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Abstract

Edge features contain important information about

graphs. However, current state-of-the-art neural network

models designed for graph learning, e.g., graph convo-

lutional networks (GCN) and graph attention networks

(GAT), inadequately utilize edge features, especially multi-

dimensional edge features. In this paper, we build a new

framework for a family of new graph neural network mod-

els that can more sufficiently exploit edge features, includ-

ing those of undirected or multi-dimensional edges. The

proposed framework can consolidate current graph neural

network models, e.g., GCN and GAT. The proposed frame-

work and new models have the following novelties: First,

we propose to use doubly stochastic normalization of graph

edge features instead of the commonly used row or symmet-

ric normalization approaches used in current graph neural

networks. Second, we construct new formulas for the op-

erations in each individual layer so that they can handle

multi-dimensional edge features. Third, for the proposed

new framework, edge features are adaptive across network

layers. Fourth, we propose to encode edge directions us-

ing multi-dimensional edge features. As a result, our pro-

posed new framework and new models are able to exploit a

rich source of graph edge information. We apply our new

models to graph node classification on several citation net-

works, whole graph classification, and regression on sev-

eral molecular datasets. Compared with the current state-

of-the-art methods, i.e., GCNs and GAT, our models obtain

better performance, which testify to the importance of ex-

ploiting edge features in graph neural networks.

1. Introduction

Deep neural networks have become one of the most suc-

cessful machine learning techniques in recent years. In

many important problems, they achieve state-of-the-art per-

formance, e.g., convolutional neural networks (CNN) [19]
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Figure 1: Schematic illustration of the proposed edge en-

hanced graph neural network (EGNN) architecture (right),

compared with the original graph neural network (GNN) ar-

chitecture (left). A GNN layer could be a GCN layer, or a

GAT layer, while an EGNN layer is an edge enhanced coun-

terpart of it. EGNN differs from GNN structurally in two

folds. Firstly, the adjacency matrix A in GNN is either a bi-

nary matrix that indicates merely the neighborhood of each

node and is used in GAT layers, or a nonnegative-valued

matrix that has one dimensional edge features and is used in

GCN layers; in contrast, EGNN uses the multi-dimensional

nonnegative-valued edge features represented as a tensor E

which may exploit multiple attributes associated with each

edge. Secondly, in GNN the same original adjacency ma-

trix A is fed to every layer; in contrast, the edge features

in EGNN are adapted at each layer before being fed to next

layer.

in image recognition, and recurrent neural networks (RNN)

[12] and Long Short Term Memory (LSTM) [14] in natu-

ral language processing. In real world, many problems can

be naturally modeled with graphs rather than conventional

tables, grid type images, or time sequences. Generally, a
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graph contains nodes and edges, where nodes represent en-

tities in real world, and edges represent interactions or re-

lationships between entities. For example, a social network

naturally models users as nodes and friendship relationships

as edges. For each node, there is often an associated feature

vector describing it, e.g., a user’s profile in a social network.

Similarly, each edge is also often associated with features

depicting relationship strengths or other properties. Due to

their complex structures, a challenge in learning on graphs

is to find effective ways to incorporate different sources of

information contained in graphs into computational models

such as neural networks.

Recently, several neural network models have been de-

veloped for graph learning, which obtain better perfor-

mance than traditional techniques. Inspired by graph

Fourier transform, Defferrard et al. [11] propose a graph

convolution operation as an analogue to standard convolu-

tions used in CNN. Just like the convolution operation in

image spatial domain is equivalent to multiplication in the

frequency domain, convolution operators defined by poly-

nomials of a graph Laplacian is equivalent to filtering in the

graph spectral domain. Particularly, by applying Cheby-

shev polynomials to the graph Laplacian, spatially local-

ized filtering is obtained. Kipf et al. [18] approximate

the polynomials using a re-normalized first-order adjacency

matrix to obtain comparable results on graph node classifi-

cation tasks. Those graph convolutional networks (GCNs)

[11][18] combine graph node features and graph topolog-

ical structural information to make predictions. Velick-

ovic et al. [27] adopt attention mechanism into graph learn-

ing, and propose a graph attention network (GAT). Unlike

GCNs, which use a fixed or learnable polynomial of Lapla-

cian or adjacency matrix to aggregate (filter) node infor-

mation, GAT aggregates node information by using an at-

tention mechanism on graph neighborhoods. The essential

difference between GAT and GCNs is stark: In GCNs the

weights for aggregating (filtering) neighbor nodes are de-

fined by the graph topological structure, which is indepen-

dent of node contents; in contrast, weights in GAT are a

function of node contents due to the attention mechanism.

