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Abstract 

FVe describe Dead Value Information (DVI) and 
introduce three new optimizations which exploit it. 
DVI provides assertions that certain register values 
are dead, meaning they will not be read before being 
overwritten. The processor can use DVI to track dead 
registers and dynamically eliminate unnecessary save 
and restore instractions from the execution stream at 
procedure calls and context switches. Our results indi- 
cate that dynamic saves and restore instances can be 
reduced by 46% for procedure calls and by 51% for con- 
text switches. In addition, s.ave/restore elimination 
for procedure calls can improve overall performance 
by up to 5%. DVI also allows the processor man- 
age physical registers to eficiently, reducing the size 
requirements of the physical register file. When the 
system clock rate is proportional to the register file cy- 
cle time, this optimization can improve performance. 
All of these optimizations can be supported with only a 
few new instructions and minimal additional hardware 
structures. 

1 Introduction 

Executables provide the processor with a static op- 
erational description of the program. In producing an 
executable, a compiler discovers many facts about the 
control and data flow properties of the program. How- 
ever, much of this information is not made explicit in 
t,he executable and is left for the hardware to redis- 
cover during esecution. In the dynamic instruction 
sequence below, register rl is dead after 12. The value 
of a dead register is not needed for continued correct 
esecution, i.e. the register will not be read again be- 
fore it is overwritten. 

II: rl t (Definition of rl) 
12: t rl (Use of z-1) 

. . . 
Many instructions that 
do not use rl 

13: ;; t (Redefinition of r1) 
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The interval between instructions 12 and I3 presents 
many opportunities for optimization. The storage re- 
served for the value of rl can be reclaimed anywhere 
in the interval with no effect on program correctness. 
The register also need not be preserved across proce- 
dure calls or context switches that occur in the inter- 
val. Unfortunately, an ordinary processor executing 
this sequence cannot determine that rl is dead until 
it encounters 13, and therefore cannot take advantage 
of these opportunities. 

Dead Value Information (DVI) provides assertions 
about future register usage in programs. By inserting a 
DVI annotation after 12, declaring the value in register 
rl dead, the compiler allows the processor to track this 
information dynamically. In this paper we present and 
evaluate three specific optimizations made possible by 
this new form of compiler/processor collaboration. 

l Physical Register File Reduction. Super- 
scalar processors remove false dependences by 
mapping architectural register names to a large 
file of physical registers. Often on a processor’s 
timing critical path, the physical register file must 
be managed conservatively to maintain precise 
program state. We demonstrate that the use of 
DVI allows the processor to reclaim physical reg- 
isters aggressively, allowing the register file to be 
smaller and faster, potentially increasing proces- 
sor clock rate. 

l Dead Save/Restore Elimination in Proce- 
dure Calls. The use of procedures facilitates 
programming but incurs substantial save and re- 
store overhead. Traditional static analysis that 
attempts to minimize this overhead based on 
static liveness information is inherently restricted 
in scope and precision. We present a simple hard- 
ware technique that uses dynamic liveness infor- 
mation to minimize this overhead at runtime. 

l Dead Save/Restore Elimination across 
Context Switches. Multi-threaded programs 
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incur save and restore overhead on thread 
switches. Preemptive switches, in particular, are 
not amenable to static optimization. We show 
that our hardware scheme is easily extended to 
minimize thread switch overhead dynamically. 

DVI can be calculated at compile time. We sug- 
gest that current instruction set architectures (ISAs) 
should be extended to enable the communication of 
DVI to the processor. Using the above techniques, 
DVI can improve system performance with minimal 
added hardware complexity. In addition, we describe a 
DVI implementation that supports our optimizations, 
while incurring minimal runtime overhead. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes sources of DVI, compiler support, and 
encoding issues. Our experimental framework is de- 
scribed in section 3. The next three sections moti- 
vate, describe, and evaluate each of our proposed op- 
timizations in detail. Section 4 describes register file 
size optimizations. Section 5 deals with save/restore 
elimination for procedure calls. Save/restore elimina- 
tion in thread-switches is covered in section 6. We use 
section 7 to address a variety of issues, most notably 
the overhead of explicit DVI instructions. Section 8 
presents related work. We discuss implications of our 
work and conclude in section 9. 

2 DVI Basics 
DVI is available to the processor both explicitly and 

implicitly. We now describe both forms. 

Explicit DVI. In general, DVI must be explic- 
itly encoded into the executable. Encoding ezpcplicit 
DVI (EDVI) is done using E-DVI instructions which 
are added to the ISA. An EDVI instruction explic- 
itly states that a register is dead at that point in the 
program. Figure 1 shows an EDVI instruction, E3, 
marking the death of the callee saved register r16 af- 
ter its last use. Our implementation of EDVI instruc- 
tions defines a subset of the non-opcode bits as a kill 
mask for a register subset, with a register dead if the 
corresponding bit is set. 

