track DVI and eliminate saves and re-
stores to callee-saved registers dynamically. We
demonstrate that our software/hardware tech-
nique handles situations not handled by software
alone, and dynamically eliminates 46% of static
save/restore code. On some benchmarks, our
method achieves IPC improvements of nearly 5%.

l Using the same hardware scheme, we show that
save/restore elimination can be extended to han-
dle both non-preemptive and preemptive context
switches. Our results show an average reduction
of 51% in the number of integer saves and re-
stores.

l Moreover, we demonstrate that our optimizations
rely on well-known compiler techniques and only
minor ISA and hardware modifications.

Our work on save/restore elimination concentrates
on performance improvements in the context of cur-
rent calling conventions and the standard strategies
for register allocation, scheduling, etc. Our proposed
ISA extensions and hardware mechanisms give se-
lected registers the desirable property of only being
saved when required based on dynamic path informa-
tion. The implications for register allocation, the use
of calling-conventions, and future ISA design need to
be explored.

Our current implementation places EDVI instruc-
tions before procedure calls. While this encoding ef-
fectively supports save/restore elimination across pro-
cedure calls, it is most likely insufficient for other opti-
mizations, especially in programs with few procedures.
Further study is required to assess the benefit versus
cost of other encoding strategies. Interesting design
points include placing EDVI instructions at the be-
ginning and/or end of loop bodies or entire loops.

Object oriented languages such as C++ and Java
are gaining wide acceptance. These languages contain
features such as dynamic binding and linking which
make whole-program analysis and optimization nearly
impossible, and a rise in procedure call frequency in-
evitable. Save/restore elimination will become even
more effective in these execution models. Java is es-
pecially amenable to DVI-based optimization due to
its support of threads.

134

Acknowledgments
This work was supported in part by NSF Grants

CCR-9505922, CCR-9509589, and MIP-9505853, by
the U. S. Army Intelligence Center and Fort Huachuca
under Contract DABT63-95-C-0217 and DARPA or-
der D346, and by donations from Intel. Milo Martin is
supported by an IBM Graduate Fellowship. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either
expressed or implied, of the U. S. Army Intelligence
Center and Fort Huachuca, or the U.S. Government.

The authors would like to thank Jim Goodman,
Guri Sohi, Doug Burger, Stefanos Kaxiras, Subbarao
Palacharla, Manoj Plakal, Andreas Moshovos and
Scott Breach for their comments on early revisions of
this paper, and the anonymous referees for their sug-
gestions. We thank Norm Jouppi and Keith Farkas
for assistance with the register file timing model.

References
[l] T. E. Anderson, H. M. Levy, B. N. Bershad, and

E. D. Lazowska. The interaction of architecture
and operating system design. In Proceedings of
the 4th International Conference on Architectural
Support for Programming Languages and Operat-
ing System, irolume 26, pages 108-121, April 1991.

[2] Doug Burger and Todd M. Austin. The sim-
plescalar tool set, version 2.0. Technical Report
1342, Computer Sciences Department, University
of Wisconsin, Madison, WI, June 1997.

[3] Luis A. Lozano C. and Guang R. Gao. Exploit-
ing short-lived variables in superscalar processors.
In Proceedings of the 28th Annual International
Symposium on Microarchitecture, pages 292-302,
November 29-December 1, 1995.

[4] Digital Equipment Corporation. VAX-11 Archi-
tecture Reference Manual, 1982.

[5] Keith I. Farkas. Memory-System Design Consider-
ations for Dynamically-Scheduled Microprocessors.
PhD thesis, University of Toronto, 1997.

[S] Keith I. Farkas, Norman P. Jouppi, and Paul
Chow. Register file design considerations in dy-
namically scheduled processors. In Proceedings of
the Second International Symposium on High Per-
formance Computer Architecture, January 1996.

[7] Charles N. Fischer and Richard J. LeBlanc Jr.
Crafting a Compiler with C. Benjamin/Cummings
Publishing Co., 1991.

[8] Manoj Franklin and Gurindar S. Sohi. Regis-
ter traffic analysis for streamlining inter-operation
communication in fine-grain parallel processors. In
Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, pages 236-245, De-
cember 1-4, 1992.

135

[9] Dirk Grumvald and Richard Neves. Whole-

program optimization for time and space efficient
threads. In Seventh International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 50-59, l-5 October
1996.

[lo] Linley Gwennap. Mips RlOOOO uses decoupled
architecture. MicroProcessor Report, pages 18-22,
October 24 1994.

[ll] Linley Gwennap. Digital 21264 sets new Stan-
dard. MicroProcessor Report, pages 11-16, Octo-
ber 28 1996.

[12] M. Huguet and T. Lang. Architectural sup-
port for reduced register saving/restoring in single-
window register files. ACM Transactions on Com-
puter Systems, 9(1):66-97, February 1991.

[13] Norman P. Jouppi and Steven J.E. Wilton. An
enhanced access and cycle time model for on-chip
caches. Technical Report 93.5, DEC Western Re-
search Laboratory, July 1994.

[14] Steven M. Kurlander and Charles N. Fischer.
Minimum cost interprocedural register allocation.
In The 23rd Symposium on Principles of Program-
ming Languages, January 1996.

[15] Jeffrey C. Mogul and Anita Borg. The effect of
context switches on cache performance. In Proceed-
ings of the 4th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 75-84, April 1991.

[16] G. S. Sohi, S. Breach, and T. N. Vijaykumar.
Multiscalar architectures. In The 22nd Inter-
national Symposium on Computer Architecture,
1995.

[17] David W. Wall. Global register allocation at link
time. Research Report 17, Digital Western Re-
search Laboratory, September 1989.

[18] Kenneth Wilson and Kunle Olukotun. Design-
ing high-bandwidth on-chip caches. In Proceedings
of the 24th Annual International Symposium on
Computer Architecture, June 2-4 1997.

--

	Exploiting Dead Value Information
	Recommended Citation

	Exploiting Dead Value Information
	Abstract
	Comments

	tmp.1173382471.pdf.3u4Ny