Empirical results on graph node classification show that the

adaptiveness of GAT makes it more effective to fuse infor-

mation from node features and graph topological structures.

One major problem in the current GNN models, such as

GAT and GCNs, is that edge features are not fully incor-

porated. In GAT, graph topological information is injected

into the model by forcing the attention coefficient between

two nodes to zero if they are not connected. Therefore, the

edge information used in GAT is only the indication about

whether there is an edge or not, i.e., connectivities. How-

ever, graph edges are often in possession of rich information

like strengths, types, etc. Instead of being a binary indicator

variable, edge features could be continuous, e.g., strengths,

or multi-dimensional. GCNs can utilize one-dimensional

real-valued edge features, e.g., edge weights, but the edge

features are restricted to be one-dimensional. Properly ad-

dressing this problem is likely to benefit many graph learn-

ing problems. Another problem of GAT and GCNs is that

each GAT or GCN layer filters node features based on the

original adjacency matrix that is given as an input. The orig-

inal adjacency matrix is likely to be noisy and not optimal,

which will limit the effectiveness of the filtering operation.

In this paper, we address the above problems by propos-

ing new GNN models to more adequately exploit edge in-

formation, which naturally enhance current GCNs and GAT

models. Our models construct different formulas from those

of GCNs and GAT, so that they are capable of exploiting

multi-dimensional edge features. Also our new models can

exploit one-dimensional edge features more effectively by

making them adaptive across network layers. Moreover, our

models leverage doubly stochastic normalization to aug-

ment the GCNs and GAT models that use ordinary row or

symmetric edge normalization. Doubly stochastic matrices

have nice properties that can facilitate the use of edges.

We conduct experiments on several citation network

datasets and molecular datasets. For citation networks,

we encode directed edges as three dimensional edge fea-

ture vectors. For molecular datasets, different atom bond

types are naturally encoded as multi-dimensional edge at-

tributes. By leveraging those multi-dimensional edge fea-

tures our methods outperform current state-of-the-art ap-

proaches. The results confirm that edge features are im-

portant for graph learning, and our proposed EGNN models

are effective incorporating edge features.

As a summary, the novelties of our proposed EGNN

model include the following:

• A new framework for adequately exploiting multi-

dimensional edge features. Our new framework is able

to incorporate multi-dimensional positive-valued edge

features. It eliminates the limitation of GAT which can

handle only binary edge indicators and the limitation

of GCNs which can handle only one dimensional edge

features.

• Doubly stochastic edge normalization. We propose to

normalize edge feature matrices into doubly stochastic

matrices which show improved performance in denois-

ing [29].

• Attention based edge adaptiveness across neural net-

work layers. We design a new graph network archi-

tecture which can not only filter node features but also

adapt edge features across layers. Leveraging this new

architecture, in our models the edge features are adap-

tive to both local contents and the global layers when

passing through the layers of the neural network.
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• Multi-dimensional edge features for directed edges.

We propose a method to encode edge directions

as multi-dimensional edge features. Therefore, our

EGNN can effectively learn on directed graphs.

The rest of this paper is organized as follows: Section 2

briefly reviews the related works. Details of the proposed

EGNN architecture and two types of proposed EGNN lay-

ers are described in Section 3. Section 4 presents the exper-

imental results, and Section 5 concludes the paper.

2. Related works

A critical challenge in graph learning is the complex

non-Euclidean structure of graph data. To address this

challenge, traditional machine learning approaches extract

graph statistics (e.g., degrees) [5], kernel functions [28][24]

or other hand-crafted features which measure local neigh-

borhood structures. Those methods lack flexibility in that

designing sensible hand-crafted features is time consuming

and extensive experiments are needed to generalize to dif-

ferent tasks or settings. Instead of extracting structural in-

formation or using hand-engineered statistics as features of

the graph, graph representation learning attempts to embed

graphs or graph nodes in a low-dimensional vector space

using a data-driven approach. One kind of embedding ap-

proaches are based on matrix-factorization, e.g., Laplacian

Eigenmap (LE) [4], Graph Factorization (GF) algorithm [2],

GraRep [7], and HOPE [21]. Another class of approaches

focus on employing a flexible, stochastic measure of node

similarity based on random walks, e.g., DeepWalk [22],

node2vec [2], LINE [26], and HARP [9]. There are several

limitations in matrix factorization-based and random walk-

based graph learning approaches. First, the embedding

function which maps to a low-dimensional vector space is

linear or overly simple so that complex patterns cannot be

captured; Second, they typically do not incorporate node

features; Finally, they are inherently transductive, for the

whole graph structure is required in the training phase.