The information encoded in EDVI instructions is 
computed using static, intra-procedural liveness anal- 
ysis performed in standard compilers [7]. However, a 
full compiler is not necessary to encode EDVI. Since 
liveness information is computed for physical registers, 
EDVI instructions can be added to an executable us- 
ing a simple binary rewriting tool. This approach is 
attractive since it requires neither compiler nor pro- 
gram source code. 

Runtime overhead added by EDVI instructions is 
an important implementation consideration. Fortu- 
nately, since EDVI is not required for correct execu- 
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Dynamic Instruction Stream Register(s) 

main: proc: Killed 

11: r16 t 

12: t r8, r16 

E3: kill r16 r16 (EDVI) 

13: call proc r8 (I-DVI) 
14: r8 t 

15: e r8 

16: return r8 (I-DVI) 

17: r16 c 

Figure 1: E-DVI and I-DVI example. In this ex- 
ample r8 is caller-saved while r16 is callee-saved. rl6 
is killed expcplicitly by the EDVI instruction E3. r8 is 
killed implicitly by I-DVI deduced from the call (13) 
and return (16). 

tion, a range of EDVI is possible, from none to fre- 
quent EDVI instructions. EDVI should be inserted 
into a program binary only to the extent that its over- 
head can be overcome by the optimizations it enables. 
Our implementation inserts a single E-DVI instruc- 
tion which contains a kill-mask for the callee-saved 
registers before every procedure call. We found this 
strategy to be effective for our optimizations ahd inex- 
pensive. We discuss EDVI overhead in greater detail 
in section 7. 

Implicit DVI. EDVI can provide arbitrarily de- 
tailed DVI, but incurs a runtime overhead. However, 
using dynamic execution cues and the machine lan- 
guage/ABI calling convention, the processor can infer 
a DVI subset at no overhead. Standard RISC calling- 
conventions define a set of caller-saved registers whose 
values are dead at the entry and exit points of any pro- 
cedure. A dynamic instance of a call or return instruc- 
tion provides implicit DVI (I-DVI) for these registers. 
In figure 1 the procedure call to proc (and correspond- 
ing return) kills the caller-saved register r8. I-DVI in- 
curs no runtime overhead, and requires no changes to 
the executable or the ISA. However, I-DVI provides in- 
formation only for the caller-saved registers. Because 
I-DVI is available only at procedure calls and returns, 
it is most useful when procedure call frequency is high. 

3 Experimental F’ramework 
In this section we describe our simulation environ- 

ment, our benchmark suite, and our conventions in 
reporting experimental results. 

Simulation Environment. To evaluate our opti- 
mizations we used the SimpleScalar tool set [2]. The 
detailed out-of-order processor simulator was modified 
to support MIPS RlOOOO-style register renaming [lo] 

I __.- - . ,~~y---. ., .;,‘.:-qi.x.‘.::., ;i L.‘.-‘ ~d-~,:‘.;:L, .;.\ r,:,’ .., 
-,----.T- ‘. ---;-- I, --- - ,. ,‘; __ I, ,, ; , , “, 



Parameter Value 

Issue Width 4 

Inst. Window 64 

Func. Units 4 int (2 mul/div), 2 fp (1 mul/div) 

Cache Ports 2 (fully independent) 

Ll D-Cache 64KB, 4-way, 1 cycle latency 

Ll I-Cache 64KB, 4-way, 1 cycle latency 

L2 Cache 512KB, 4way, 8 cycle latency 

Branch 16-bit history, BTB, 256K entry 

Predictor combinational gshare/bimod 

Figure 2: Machine confgxration. Machine parameters 
used in our simulations. The values were chosen to be 

representative of current high-performance uniprocessors 

such as the MIPS RlOOOO [lo] and DEC Alpha 21264 [ll]. 

Dynamic Cdl Mem Saves & 

Benchmark 1nst Inst Inst Restores 

Figure 3: Benchmark characterization. Dynamic in- 

struction count, and calls, memory references, and saves 
and restores as a percentage of total dynamic instructions. 

and to exploit DVI. Figure 2 presents our specific ma- 
chine parameters. 

Benchmark Programs. We used seven inte- 
ger benchmarks from the SPEC95 benchmark suite: 
compress%, go, ijpeg, li, vortex, perl, and gee. 
The benchmarks were compiled using a modified ver- 
sion of GNU GCC-2.6.3 at the -02 optimization level. 
The standard libraries were not recompiled to include 
DVI, possibly limiting our results. All benchmarks 
were simulated to completion or up to 1 billion instruc- 
tions (100 million for the register file optimizations re- 
sults) and used the reference data inputs, except for go 
(30 10 null. in) and li (test .lsp). Figure 3 pro- 
vides a brief characterization of the benchmarks. 

