
1

Exploiting Efficient and Scalable Shuffle Transfers in

Future Data Center Networks
Deke Guo, Member, IEEE, Junjie Xie, Xiaolei Zhou, Student Member, IEEE, Xiaomin Zhu, Member, IEEE,

Wei Wei, Member, IEEE, Xueshan Luo

Abstract—Distributed computing systems like MapReduce in data centers transfer massive amount of data across successive

processing stages. Such shuffle transfers contribute most of the network traffic and make the network bandwidth become a bottleneck.

In many commonly used workloads, data flows in such a transfer are highly correlated and aggregated at the receiver side. To lower

down the network traffic and efficiently use the available network bandwidth, we propose to push the aggregation computation into

the network and parallelize the shuffle and reduce phases. In this paper, we first examine the gain and feasibility of the in-network

aggregation with BCube, a novel server-centric networking structure for future data centers. To exploit such a gain, we model the

in-network aggregation problem that is NP-hard in BCube. We propose two approximate methods for building the efficient IRS-based

incast aggregation tree and SRS-based shuffle aggregation subgraph, solely based on the labels of their members and the data center

topology. We further design scalable forwarding schemes based on Bloom filters to implement in-network aggregation over massive

concurrent shuffle transfers. Based on a prototype and large-scale simulations, we demonstrate that our approaches can significantly

decrease the amount of network traffic and save the data center resources. Our approaches for BCube can be adapted to other

server-centric network structures for future data centers after minimal modifications.

Index Terms—Data center, shuffle transfer, data aggregation

✦

1 INTRODUCTION

Data center is the key infrastructure for not only online
cloud services but also systems of massively distributed
computing, such as MapReduce [1], Dryad [2], CIEL [3],
and Pregel [4]. To date, such large-scale systems manage
large number of data processing jobs each of which may
utilize hundreds even thousands of servers in a data
center. These systems follow a data flow computation
paradigm, where massive data are transferred across
successive processing stages in each job.

Inside a data center, large number of servers and
network devices are interconnected using a specific data
center network structure. As the network bandwidth of
a data center has become a bottleneck for these systems,
recently many advanced network structures have been
proposed to improve the network capacity for future
data centers, such as DCell [5], BCube [6], Fat-Tree
[7], VL2 [8], and BCN [9], [10]. We believe that it is
more important to efficiently use the available network
bandwidth of data centers, compared to just increasing
the network capacity. Although prior work [11] focuses
on scheduling network resources so as to improve the
data center utilization, there has been relatively little
work on directly lowering down the network traffic.

In this paper, we focus on managing the network ac-
tivity at the level of transfers so as to significantly lower

• D. Guo, J. Xie, X. Zhou, X. Zhu, and X. Luo are with the College of
Information System and Management, National University of Defense
Technology, Changsha 410073, P.R. China. E-mail: guodeke@gmail.com.

• W. Wei is with the College of Computer Science and Engineering,
Xian University of Technology, Xian 710048, P.R. China. E-mail: wei-
wei@xaut.edu.cn.

down the network traffic and efficiently use the available
network bandwidth in future data centers. A transfer
refers to the set of all data flows across successive stages
of a data processing job. The many-to-many shuffle and
many-to-one incast transfers are commonly needed to
support those distributed computing systems. Such data
transfers contribute most of the network traffic (about
80% as shown in [11]) and impose severe impacts on
the application performance. In a shuffle transfer, the
data flows from all senders to each receiver, however, are
typically highly correlated. Many state-of-the-practice
systems thus already apply aggregation functions at the
receiver side of a shuffle transfer to reduce the output
data size. For example, each reducer of a MapReduce
job is assigned a unique partition of the key range
and performs aggregation operations on the content
of its partition retrieved from every mapper’s output.
Such aggregation operations can be the sum, maximum,
minimum, count, top-k, KNN, et. al. As prior work [12]
has shown, the reduction in the size between the input
data and output data of the receiver after aggregation is
81.7% for Mapreduce jobs in Facebook.

Such insights motivate us to push the aggregation
computation into the network, i.e., aggregating corre-
lated flows of each shuffle transfer during the trans-
mission process as early as possible rather than just at
the receiver side. Such an in-network aggregation can
significantly reduce the resulting network traffic of a
shuffle transfer and speed up the job processing since the
final input data to each reducer will be considerably de-
creased. It, however, requires involved flows to intersect
at some rendezvous nodes that can cache and aggregate
packets for supporting the in-network aggregation. In

existing tree-based switch-centric structures [7], [8] of
data centers, it is difficult for a traditional switch to do
so due to the small buffer space shared by too many
flows and limited packet processing capability.