Recently these limitations in graph learning have been

addressed by adopting new advances in deep learning. Deep

learning with neural networks can represent complex map-

ping functions and be efficiently optimized by gradient-

descent methods. To embed graph nodes to a Euclidean

space, deep autoencoders are adopted to extract connectiv-

ity patterns from the node similarity matrix or adjacency

matrix, e.g., Deep Neural Graph Representations (DNGR)

[8] and Structural Deep Network Embeddings (SDNE) [30].

Although autoencoder-based approaches are able to capture

more complex patterns than matrix factorization based and

random walk based methods, they are still unable to lever-

age node features.

With celebrated successes of CNN in image recognition,

recently, there has been an increased interest in adapting

convolutions to graph learning. In [6], the convolution op-

eration is defined in the Fourier domain, that is, the spec-

tral space, of the graph Laplacian. The method is afflicted

by two major problems: Firstly, the eigen decomposition is

computationally intensive; secondly, filtering in the Fourier

domain may result in non-spatially localized effects. In

[13], a parameterization of the Fourier filter with smooth

coefficients is introduced to make the filter spatially local-

ized. [11] proposes to approximate the filters by using a

Chebyshev expansion of the graph Laplacian, which pro-

duces spatially localized filters, and also avoids computing

the eigenvectors of the Laplacian.

Attention mechanisms have been widely employed in

many sequence-based tasks [3][33][16]. Compared with

convolution operators, attention mechanisms enjoy two

benefits: Firstly, they are able to aggregate any variable

sized neighborhood or sequence; further, the weights for ag-

gregation are functions of the contents of a neighborhood or

sequence. Therefore, they are adaptive to the contents. [27]

adapts an attention mechanism to graph learning and pro-

poses a graph attention network (GAT), achieving current

state-of-the-art performance on several graph node classifi-

cation problems.

3. Edge feature enhanced graph neural net-

works

3.1. Architecture overview

Given a graph with N nodes, let X be an N × F matrix

representation of the node features of the whole graph. We

denote an element of a matrix or a tensor by indices in the

subscript. Specifically, the “·” notation in the subscript is

used to select the whole range (slice) of a dimension. There-

fore, Xij will represent the value of the jth feature of the

ith node. Xi· ∈ R
F , i = 1, 2, . . . , N , represents the F -

dimensional feature vector of the ith node. Similarly, let E

be an N×N×P tensor representing the edge features of the

graph. Then Eij· ∈ R
P , i = 1, 2, . . . , N, j = 1, 2, . . . , N ,

represents the P -dimensional feature vector of the edge

connecting the ith and jth nodes, and Eijp denotes the pth

channel of the edge feature in Eij·. We use the notation

Eij· = 0 to mean that there is no edge between the ith and

jth nodes. Let Ni, i = 1, 2, . . . , N , denote the index set of

neighboring nodes of node i.

Our proposed network has a multi-layer feed-forward ar-

chitecture. We use superscript l to denote the output of the

lth layer. The inputs to the network are denoted by X0 and

E0. After passing through the first EGNN layer, X0 is fil-

tered to produce an N × F 1 new node feature matrix X1.

In the mean time, edge features are adapted to E1 that pre-

serves the dimensionality of E0. The adapted E1 is fed to

the next layer as edge features. This procedure is repeated

for every subsequent layer. Within each hidden layer, non-
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linear activations can be applied to the filtered node features

X l. The node features XL can be considered as an embed-

ding of the graph nodes in an FL-dimensional space. For

a node classification problem, a soft-max operator will be

applied to each node embedding vector XL
i· along the last

dimension. For a whole-graph prediction (classification or

regression) problem, a pooling layer is applied to the first

dimension of XL so that the feature matrix is reduced to a

single vector embedding for the whole graph. Then a fully

connected layer is applied to the vector, whose output could

be used as predictions for regression, or logits for classifica-

tion. The weights of the network will be trained with super-

vision from ground truth labels. Figure 1 gives a schematic

illustration of the EGNN architecture with a comparison to

the existing GNN architectures. Note that the input edge

features in E0 are already pre-normalized. The normaliza-

tion method will be described in the next subsection. Two

types of EGNN layers, attention based EGNN (EGNN(A))

layer and convolution based EGNN (EGNN(C)) layer will

also be presented in the following subsections.