Significance of Results. For all of our evalua- 
tions, the IPC figures we report are original program 
instructions per cycle, a true measure of the work done 
by the program. We do not count EDVI annotations 
as instructions executed, considering them as cycle 
overhead only. Our baseline simulations always use 
binaries which do not contain EDVI annotations. 
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Dynamic Physical Fkee 
Instruction Mapping Register 
Stream for -rj - List 

11: rl t Pl P2 P3 ..- 

12: t rl Pl p2 p3 . . . 
13: kill rl (implicit or explicit) (none) p2 p3 . . . pl 

[Instructions that do not 
use or set rl. These may 
contain branches and loops] 

14: rl c P2 p3 . . . pl 

Figure 4: Register File Optimization Example. An 
ordinary processor can only reclaim the physical register 

pl (allocated for rl) when I4 commits. Using DVI allows 
the processor to reclaim pl when I3 commits, allowing pl 

to be used in renaming the intermediate instructions. 

4 Register File Size Reduction 

Access to a large, multi-ported physical register file 
is an important element of the timing-critical path in 
a multiple issue processor [6, 3, 81. Access time is 
quadratic in the number of read and write ports and 
linear in the number of registers [S]. Current register 
file optimizations reduce the number of ports through 
replication or pipelining. Our technique reduces the 
number of registers in the file and can be used in con- 
junction with other cycle time optimizations. 

The physical register file must be large enough to 
hold all architectural values and all renamed desti- 
nations in the instruction window. The use of DVI 
allows the processor to free storage containing dead 
architectural values more quickly, allowing the use of 
a smaller register file without restricting renaming or 
limiting instructions per cycle (IPC). 

The dynamic code sequence in figure 4 demon- 
strates the operation of our scheme. When I1 is re- 
named, a physical register (say pl) is allocated to hold 
the value of rl. Even though the value in pl is not 
needed after 12, an ordinary processor cannot reclaim 
pl until an instruction assigning to the same archi- 
tectural register commits, such as 14. As a result, pl 
cannot be used in renaming the instructions between 
13 and 14. The number of dynamic instructions be- 
tween 13 and 14 can be arbitrarily large. Using DVI 
the processor can free pl when 13 commits. Between 
13 and 14 the architectural register rl is not mapped 
to any physical register. 

4.1 Hardware Support 

To support early reclamation of physical registers, 
standard register renaming hard-ware can be extended 
to exploit DVI. We add a single state bit to each en- 
try of the architectural-to-physical register mapping 
table. The bit is set when the value in the register is 
live and clear otherwise. Collectively, we refer to this 

__ -- - _-_ 
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set of bits as the Live Value Mask (LVM). The LVM is 
updated at the decode stage by destination renaming 
and instructions that provide DVI, explicitly or im- 
plicitly. Since the freeing of a “dead” physical register 
is an unrecoverable action, physical registers can only 
be reclaimed when the corresponding DVI instruction 
is known to be non-speculative. 

4.2 Evaluation 

Current processors are designed with sufficient reg- 
isters (64-80 physical registers) such that program 
IPCs are not constrained by register renaming re- 
sources. Therefore our DVI enabled register file opti- 
mization will not increase peak IPC. However, reduc- 
ing the size of the physical register file may enable an 
increased clock rate, possibly providing performance 
gains. To isolate the effect of this optimization and 
present our results in a more meaningful context we 
assume that the physical register file cycle time is pro- 
portional to the processor’s overall cycle time. We 
evaluate the effectiveness of our optimization both in 
terms of register file size reduction and in terms of 
overall system performance (IPC x clock rate) im- 
provement. 

Since our optimization reduces the size of the phys- 
ical register file and all benchmarks must use the same 
size file, we must define a meaningful domain for mea- 
suring performance. For this reason, we compute all 
relevant quantities over an ‘<average workload,” which 
we define as the unweighted arithmetic mean over all 
benchmarks simulated to 100 million instructions. 

Reduction of Register File Size. To quantify 
the file size reduction directly, we measure IPC for a 
range of physical register file sizes with no DVI, I-DVI 
only and both I-DVI and EDVI. As figure 5 shows, 
the use of I-DVI allows our benchmarks to achieve 
roughly 90% of peak IPC at register file sizes only a 
little larger than the minimum of 32 required to avoid 
deadlock. The EDVI instructions we insert before 
procedure calls have little added value, which leads us 
to believe that a high density of EDVI is necessary to 
provide any appreciable additional benefit. 