Additionally, these server-centric network structures
possess high link density, i.e., they provide multiple
disjoint routing paths for any pair of servers. Conse-
quently, they bring vast challenges and opportunities
in cooperatively scheduling all flows in each shuffle
transfer so as to form as many rendezvous servers
as possible for performing the in-network aggregation.
Currently, a shuffle transfer is just treated as a set of
independently unicast transmissions that do not account
for collective behaviors of flows. Such a method brings
less opportunity for an efficient in-network aggregation.

In this paper, we examine the gain and feasibility
of the in-network aggregation on a shuffle transfer in
a server-centric data center. To exploit the gain of in-
network aggregation, the efficient incast and shuffle
transfers are formalized as the minimal incast aggre-
gation tree and minimal shuffle aggregation subgraph
problems that are NP-hard in BCube. We then propose
two approximate methods, called IRS-based and SRS-
based methods, which build the efficient incast aggrega-
tion tree and shuffle aggregation subgraph, respectively.
We further design scalable forwarding schemes based
on Bloom filters to implement in-network aggregation
on massive concurrent shuffle transfers.

We evaluate our approaches with a prototype im-
plementation and large-scale simulations. The results
indicate that our approaches can significantly reduce
the resultant network traffic and save data center re-
sources. More precisely, our SRS-based approach saves
the network traffic by 32.87% on average for a small-
scale shuffle transfer with 120 members in data centers
BCube(6, k) for 2≤k≤8. It saves the network traffic by
55.33% on average for shuffle transfers with 100 to 3000
members in a large-scale data center BCube(8, 5) with
262144 servers. For the in-packet Bloom filter based
forwarding scheme in large data centers, we find that
a packet will not incur false positive forwarding at the
cost of less than 10 bytes of Bloom filter in each packet.

The rest of this paper is organized as follows. We
briefly present the preliminaries in Section 2. We for-
mulate the shuffle aggregation problem and propose the
shuffle aggregation subgraph building method in Section
3. Section 4 presents scalable forwarding schemes to effi-
ciently perform the in-network aggregation. We evaluate
our methods and related work using a prototype and
large-scale simulations in Section 5 and conclude this
work in Section 6.

2 PRELIMINARIES

2.1 Data center networking

Many efforts have been made towards designing net-
work structures for future data centers and can be

Fig. 1. A BCube(4,1) structure.

roughly divided into two categories. One is switch-
centric, which organizes switches into structures other
than tree and puts the interconnection intelligence on
switches. Fat-Tree [7], VL2 [8] and PortLand [13] fall into
such a category, where servers only connect to the edge-
level switches. Different from such structures, FBFLY
[14] and HyperX [15] organize homogeneous switches,
each connecting several servers, into the generalized
hypercube [16]. For such switch-centric structures, there
has been an interest in adding the in-network process-
ing functionality to network devices. For example, new
Cisco ASIC and arista application switches have pro-
vided a programmable data plane. Additionally, existing
switches have been extended with dedicated devices
like sidecar [17], [18]. Sidecar is connected to a switch
via a direct link and receives all traffic. Such trends
provide a software-defined approach to customize the
networking functionality and to implement arbitrary in-
network processing within such data centers.

The second category is server-centric, which puts the
interconnection intelligence on servers and uses switches
only as cross-bars (or does not use any switch). BCube
[6], DCell [5], CamCube [19], BCN [9], SWDC [20], and
Scafida [21] fall into such a category. In such settings,
a commodity server with ServerSwitch [22] card acts as
not only an end host but also a mini-switch. Each server,
thus, uses a gigabit programmable switching chip for
customized packet forwarding and leverages its resource
for enabling in-network caching and processing, as prior
work [22], [23] have shown.

In this paper, we focus on BCube that is an outstand-
ing server-centric structure for data centers. BCube0 con-
sists of n servers connecting to a n-port switch. BCubek
(k ≥ 1) is constructed from n BCubek−1’s and nk n-port
switches. Each server in BCubek has k+1 ports. Servers
with multiple NIC ports are connected to multiple layers
of mini-switches, but those switches are not directly con-
nected. Fig.1 plots a BCube(4, 1) structure that consists of
nk+1=16 servers and two levels of nk(k+1)=8 switches.