3.2. Doubly stochastic normalization of edges

In graph convolution operations, the edge feature ma-

trices will be used as filters to multiply the node feature

matrix. To avoid increasing the scale of output features by

multiplication, the edge features need to be normalized. Let

Ê be the raw edge features, our normalized features E is

produced as follows:

Ẽijp =
Êijp

∑N

k=1
Êikp

(1)

Eijp =

N
∑

k=1

ẼikpẼjkp
∑N

v=1
Ẽvkp

(2)

Note that all elements in Ê are nonnegative. It can be easily

verified that such kind of normalized edge feature tensor E

satisfies the following properties:

Eijp ≥ 0, (3)

N
∑

i=1

Eijp =

N
∑

j=1

Eijp = 1. (4)

In other words, the edge feature matrices E
··p for p =

1, 2, · · · , P are square nonnegative real matrices with rows

and columns summing to 1. Thus, they are doubly stochas-

tic matrices, i.e., they are both left stochastic and right

stochastic. Doubly stochastic matrices (DSMs) have sev-

eral nice properties, e.g., they are symmetric, positive semi-

definite and having the largest eigen-value 1. The graph

convolution has an effect similar to passing information

through edges in a diffusion process by iteratively multiply-

ing the previous result with the edge matrix. Since taking

the power of a DSM preserves the three mentioned proper-

ties, it prevents the edge matrix from exploding or shrinking

to zero during diffusion, thus can help stabilize the process,

compared with the previously used row normalization as in

GAT [27]:

Eijp =
Êijp

∑N

j=1
Êijp

(5)

or symmetric normalization as in GCN [18]:

Eijp =
Êijp

√

∑N

i=1
Êijp

√

∑N

j=1
Êijp

(6)

Further, the powering (or diffusion) has an effect of increas-

ing the gaps between large egien-values, which denoises the

edges. The effectiveness of doubly stochastic matrix has

been recently demonstrated for graph edges denoising [29].

3.3. EGNN(A): Attention based EGNN layer

We describe the attention based EGNN layer. The origi-

nal GAT model [27] is only able to handle one dimensional

binary edge features, i.e., the attention mechanism is de-

fined on the node features of the neighborhood, which does

not take the real valued edge features, e.g., weights, into

account. To exploit multi-dimensional nonnegative-valued

edge features, we propose a new attention mechanism. In

our new mechanism, feature vector X l
i· will be aggregated

from the feature vectors of the neighboring nodes of the

ith node, i.e., {Xj , j ∈ Ni}, by simultaneously incorpo-

rating the corresponding edge features. Utilizing the ten-

sor and the notation that zero valued edge features mean no

edge connections, the aggregation operation is defined as

follows:

X l = σ





Pn

p=1

(

αl
··p(X

l−1, El−1

··p )gl(X l−1)
)



 . (7)

Here,
f

is the concatenation operator; σ is a non-linear ac-

tivation; α is a function which produces an N × N × P

tensor; g is a transformation which maps the node features

from the input space to the output space, and usually a linear

mapping is used:

gl(X l−1) = X l−1W l, (8)

where W l is an F l−1 × F l weight matrix.

In Eq. (7), αl contains the attention coefficients, whose

specific entry αl
ijp is a function of X l−1

i· , X l−1

j· and Eijp.

In existing attention mechanisms [27], the attention coeffi-

cient depends on Xi· and Xj· only. Our mechanism allows

the attention operation to be guided by edge features. For

multiple dimensional edge features, we consider them as

multi-channel signals, and each channel will guide a sepa-

rate attention operation. The results from different channels
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are combined by the concatenation operation. For a specific

channel of edge features, our attention function is chosen to

be the following:

α̂l
ijp = f l(X l−1

i· , X l−1

j· )El−1

ijp , (9)

αl
··p = DS(α̂l

··p), (10)

where DS is the doubly stochastic normalization operator

defined in Eqs. (1) and (2). In principle, f l can be any ordi-

nary attention function which produces a scalar value from

two input vectors. In this paper, we use a linear function as

the attention function for simplicity:

f l(X l−1

i· , X l−1

j· ) = exp

{

L
(

aT [X l−1

i· W l‖X l−1

j· W l]
)

}

,

(11)

where L is the LeakyReLU activation function; W l is the

same mapping as in (8).