System Performance Improvements. To com- 
pute overall performance (IPC x clock rate), we use 
a modified version of CACTI[13, 51 to generate a tim- 
ing model for multiported register files (a 4 way issue 
machine requires 8 read ports and 4 write ports) of 
different sizes. System performance is then computed 
by dividing the IPC curves of figure 5 by the access 
time computed by the register file timing model. The 
resulting curves in figure 6 show system performance 
as a function of register file size. The overall system 
performance improvement made possible by our opti- 

Effect of Regisfer File Size on IPC with and v&houf DVI 
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Figure 5: Average IPC as a function of register flle 
size. Shows the IPC averaged over all benchmarks as a 
function of the size of the integer physical register file. 
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Figure 6: Performance as a function of register file 
size. Shows the overall system performance calculated by 
dividing the IPC by the register file cycle time. The data 
is scaled relative to the peak performance with no DVI 
(the horizontal line). The two vertical lines mark the peak 
performance with DVI (50 registers) and without DVI (64 
registers). 

mization can be calculated as the ratio between the 
peak performance values for the optimized and unop- 
timized configurations. These peaks occurs at the op 
timal number of registers for a design based on our as- 
sumptions. When our DVI-enabled technique is used, 
the size of the physical register file at peak perfor- 
mance decreases from 64 to 50 registers, a 22% reduc- 
tion, and overall performance improves by 1.1%. 

5 Dead Save/Restore Elimination in 
Procedure Calls 

The only registers that need to be preserved across 
a procedure call are those that are both (i) live at 
the caller and (ii) used in the callee. To use these 
heuristics intra-procedurally, ISAs define a calling con- 
vention that divides the general purpose registers into 
caller-saved and callee-saved sets. Caller-saved regis- 



ters obey only criterion (i); they must be preserved by 
the caller if their value is live across a call. Compilers 
greedily use these registers to hold temporaries and 
values that are not live across calls. Callee-saved reg- 
isters consider only criterion (ii) and must be saved by 
the callee if they are used by it. Compilers prefer to 
hold values that are live across calls in these registers. 

Figure 7(a,b) shows two calls to the same proce- 
dure proc. Register r16 is live in callerl, requir- 
ing the save (13) and restore (16) in proc to be exe- 
cuted. However, r16 is dead in callerl, and the same 
save and restore are nom unnecessary. Since proc 
does not “know” mho is calling it, it must always save 
and restore r16 so that it executes correctly if called 
from callerl. Calling conventions and their associ- 
ated heuristics are unable to handle context-sensitive 
Ziveness. Nor can traditional interprocedural analy- 
ses [14, 171 cope mith this problem. This difficulty 
can only be overcome statically by compiling multiple 
caller-specific procedure versions (clones), each con- 
taining the appropriate save/restore sequence. How- 
ever, cloning expands code and can have adverse ef- 
fects on I-cache performance. 

We propose a simple hardwarefsoftsvare technique 
that overcomes these limitations without the need for 
interprocedural analys’is or cloning. We use DVI to 
track register value liveness along a dynamic path and 
eliminate save/restore pairs of callee-saved registers at 
runtime.’ Our solution, shown in figure 7(c), involves 
inserting an EDVI annotation which kills r16 before 
the call to proc in caller2. The LVM hardware struc- 
ture keeps track of the fact that the value in r16 is 
dead and dynamically eliminates the save (13) and re- 
store (16) of that value. Since r16 is live at callerl, 
a corresponding DVI instruction is not inserted, and 
13 and 16 execute normally when proc is called along 
that path. 

While static techniques remove unnecessary saves 
and restores from execution completely, our solution 
still requires these instructions to be fetched and de- 
coded. However, since dead saves and restores are not 
dispatched, our method frees up bandwidth to the Ll 
cache, and effectively increases commit bandlvidth and 
the size of the instruction window. 

5.1 Software Support 

Our scheme requires two softlvare components to 
enable save/restore elimination. First, saves and re- 
stores must be implemented using nem store and load 
variants. Live-loads and live-stores only execute if 
their data registers are marked live. In figure 7 the 

‘A related optimization can be used to eliminate restores of 
caller-saved registers, but since it does not use DVI we do not 
discuss it here. 
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save at 13 and the restore at 16 would be encoded 
as a live-store and live-load. For flexibility we intro- 
duce nem instructions rather than add semantics to 
the callee-saved registers. Adding the new instruc- 
tions allows the compiler to specify uniform behavior 
for all registers, and different behavior for the same 
register at different program points. 

Save/restore elimination targets the callee-saved 
registers. Unfortunately, I-DVI provides information 
only about caller-saved registers. The second require- 
ment, therefore, is that the compiler insert EDVI for 
the callee-saved registers into the executable. Two ob- 
servations allow us to minimize the amount of EDVI 
that must be inserted. First, save/restore elimination 
requires information only at call sites, bounding the 
amount of overhead to a single EDVI annotation per 
dynamic instruction call. Further, EDVI must be in- 
serted only if a callee-saved register is both assigned 
to in the procedure and dead at the call site. 

5.2 Hardware Support 

We present two hardware schemes for save/restore 
elimination. The first scheme builds on the LVM 
structure of section 4.1 and is used to eliminate saves 
of &lee-saved registers. The second scheme adds a 
stack to buffer LVM information from procedure en- 
try points and can be used to eliminate both saves and 
restores. 