Essentially, BCube(n, k) is an emulation of a k+1
dimensional n-ary generalized hypercube [16]. In
BCube(n, k), two servers, labeled as xkxk−1...x1x0 and
ykyk−1...y1y0 are mutual one-hop neighbors in dimen-
sion j if their labels only differ in dimension j, where
xi and yi∈{0, 1, ..., n−1} for 0≤i≤k. Such servers con-
nect to a j level switch with a label yk...yj+1yj−1...y1y0
in BCube(n, k). Therefore, a server and its n−1 1-hop
neighbors in each dimension are connected indirectly via
a common switch. Additionally, two servers are j-hop

2

neighbors if their labels differ in number of j dimensions
for 1≤j≤k+1. As shown in Fig.1, two servers v0 and v15,
with labels 00 and 33, are 2-hop neighbors since their
labels differ in 2 dimensions.

2.2 In-network aggregation

In a sensor network, sensor readings related to the same
event or area can be jointly fused together while being
forwarded towards the sink. In-network aggregation is
defined as the global process of gathering and routing in-
formation through a multihop network, processing data
at intermediate nodes with the objective of reducing en-
ergy consumption, thereby increasing network lifetime.
In-network aggregation is a very important aspect of
wireless sensor networks and have been widely studied,
such as [24] and [25].

Costa et al have introduced the basic idea of such an
in-network aggregation to the field of data centers. They
built Camdoop [26], a MapReduce-like system running
on CamCube data centers. Camdoop exploits the prop-
erty that CamCube servers forward traffic to perform
in-network aggregation of data during the shuffle phase
and reduces the network traffic. CamCube differentiates
itself from other server-centric structures by utilizing a
3-dimensional torus topology, i.e., each server is directly
connected to six neighboring servers.

In the Camdoop, servers use the function getParent
to compute the tree topology for an incast transfer.
Given the locations of the receiver and a local server (a
sender or an inner server), the function returns a one-hop
neighbor, which is the nearest one towards the receiver
in a 3D space compared to other five ones. In this way,
each flow of an incast transfer identifies its routing path
to the same receiver, independently. The unicast-based
tree approach proposed in this paper shares the similar
idea of the tree-building method in Camdoop.

In this paper, we cooperatively manage the network
activities of all flows in a transfer for exploiting the
benefits of in-network aggregation. That is, the routing
paths of all flows in any transfer should be identified
at the level of transfer not individual flows. We then
build efficient tree and subgraph topologies for incast
and shuffle transfers via the IRS-based and SRS-based
methods, respectively. Such two methods result in more
gains of in-network aggregation than the unicast-based
method, as shown in Fig.2 and Section 5.

2.3 Stenier tree problem in general graphs

The Steiner Tree problems have been proved to be
NP-hard, even in the special cases of hypercube, gen-
eralized Hypercube and BCube. Numerous heuristics
for Steiner tree problem in general graphs have been
proposed [27], [28]. A simple and natural idea is us-
ing a minimum spanning tree (MST) to approximate
the Steiner minimum tree. Such kind of methods can
achieve a 2-approximation. The Steiner tree problem in
general graphs cannot be approximated within a factor

of 1+ǫ for sufficiently small ǫ [29]. Several methods,
based on greedy strategies originally due to Zelikovsky
[30], achieve better approximation ratio than MST-based
methods, such as 1.746 [31], 1.693 [32], 1.55 [28]. Such
methods have a similar idea. Indeed, they start from
an MST and improve it step by step by using a greedy
principle to choose a Steiner vertex to connect a triple of
vertices.

3 AGGREGATING SHUFFLE TRANSFERS

We first formulate an efficient shuffle transfer as building
the minimal shuffle aggregation subgraph, an NP-hard
problem, which can be applied to any family of data
center topologies. We then propose efficient aggregation
methods for incast and shuffle transfers, respectively.

3.1 Problem statement

We model a data center as a graph G=(V,E) with a
vertex set V and an edge set E. A vertex of the graph
refers a switch or a datacenter server. An edge (u, v)
denotes a link, through which u connects with v where
v, u∈V .

Definition 1: A shuffle transfer has m senders and n
receivers where a data flow is established for any pair of
sender i and receiver j for 1≤i≤m and 1≤j≤n. An incast
transfer consists of m senders and one of n receivers. A
shuffle transfer consists of n incast transfers that share
the same set of senders but differ in the receiver.

In many commonly used workloads, data flows from
all of m senders to all of n receivers in a shuffle transfer
are highly correlated. More precisely, for each of its n
incast transfers, the list of key-value pairs among m
flows share the identical key partition for the same
receiver. For this reason, the receiver typically applies
an aggregation function, e.g., the sum, maximum, mini-
mum, count, top-k and KNN, to the received data flows
in an incast transfer. As prior work [12] has shown,
the reduction in the size between the input data and
output data of the receiver after aggregation is 81.7% for
Facebook jobs.