The attention coefficients will be used as new edge fea-

tures for the next layer:

El = αl. (12)

By doing so, EGNN adapts the edge features across the net-

work layers, which helps capture essential edge features as

determined by our novel attention mechanism.

3.4. EGNN(C): Convolution based EGNN layer

By regarding the graph convolution operation as a spe-

cial case of the graph attention operation, we derive our

EGNN(C) layer from the formula of EGNN(A) layer. In-

deed, the essential difference between GCN [18] and GAT

[27] is whether we use the attention coefficients (i.e., ma-

trix α) or the adjacency matrix to aggregate node features.

With this view, we derive EGNN(C) by replacing the atten-

tion coefficient matrices α
··p with the corresponding edge

feature matrices E
··p. The resulting formula for EGNN(C)

is given as follows:

X l = σ





Pn

p=1

(

E
··pX

l−1W l
)



 , (13)

where the notations are the same as in Section 3.3.

3.5. Edge features for directed graph

In real world, many graphs are directed. Often times,

edge direction contains important information about the

graph. For example, in a citation network, machine learning

papers sometimes cite mathematics papers or other theoret-

ical papers. However, mathematics papers may seldom cite

machine learning papers. In many previous studies includ-

ing GCNs and GAT, edge directions are not considered. In

their experiments, directed graphs such as citation networks

are simply treated as undirected graphs. In this paper, we

show in the experiment part that discarding edge directions

will lose important information. By viewing directions of

edges as a kind of edge features, we encode a directed edge

channel Eijp to be

[

Êijp Êjip Êijp + Êjip

]

.

Therefore, each directed channel is augmented to three

channels. Note that the three channels define three types

of neighborhoods: forward, backward, and undirected. As

a result, EGNN will aggregate node information from these

three different types of neighborhoods, which contains the

direction information. Taking the citation network for in-

stance, EGNN will apply the attention mechanism or con-

volution operation on the papers that a specific paper cited,

the papers cited this paper, and the union of the former two.

With such edge features, discriminative patterns in various

types of neighborhoods can be effectively captured.

4. Experimental results

For all the experiments, we implement the algorithms in

Python on the TensorFlow platform [1]. In all the experi-

ments, models are trained with a Nvidia Tesla K40 graphics

card with 12 Gigabyte graphics memory.

4.1. Citation networks

To benchmark the effectiveness of our proposed mod-

els, we apply them to the network node classification prob-

lem. Three datasets are tested: Cora [23], Citeseer [23],

and Pubmed [20]. Some basic statistics about these datasets

are listed in Table 1. All three datasets are directed graphs,

Table 1: Summary of citation network datasets

Cora Citeseer Pubmed

# Nodes 2708 3327 19717

# Edges 5429 4732 44338

# Node Features 1433 3703 500

# Classes 7 6 3

where edge directions represent the directions of citations.

For Cora and Citeseer, node features contain binary indi-

cators representing the occurrences of predefined keywords

in a paper. For Pubmed, term frequency-inverse document

frequency (TF-IDF) features are employed to describe the

network nodes (i.e., papers).

The three citation network datasets are also used in [32]

[18] [27]. However, they all use a pre-processed version

which discards the edge directions. Since our EGNN mod-

els require the edge directions to construct edge features, we

use the original version from [23] and [20]. For each of the
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Table 2: Classification accuracies on citation networks. Doubly stochastic normalization, multi-dimensional edge features,

edge adaptiveness and weighted loss components are denoted by “D”, “M”, “A” and “W”, respectively, in square brackets.