LVM Scheme. Elimination of saves can be per- 
formed using the LVM structure introduced in section 
4.1. Added decode logic detects live-store instructions 
whose data register is marked dead in the LVM and 
does not dispatch them. Figure 8 shows the running 
code example in (a) and the operation of the LVM 
scheme in (b). The kill mask in 13 sets the LVM bit to 
D(ead), allowing the save instruction within the pro- 
cedure to be eliminated. 

LVM-Stack Scheme. We mish to eliminate a re- 
store whenever its matching save has been eliminated. 
For an implementation to do this, it must eliminate 
restores based on the same LVM bits used to elimi- 
nate the corresponding saves at the procedure entry. 
The LVM itself is updated continuously as a procedure 
executes and cannot be used directly for this purpose. 
As shomn in figure S(b), the LVM loses track of the 
live bit used to eliminate the save (13) and thus cannot 
be used to eliminate the matching restore (16). 

An LVM-Stack is used to overcome this limitation. 
The LVM-Stack buffers an LVM “snapshot” from the 
procedure entry until its exit. Restores are eliminated 
based on the information at the top of the LVM-Stack, 
as this is the same information used to eliminate the 
matching saves. The operation of the LVM-Stack in 

-_-- - 
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11: 

12: 
13: 
14: 
15: 
16: 
17: 
18: 

callerl: proc: 
c r16 

(7-16 live) 
call proc 

save r16 
r16 t 
t r16 
restore r16 
return 

t r16 

(4 

11: 

12: 
13: 

14: 
15: 
16: 

17: 
18: 

caller2: proc: 
t r16 

(~16 dead) 

call proc 
save r16 
r16 + 
t r16 
restore r16 
return 

r16 t 

(b) 

11: 
E2: 
12: 
13: 

14: 
15: 
16: 

17: 
18: 

caller2: proc: 
t r16 
kill r16 
call proc 

-save-r%6 
r16 t 
c r16 

-restor&& 
return 

r16 c 

(4 

Figure 7: Save/Restore Elimination Example. (a) shows a call to proc from caller1 where r16 is live. (b) shops 

a call to proc from caller2 where r16 is dead, using a single conservatively compiled version of proc. In this cmc, 13 
and 16 (in bold) are executed needlessly. (cj shows caller2 again, this time with a kill instruction inserted before the call 
allowing 13 and 16 to be eliminated. The saves and restores are implemented using live-store and live-load instructions, 
respectively. 

11: 
E2: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

callera: Droc: 

t r16 
kill r16 

call proc 
save r16 

r16 c 

t r16 
restore r16 
return 

r16 t 

(4 

LVM 
L 
L 
D 
D 
D 
L 
L 
L 
L 

(b) cc. 

LVM-Stack 
. . stack grows -t 

. . 0) push 

. . D 
D 

: : D (2) maintain 

. . D (3) eliminate 

. . D (4) POP 

Figure 8: LVM and LVM-Stack schemes working example. (a) shows a dynamic code sequence with a dead 
save/restore pair. (b) shows the state (Live/Dead) of the r16 bit of the LVM before each instruction in the LVM schcmc. 
(c) shows the same bit for the LVM and the LVM-Stack in the LVM-Stack scheme. 

conjunction with the LVM is shown in figure 8(c). At 
a procedure call, the current LVM is pushed onto the 
LVM-Stack (1). An assignment to register r16 sets the 
live bit in the LVM, but the same bit at the top of the 
LVM-Stack is unchanged (2). The restore can now be 
eliminated using the LVM-Stack bit (3). Finally, at 
the return, the LVM-Stack is popped and its contents 
copied back into the LVM (4). 

Implementations of hardware stack mechanisms are 
well-understood. We simulate a small circular buffer 
which wraps around on overflow and assumes an 
empty stack on underflow. Our simulations use a 16- 
entry LVM-Stack. Our studies show that a 16-entry 
mechanism captures nearly 100% of the benefit of an 
unbounded size structure on all benchmarks except for 
li where 94% of the benefit is achieved. 

5.3 Evaluation 

We begin our evaluation of save/restore elimina- 
tion by directly measuring its effectiveness in eliminat- 
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ing save and restore instructions. Next, we evaluate 
its impact on IPC. Finally, we perform a sensitivity 
analysis to measure its interaction with relevant mi- 
croarchitectural parameters. 