In this paper, we aim to push aggregation into the
network and parallelize the shuffle and reduce phases so
as to minimize the resultant traffic of a shuffle transfer.
We start with a simplified shuffle transfer with n=1, an
incast transfer, and then discuss a general shuffle trans-
fer. Given an incast transfer with a receiver R and a set of
senders {s1, s2, ..., sm}, message routes from senders to
the same receiver essentially form an aggregation tree.
In principle, there exist many such trees for an incast
transfer in densely connected data center networks, e.g.,
BCube. Although any tree topology could be used, tree
topologies differ in their aggregation gains. A challenge
is how to produce an aggregation tree that minimizes
the amount of network traffic of a shuffle transfer after
applying the in-network aggregation.

Given an aggregation tree in BCube, we define the
total edge weight as its cost metric, i.e., the sum of the

3

amount of the outgoing traffics of all vertices in the tree.
As discussed in Section 2.1, BCube utilizes traditional
switches and only data center servers enable the in-
network caching and processing. Thus, a vertex in the
aggregation tree is an aggregating vertex only if it repre-
sents a server and at least two flows converge at it. An
aggregating vertex then aggregates its incoming flows
and forwards a resultant single flow instead of multiple
individual flows along the tree. At a non-aggregating
vertex, the size of its outgoing flow is the cumulative size
of its incoming flows. The vertices representing switches
are always non-aggregating ones. We assume that the
introduced traffic from each of m senders is unity (1
MB) so as to normalize the cost of an aggregation tree.
In such a way, the weight of the outgoing link is one
at an aggregating vertex and equals to the number of
incoming flows at a non-aggregating vertex.

Definition 2: For an incast transfer, the minimal aggre-
gation tree problem is to find a connected subgraph in
G=(V,E) that spans all incast members with minimal
cost for completing the incast transfer.

The problem is translated to discover a minimal ag-
gregation tree for an incast transfer in a data center.
Consider a relaxation that each vertex is an aggregating
one in a data center. This relaxation simplifies the mini-
mal aggregation tree problem as the Steiner tree problem
since the weight of each edge becomes one and thus
the cost of the tree is the total number of edges. It is
well-known that the Steiner tree problem in BCube is
NP-hard. Therefore, the minimal aggregation tree of an
incast transfer in BCube is NP-hard.

As aforementioned in Section 2.3, there are many
approximate algorithms for Steiner tree problem. The
time complexity of such algorithms for general graphs
is of O(m×N2), where m and N are the numbers of
incast numbers and all servers in a data center. The
time complexity is too high to meet the requirement of
online tree building for incast transfers in production
data centers which hosts large number of servers. For
example, Google has more than 450,000 servers in 2006
in its 13th data center and Microsoft and Yahoo! have
hundreds of thousands servers. On the other hand, such
algorithms cannot efficiently exploit the topological fea-
ture of BCube, a densely connected data center network.
For such reasons, we develop an efficient incast tree
building method by exploiting the topological feature of
BCube in Section 3.2. The resulting time complexity is of
O(m× log3 N) in Theorem 1.

Definition 3: For a shuffle transfer, the minimal aggre-
gation subgraph problem is to find a connected subgraph
in G=(V,E) that spans all shuffle members with minimal
cost for completing the shuffle transfer.

Note that the minimal aggregation tree of an incast
transfer in BCube is NP-hard and a shuffle transfer
is normalized as the combination of a set of incast
transfers. Therefore, the minimal aggregation subgraph
of a shuffle transfer in BCube is NP-hard. For this reason,
We develop an efficient shuffle subgraph construction

method by exploiting the topological feature of BCube
in Section 3.3.

After deriving the shuffle subgraph for a given shuffle,
each sender greedily delivers its data flow toward a
receiver along the shuffle subgraph if its output for the
receiver is ready. All packets will be cached when a
data flow meets an aggregating server. An aggregating
server can perform the aggregation operation once a
new data flow arrives and brings an additional delay.
Such a scheme amortizes the delay due to wait and
simultaneously aggregate all incoming flows. The cache
behavior of the fast data flow indeed brings a little
additional delay of such a flow. However, the in-network
aggregation can lower down the job completion time due
to significantly reduce network traffic and improve the
utilization of rare bandwidth resource, as shown in Fig.7.

3.2 Incast aggregation tree building method

As aforementioned, building a minimal aggregation tree
for any incast transfer in BCube is NP-hard. In this paper,
we aim to design an approximate method by exploiting
the topological feature of data center networks, e.g.,
BCube(n, k).