Dataset Cora CiteSeer Pubmed

Splitting Sparse Dense Sparse Dense Sparse Dense

GCN 72.9± 0.8% 72.0± 1.2% 69.2± 0.7% 75.3± 0.4% 83.3± 0.4% 83.4± 0.2%
GAT 75.5± 1.1% 79.0± 1.0% 69.5± 0.5% 74.9± 0.5% 83.4± 0.1% 83.4± 0.2%

EGNN(C)[W] 82.7± 0.6% 87.6± 0.6% 69.3± 0.6% 76.0± 0.5% 84.5± 0.2% 84.3± 0.4%
EGNN(A)[W] 82.7± 0.6% 86.6± 0.6% 69.4± 0.5% 74.9± 0.8% 83.1± 0.2% 82.7± 0.2%

EGNN(C)[D] 81.8± 0.5% 85.1± 0.5% 70.6± 0.3% 75.0± 0.3% 84.3± 0.1% 84.1± 0.1%
EGNN(C)[DW] 83.2± 0.3% 87.4± 0.4% 70.3± 0.3% 75.4± 0.5% 84.1± 0.1% 84.1± 0.1%
EGNN(C)[M] 80.2± 0.4% 86.1± 0.5% 69.4± 0.3% 76.8± 0.4% 86.2± 0.2% 86.7± 0.1%
EGNN(C)[MW] 82.3± 0.4% 87.2± 0.4% 69.4± 0.3% 77.1± 0.4% 86.2± 0.1% 86.4± 0.3%
EGNN(C)[DM] 83.0± 0.3% 88.8± 0.3% 69.5± 0.3% 76.7± 0.4% 86.0± 0.1% 86.0± 0.1%
EGNN(C)[DMW] 83.4± 0.3% 88.5± 0.4% 69.5± 0.3% 76.6± 0.4% 85.8± 0.1% 85.6± 0.2%
EGNN(A)[A] 76.0± 1.0% 79.1± 1.0% 69.5± 0.4% 74.6± 0.3% 83.4± 0.1% 83.6± 0.2%
EGNN(A)[AW] 82.6± 0.6% 86.3± 0.9% 69.4± 0.4% 74.9± 0.4% 83.7± 0.2% 82.8± 0.3%
EGNN(A)[D] 80.1± 1.0% 85.4± 0.5% 70.1± 0.4% 74.7± 0.4% 84.3± 0.2% 84.2± 0.1%
EGNN(A)[DW] 82.7± 0.4% 87.2± 0.5% 69.5± 0.3% 74.5± 0.5% 83.9± 0.2% 83.3± 0.2%
EGNN(A)[M] 81.7± 0.4% 87.9± 0.4% 69.4± 0.3% 75.7± 0.3% 85.5± 0.1% 86.0± 0.1%
EGNN(A)[MW] 82.8± 0.3% 87.0± 0.6% 69.1± 0.3% 76.3± 0.5% 85.2± 0.2% 85.3± 0.3%
EGNN(A)[ADM] 82.5± 0.3% 88.4± 0.3% 69.4± 0.4% 76.5± 0.3% 85.7± 0.1% 86.7± 0.1%
EGNN(A)[ADMW] 83.1± 0.4% 88.4± 0.3% 69.3± 0.3% 76.3± 0.5% 85.6± 0.2% 85.7± 0.2%

three datasets, we split nodes into 3 subsets for training, val-

idation and testing. Two splittings are tested. One splitting

has 5%, 15% and 80% sized subsets for training, validation

and test, respectively. Since it has a small training set, we

call it “sparse” splitting. Another splitting has 60%, 20%
and 20% sized subsets, which is called “dense” splitting.

Following the experiment settings of [18][27], we use

two layers of EGNN in all of our experiments for fair com-

parison. Throughout the experiments in this subsection, we

use the Adam optimizer [17] with learning rate 0.005. An

early stopping strategy with a window size of 100 is adopted

for the citation networks; i.e., we stop training if the vali-

dation loss does not decrease for 100 consecutive epochs.

We set the output dimension of W to 64 for hidden layers.

We apply dropout [25] with dropout rate 0.6 to both input

features and normalized attention coefficients. L2 regular-

ization with weight decay 0.0005 is applied to the weights

W and a. Moreover, exponential linear unit (ELU) [10] is

employed as nonlinear activations for hidden layers.

We notice that the class distributions of the training sub-

sets of the three datasets are not balanced. To test the effects

of dataset imbalance, we train each algorithm with two dif-

ferent loss functions, i.e., unweighted and weighted losses.

The weight of a node belonging to class k is calculated as

∑K

k=1
nk

Knk

, (14)

where K and nk are the numbers of classes and nodes be-

longing to the kth class in the training subset, respectively.

Thus, nodes in a minority class are given larger weights and

are penalized more in the loss than a majority class.

The baseline methods we used are GCN [18] and GAT

[27]. To investigate the effectivenesses of each components,

we perform ablation study of EGNN(A) and EGNN(C).