Dynamic Saves and Restores Eliminated. 
The fraction of saves and restores eliminated is a prop- 
erty of the program and the amount of available DVI. 
It is independent of the processor configuration. Fig- 
ure 9 shows dynamic saves and restores eliminated as a 
percentage of total dynamic callee saves and restores, 
total memory references, and total instructions. We 
present our results for the six benchmarks that exhibit 
significant save and restore activity. The LVM-Stack 
scheme, which handles both saves and restores, elim- 
inated 46.5% of all dynamic save and restore instruc- 
tions, 11.1% of all memory references, and 4.8% of 
all instructions, respectively. The numbers are most 
striking for perl, in which 74.6% of callee saves and 
restores and 7.2% of total instructions need not be exe- 
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Figure 9: Dynamic Saves and Restores Eliminated. Shown as a percentage of (a) total saves and restores, (b) total 
memory references and (c) total instructions. We show the instructions eliminated using both the LVM scheme, which 
eliminates saves only, and the LVM-Stack scheme which eliminates both saves and restores. 
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Figure 10: IPC Speedups. Shows the IPC speedups for 
both the LVM and LVM-Stack schemes. The base IPC is 
given at the base of each pair of bars. 

cuted. The LVM scheme, which eliminates only saves, 
provides half the benefit. These numbers illustrate 
the inefficiencies associated with calling conventions 
and in&a-procedural static techniques. 

IPC Speedups. We now examine how effective 
removal of dead saves and restores translates into IPC 
improvements. Figure 10 shows for each benchmark 
the IPC gains achieved by eliminating saves only using 
the LVM scheme, and by eliminating both saves and 
restores using the LVM-Stack scheme. 

We espect IPC gains to be proportional to the per- 
centage of total instructions eliminated for each bench- 
mark, but diminished by the fact that the total num- 
ber of instructions fetched and decoded is not reduced. 
Our results support this intuition. gee, perl, and li 
see the greatest reduction in instructions executed and 
the greatest increase in IPC, with per1 leading the 

way at 4.8%. In addition, we expect a high degree of 
correlation between IPC speedups and the percentage 
of total memory references eliminated, since one im- 
portant effect of save/restore elimination is reducing 
cache bandwidth requirements. Again, the same three 
benchmarks support our intuition, with per1 trans- 
lating a 15.3% reduction in memory references into a 
4.8% IPC increase. The fact that save elimination ac- 
counts for more than half of the IPC benefit is due to 
the diminishing ability to exploit the extra bandwidth 
afforded by restore elimination. 

Sensitivity Analysis. By definition, the memory 
references removed by save/restore elimination have 
no true data dependences. The primary benefit of 
this optimization, therefore, is in reducing data band- 
width requirements. Consequently, we expect the IPC 
gains to be sensitive to the relationship between re- 
quirements of the program and the data bandwidth 
supplied by the processor. 

I 

Increasing the number of cache ports is an effective 
may of providing high data bandwidth. Multiple cache 
ports can be implemented through replication or bank- 
ing. The former is free of bank contention and provides 
more bandwidth while the latter requires significantly 
fewer implementation resources. For most programs 
a banked implementation can realistically achieve the 
performance of 3 perfect cache ports [HI. As our sim- 
ulations model a replicated (perfect) cache, we expect 
our performance improvements to be more significant 
on a more realistic, lower bandwidth banked configu- 
ration. While adding cache ports increases the avail- 
able bandwidth, increasing the issue width increases 
cache bandwidth requirements. Figure 11 shows the 
performance of two benchmarks for different cache 
port/issue width configurations. As expected, the rel- 
ative effectiveness of save/restore elimination increases 
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Figure 11: Cache Bandwidth Sensitivity Analy- 

sis. Sensitivity of save/restore elimination optimization 
to number of cache ports and issue width. 

as the number of cache ports decreases. Increasing 
the issue width produces two opposing effects: an in- 
crease in commit bandwidth reduces the effectiveness 
of save/restore elimination, while an increase in data 
bandwidth required makes it more effective. In gen- 
eral, for configurations at which a program is bound 
by data cache bandwidth, this optimization provides 
a significant benefit. 

Our studies show that the effectiveness of dead 
save/restore elimination is insensitive to other related 
microarchitectural parameters including the size of in- 
struction window and reorder buffer. 

6 Dead Save/Restore Elimination 
Across Context Switches 

Process and thread switches normally require that 
the architectural processor state, including the values 
of all architectural registers, be preserved. While the 
cost of saving and restoring this state is not signif- 
icant for context switches [15], it dominates thread 
switch overhead especially for fine-grained threaded 
code [l, 91. Non-preemptive switches are implemented 
using a procedure call interface allowing the compiler 
to generate specialized save and restore code at these 
well-defined switch points based on static liveness in- 
formation [9]. Preemptive switches are not amenable 
to such static analysis or optimization and must con- 
servatively save and restore all registers. 

We propose that DVI be used in multi-threaded 
programs to optimize saves and restores dynamically. 
Unlike previously proposed solutions, our solution 
does not require whole program analysis or procedure 
cloning and handles preemptive switches. 
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Figure 12: Context Switch Saves and Restores Elim- 
inated. Shows the percentage of saves and restores that can 
be eliminated dynamically at context switch time (per bench- 
mark). 