We denote a specific version of EGNN(A) or EGNN(C)

by EGNN(A)[·] or EGNN(C)[·], where the letters in the

square bracket represent different combinations of compo-

nents. We denote doubly stochastic normalization, multi-

dimensional edge features, edge adaptiveness, and weighted

loss by “D”, “M”, “A” and “W”, respectively. For example,

EGNN(C)[M] means the EGNN(C) model with the compo-

nent of the multi-dimensional edge features only. Totally,

18 models are tested, including the two baselines. We run

each model 20 times, and record the mean and standard de-

viation of the classification accuracies, which are listed in

Table 2. We can observe several interesting phenomena,

some of which warrant further investigations:

• Overall, almost all EGNN variants outperform their

corresponding baselines, which indicates that all the

three components are able to incorporate useful in-

formation for classification. Particularly, multi-

dimensional edge features and doubly stochastic nor-

malization improve more than edge adaptiveness.
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Figure 2: Node class distribution of the training subsets of the three citation networks. The Cora dataset is more imbalanced

than the other two.

• The two baselines underperform on both the sparse and

dense splittings of the Cora dataset. This is caused

by the class imbalance of the Cora dataset. We il-

lustrate the class distributions of the three datasets in

Figure 2, from which we can see that Cora is more

imbalanced than Citeseer and Pubmed. On the Cora

dataset, EGNN(A)[W] and EGNN(C)[W], which add

the weighted loss component only, perform much bet-

ter than GAT and GCN. This verifies that the un-

derperformance of GAT and GCN are caused by the

class imbalance. Our proposed models are highly re-

silient to class imbalance. Without weighted training,

our framework obtains high accuracies on the Cora

dataset. Weighted training does not always improve

performance, especially on less imbalanced datasets,

e.g., Pubmed. This indicates that simply weighting the

classes is not sufficient to fully solve the class imbal-

ance problem. More sophisticated methods need to be

designed to address this problem in the future.

• Performances on dense splittings are consistently

higher than on sparse splitting. It is not unexpected

because more training data gives an algorithm more

information to tune parameters.

• We noticed that the Pubmed graph is much bigger than

Cora and Citeseer. Also, its node features (TF-IDF)

are more sophisticated than the bag-of-words features

of the other two datasets. Finally, Pubmed is the least

imbalanced. These characteristics may be the reason

that the sparse and dense splittings of Pubmed get close

accuracies as the sparse splitting already provides suf-

ficient information for training.

• Another characteristic we noticed is that the average

degree of Citeseer is the smallest among the citation

networks. Therefore, a very limited number of edges

can be utilized in a sparse splitting. This restricts

the ability of our models to incorporate edge features;

thus, we do not observe much performance gain on the

sparse splitting of Citeseer.

• Either EGNN(C)[DW] or EGNN(C)[MW] is not as

good as EGNN(C)[W] on the dense splitting of the

Cora dataset. However, EGNN(C)[DMW] is better

than EGNN(C)[W]. This interesting phenomenon in-

dicates that doubly stochastic normalization and multi-

dimensional edge feature might not work well individ-

ually on some datasets, but can improve performance

considerably if combined.

To compare the computational efficiency of the models,

we record the average training time on the Cora dataset

with dense splitting in Table 3. Note that EGNN(C) and

EGNN(A) are full models with all components imple-

mented. According to Table 3, the proposed EGNN(C) and

EGNN(A) are a little higher but still essentially comparable

to GCN and GAT in terms of time complexity.

Table 3: Average training time (in milliseconds) per epoch

on the Cora dataset with dense splitting.

Model GCN GAT EGNN(C) EGNN(A)

Time (ms) 22 49 48 159

4.2. Molecular analysis

One promising application of graph learning is molec-

ular analysis. A molecule can be represented as a graph,

where each atom is a node and chemical bonds are edges.

Unlike citation network analysis in Section 4.1, the prob-

lem here is whole-graph prediction, either classification or

regression. For example, given a graph representation of a

molecule, the goal may be to classify it as toxic or not, or to

predict the solubility (regression). In other words, we need

to predict one value for the whole graph, rather than one

value for a graph node. Usually, for each chemical bond,

there are several attributes associated with it, e.g., Atom Pair

Type, Bond Order, and Ring Status. Therefore, the graphs

intrinsically contain multi-dimensional edge features.