6.1 Software and Hardware Support 
The LVM scheme presented in section 5.2 can 

be used to support save elimination across context 
switches. The only requirement is that the software 
routine performing the thread switch must implement 
saves and restores using live-load and live-store in- 
structions described in section 5.1. 

As we saw earlier, eliminating a dead save requires 
only dynamic information about the liveness of the 
data value being saved. Eliminating a dead restore, 
however, requires that we locate the matching save 
and consult its liveness status. The same holds for 
restore elimination across thread switches. Since pro- 
cedure calls and returns follow a stack pattern and are 
hardware-managed, a hardware stack can be used to 
eliminate restores. Thread blocks and resumes are ar- 
bitrarily ordered and managed by software, requiring 
a general-purpose software mechanism to implement 
restore elimination. The basis of a simple solution 
requires a pair of instructions which would allow the 
LVM to be saved to and loaded from the thread or pro- 
cess control block. An LVM-save instruction would be 
issued before a context switch, and an LVM-load in- 
struction should be issued before all register restores 
when returning to the context. 

6.2 Evaluation 
We report the performance improvement achieved 

in terms of the percentage reduction in the average 
number of integer register saves and restores executed 
at context switches. The number of registers saved 
and restored is computed by generating a histogram 
of the number of live architectural registers and cal- 
culating the average number of registers holding live 
values during execution. 
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Figure 13: EDVI Overhead. Shows the percentage 
overhead (per benchmark) in dynamic instructions fetched 
and static code size, and the corresponding overheads in 
IPC for two cache configurations. A negative overhead 
signifies an IPC increase. 

The results are summarized in figure 12. For these 
benchmarks, the average number of integer saves and 
restores esecuted across context switches decreased by 
51% when EDVI instructions were inserted before 
procedure calls. Using I-DVI only, we were able to 
achieve a 42% reduction. This is a significant savings 
and should easily offset the added overhead of saving 
and restoring the LVM. In addition, floating point reg- 
isters are often dead in integer codes and thus most of 
the saves and restores of floating point registers can 
be eliminated. 

7 Implementation Issues 
We now address several DVI implementation con- 

cerns mentioned in previous sections. 

E-DVI overhead. EDVI overhead can be sepa- 
rated into two effects. Primarily, EDVI increases the 
number of dynamic instructions that must be fetched 
and decoded. The second effect arises due to an in- 
crease in static code size, decreasing the effective ca- 
pacity of the instruction cache. We quantify these ef- 
fects and their impact on IPC. To do so, me compare 
the IPC values for executables with and without E 
DVI in the absence of our DVI-enabled optimizations. 
Intuitively, IPC overhead should be proportional to 
and smaller than the percentage overhead in dynamic 
instruction count, since E-DVI annotations are effec- 
tively no-ops. 

As figure 13 shows, EDVI overhead (or impact) is 
negligible and is due primarily to an increase in dy- 
namic instruction count. Small increases in code size 
perturb I-cache alignment and instruction fetch, pro- 
ducing only slight fluctuations in performance. This 
result underscores the fact. that EDVI overhead is not 
a fundamental problem. E-DVI instructions do not 
introduce false dependences or consume functional or 
renaming resources. While they do increase the num- 

ber of instructions that must be fetched, they do not 
increase the number of branches. A sufficiently large 
I-cache and fetch queue can absorb most of this cost. 

Meaning of precise program state. Our regis- 
ter file optimizations rely on creating situations where 
certain architectural register names are not bound to 
values. What is the meaning of precise program state 
in this scenario? By definition, the meaning of any 
dead value is irrelevant to the remaining execution of 
the program. In that sense, any value assigned to an 
unbound architectural name results in correct execu- 
tion. 

Hardware and ABI interactions. In order to 
deduce I-DVI from call and return instructions the 
processor must know which registers are caller-saved, 
a set defined by the ABI calling convention. To avoid 
ABI dependence, I-DVI should be inferred for those 
registers set in an ABI supplied mask. A clear mask 
indicates that no I-DVI should be inferred, and can be 
used in debugging. 

Effect of DVI on program correctness. Al- 
though DVI is not required for the correct execution 
of the program, it has a definite (and often unrecov- 
erable) effect on processor state. Incorrect EDVI will 
almost certainly lead to incorrect execution; the com- 
piler is held responsible to provide only correct EDVI. 
Errors in EDVI should be considered compiler errors. 

Speculative updates of hardware structures. 
LVM and LVM-Stack updates occur at decode time 
and are often speculative. To ensure correct execu- 
tion in the event of mis-speculation, these structures 
can be checkpointed and recovered by the same mech- 
anism which supports such actions for the mapping 
table. This same mechanism can keep track of re- 
claimed physical registers, conserving space in the re- 
order buffer. 

Non-standard call-return sequences and con- 
text switches. Exceptions, non-standard call-return 
sequences (i.e. longjmpO), and even context-switches 
disrupt the function of the LVM and LVM-Stack mech- 
anisms. A simple strategy to handle this class of 
events would be to flush these structures and safely 
assume that all registers are live. Alternatively, sup- 
port could be added to save and restore the contents 
of the LVM (as is already required for our restore elim- 
ination across thread switches) and the LVM-Stack. 

8 Related Work 

The idea of using DVI for register file optimiza- 
tions is not new. Sohi and Franklin [S] study register 
instance lifetimes and describe horn compiler support 
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can be used to minimize these lifetimes and reduce 
traffic. Lozano and Gao [3] use DVI to reduce write- 
back traffic between the reorder buffer and the physi- 
cal register file. More recently, the Multiscalar [16] ar- 
chitecture uses summary masks to streamline register 
communication. These techniques try to reduce the 
number of datapaths to the register file. Our method 
reduces the size of the physical register file. 

The VAX [4] uses compiler-supplied masks to en- 
code saves and restores in the callee based on intra- 
procedural use information. Huguet and Lang [12] 
extend this mechanism to eliminate some of these 
encoded saves and restores in hardware dynamically. 
In their solution, called Policy-G, register values are 
saved when they are overwritten by the calIee and re- 
stored on a demand basis in the caller. This strategy is 
based on dynamic register use rather than on compiler 
communicated, hardware-tracked liveness. Policy-G 
can effectively eliminate restores in a flow-sensitive 
manner which our technique cannot handle, but does 
not eliminate saves based on liveness. In addition, 
Policy-G requires a large amount of critical path hard- 
ware, and more involved changes to existing instruc- 
tion sets. 

Kurlander and Fischer [14] use interprocedural 
analysis and profile information to produce a stati- 
cally optima1 interprocedura1 spihing strategy. Their 
technique attacks all registers, but does not consider 
path information and must therefore produce con- 
servative save/restore code. Our soIution deaIs with 
callee-saved registers only, but dynamically stream- 
lines save/restore code using runtime information 
without the need for interprocedural analysis. Kur- 
lander and Fischer report an average 5% reduction 
in execution time on an inorder machine. Our 4.8% 
average reduction in dynamic instruction count is a 
comparable result. 

Grunwald and Neves [9] use interprocedural anal- 
ysis to determine the live registers at each non- 
preemptive thread-switch call site and compile custom 
save-restore code for each call. Their solution requires 
cloning and does not handle preemptive switches. Our 
method, on the other hand, does not require cloning 
or interprocedural analysis and easily handles preemp- 
tive switches. 

9 Conclusions 
We make the following contributions in this paper: 

l We describe the concept of Dead Value Informa- 
tion (DVI). We introduce minimal ISA extensions 
that can encode DVI efficiently. We also observe 
that implicit DVI is inherent in programs due to 
the ISA calling conventions. 

l We describe a technique that uses DVI to reduce 
the size requirements of the physical register file 
by efficientIy reclaiming physical registers which 
contain dead values. We show that decreasing 
register file size potentially increases system clock 
speed, and improves overal performance. 

l We show that a simple hardware mechanism can 
be used to track DVI and eliminate saves and re- 
stores to callee-saved registers dynamically. We 
demonstrate that our software/hardware tech- 
nique handles situations not handled by software 
alone, and dynamically eliminates 46% of static 
save/restore code. On some benchmarks, our 
method achieves IPC improvements of nearly 5%. 

l Using the same hardware scheme, we show that 
save/restore elimination can be extended to han- 
dle both non-preemptive and preemptive context 
switches. Our results show an average reduction 
of 51% in the number of integer saves and re- 
stores. 

l Moreover, we demonstrate that our optimizations 
rely on well-known compiler techniques and only 
minor ISA and hardware modifications. 

Our work on save/restore elimination concentrates 
on performance improvements in the context of cur- 
rent calling conventions and the standard strategies 
for register allocation, scheduling, etc. Our proposed 
ISA extensions and hardware mechanisms give se- 
lected registers the desirable property of only being 
saved when required based on dynamic path informa- 
tion. The implications for register allocation, the use 
of calling-conventions, and future ISA design need to 
be explored. 

Our current implementation places EDVI instruc- 
tions before procedure calls. While this encoding ef- 
fectively supports save/restore elimination across pro- 
cedure calls, it is most likely insufficient for other opti- 
mizations, especially in programs with few procedures. 
Further study is required to assess the benefit versus 
cost of other encoding strategies. Interesting design 
points include placing EDVI instructions at the be- 
ginning and/or end of loop bodies or entire loops. 

Object oriented languages such as C++ and Java 
are gaining wide acceptance. These languages contain 
features such as dynamic binding and linking which 
make whole-program analysis and optimization nearly 
impossible, and a rise in procedure call frequency in- 
evitable. Save/restore elimination will become even 
more effective in these execution models. Java is es- 
pecially amenable to DVI-based optimization due to 
its support of threads. 
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