Three datasets, Tox21, Lipophilicity and Freesolv, are

used to test our algorithms. Tox21 contains 7831 environ-

mental compounds and drugs. Each compound is associ-

ated with 12 labels, e.g., androgen receptor, estrogen recep-

tor, and mitochondrial membrane potential, which defines
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Table 4: Performance on molecular datasets

Dataset

Tox21 (AUC) Lipo (RMSE) Freesolv (RMSE)

Validation Test Validation Test Validation Test

RF 0.78± 0.01 0.75± 0.03 0.87± 0.02 0.86± 0.04 1.98± 0.07 1.62± 0.14
Weave 0.79± 0.02 0.80± 0.02 0.88± 0.06 0.89± 0.04 1.35± 0.22 1.37± 0.14

EGNN(C) 0.82± 0.01 0.82± 0.01 0.80± 0.02 0.75± 0.01 1.07± 0.08 1.09± 0.08
EGNN(A) 0.82± 0.01 0.81± 0.01 0.79± 0.02 0.75± 0.01 1.09± 0.12 1.01± 0.12

a multi-label classification problem. Lipophilicity contains

4200 compounds. The goal is to predict compound solubil-

ity, which is a regression task. Freesolv includes a set of

642 neutral molecules, which similarly defines a regression

task. For all the three datasets, compounds are converted

to graphs. For all the three datasets, nodes are described

by 25-dimensional feature vectors. The dimensionality of

edge feature vectors are 42, 21, and 25 for Tox21, Lipo, and

Freesolv, respectively.

For both EGNN(A) and EGNN(C), we implement a net-

work consisting of 2 graph processing layers, a global max-

pooling layer, and a fully connected layer. For each graph

processing layer, the output dimensions of the linear map-

ping g are fixed to be 16. For Tox21, the sigmoid cross

entropy loss is applied to the output logits of the fully con-

nected layer. For Lipo and Freesolv, the mean squared error

loss is employed. The networks are trained by Adam op-

timizer [17] with learning rate 0.0005. An early stopping

strategy with a window size of 200 is adopted. L2 regular-

ization with weight decay 0.0001 is applied to parameters

of the models except for bias parameters. Moreover, ex-

ponential linear unit (ELU) [10] is employed as nonlinear

activations for hidden layers.

Our models are compared with two baseline models

which are shown in MoleculeNet [31]: Random Forest

and Weave. Random Forest is a traditional learning model

which is widely applied to various problems. Weave model

[15] is similar to graph convolution but specifically de-

signed for molecular analysis.

All the three datasets are split into training, validation

and test subsets with a ratio of 8:1:1. We run our models 5
times, and record the means and standard deviations of per-

formance scores. For classification task (i.e., Tox21), Area

Under Curve (AUC) scores of the receiver operating charac-

teristic (ROC) curve are recorded. Since it is a multi-label

classification problem, we record the AUCs of each class

and take the averaged value as the final score. For regression

(i.e., Lipo and Freesolv), root mean square error (RMSE) is

used as the evaluation metric. The scores are given in Table

4. The results show that EGNN(C) and EGNN(A) outper-

form the two baselines with considerable margins. On the

Tox21 dataset, the AUC scores are improved by more than

0.2 compared with the Weave model. For the two regres-

sion tasks, RMSEs are improved by about 0.1 and 0.3 on

the Lipo and Freesolv datasets, respectively. The scores of

EGNN(C) and EGNN(A) are close on the three datasets.

5. Conclusions

In this paper, we propose a new framework to ad-

dress the existing problems in the current state-of-the-art

graph neural network models. Specifically, we propose a

new attention mechanism to incorporate multi-dimensional

nonnegative-valued edge features. Then, we propose a new

graph neural network architecture that adapts edge features

across neural network layers. Our framework admits a

formula that allows for extending convolutions to multi-

dimensional edge features. Further, we propose to use dou-

bly stochastic normalization, as opposed to the ordinary row

normalization or symmetric normalization used in the ex-

isting graph neural network models. Finally, we propose

a method to design multi-dimensional edge features for di-

rected edges to effectively handle directed graphs. Exten-

sive experiments are conducted on three citation network

datasets for graph node classification evaluation, and on

three molecular datasets to test the performance on whole

graph classification and regression tasks. Experimental re-

sults show that our new framework outperforms current

state-of-the-art models such as GCN and GAT significantly

and consistently on all the datasets. Detailed ablation study

also shows the effectiveness of each individual component

in our framework.
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