BCube(n, k) is a densely connected network structure
since there are k+1 equal-cost disjoint unicast paths
between any server pair if their labels differ in k+1
dimensions. For an incast transfer, each of its all senders
independently delivers its data to the receiver along a
unicast path that is randomly selected from k+1 ones.
The combination of such unicast paths forms a unicast-
based aggregation tree, as shown in Fig.2(a). Such a
method, however, has less chance of achieving the gain
of the in-network aggregation.

For an incast transfer, we aim to build an efficient ag-
gregation tree in a managed way instead of the random
way, given the labels of all incast members and the data
center topology. Consider an incast transfer consists of
a receiver and m senders in BCube(n, k). Let d denote
the maximum hamming distance between the receiver
and each sender in the incast transfer, where d≤k+1.
Without loss of generality, we consider the general case
that d=k+1 in this paper. An aggregation tree of the
incast transfer can be expanded as a directed multistage
graph with d+1 stages. The stage 0 only has the receiver.
Each of all senders should appear at stage j if it is a
j-hop neighbor of the receiver. Only such senders and
the receiver, however, cannot definitely form a connected
subgraph. The problem is then translated to identify a
minimal set of servers for each stage and to identify
switches between successive stages so as to constitute a
minimal aggregation tree in BCube(n, k). The level and
label of a switch between a pair of neighboring servers
across two stages can be inferred from the labels of the
two servers. We thus only focus on identify additional
servers for each stage.

Identifying the minimal set of servers for each stage
is an efficient approximate method for the minimal

4

1

1

1

1

1

(a) A unicast-based tree of cost 22 with 18 links. (b) An aggregation tree of cost 16 with 12 links. (c) An aggregation tree of cost 14 with 11 links.

Fig. 2. Different aggregation trees for an incast transfer with the sender set {v2, v5, v9, v10, v11, v14} and the receiver

v0 in Bcube(4,1).

aggregation tree problem. For any stage, less number
of servers incurs less number of flows towards the
receiver since all incoming flows at each server will be
aggregated as a single flow. Given the server set at stage
j for 1≤j≤d, we can infer the required servers at stage
j−1 by leveraging the topology features of BCube(n, k).
Each server at stage j, however, has a one-hop neighbor
at stage j−1 in each of the j dimensions in which the
labels of the server and the receiver only differ. If each
server at stage j randomly selects one of j one-hop
neighbors at stage j−1, it just results in a unicast-based
aggregation tree.

The insight of our method is to derive a common
neighbor at stage j−1 for as many servers at stage j as
possible. In such a way, the number of servers at stage
j−1 can be significantly reduced and each of them can
merge all its incoming flows as a single one for further
forwarding. We identify the minimal set of servers for
each stage from stage d to stage 1 along the processes as
follows.

We start with stage j=d where all servers are just
those senders that are d-hops neighbors of the receiver
in the incast transfer. After defining a routing symbol
ej∈{0, 1, ..., k}, we partition all such servers into groups
such that all servers in each group are mutual one-
hop neighbors in dimension ej . That is, the labels of all
servers in each group only differ in dimension ej . In each
group, all servers establish paths to a common neighbor-
ing server at stage j−1 that aggregates the flows from
all servers in the group, called an inter-stage aggregation.
All servers in the group and their common neighboring
server at stage j−1 have the same label except the ej
dimension. Actually, the ej dimension of the common
neighboring server is just equal to the receiver’s label in
dimension ej . Thus, the number of partitioned groups at
stage j is just equal to the number of appended servers
at stage j−1. The union of such appended servers and
the possible senders at stage j−1 constitute the set of all
servers at stage j−1. For example, all servers at stage 2
are partitioned into three groups, {v5, v9}, {v10, v14}, and
{v11}, using a routing symbol e2=1, as shown in Fig.2(b).
The neighboring servers at stage 1 of such groups are

with labels v1, v2, and v3, respectively.
The number of servers at stage j−1 still has an

opportunity to be reduced due to the observations as
follows. There may exist groups each of which only has
one element at each stage. For example, all servers at
the stage 2 are partitioned into three groups, {v5, v9},
{v10, v14}, and {v11} in Fig.2(b). The flow from the server
{v11} to the receiver has no opportunity to perform the
in-network aggregation.

To address such an issue, we propose an intra-stage
aggregation scheme. After partitioning all servers at any
stage j according to ej , we focus on groups each of
which has a single server and its neighboring server at
stage j−1 is not a sender of the incast transfer. That is,
the neighboring server at stage j−1 for each of such
groups fails to perform the inter-stage aggregation. At
stage j, the only server in such a group has no one-
hop neighbors in dimension ej , but may have one-hop
neighbors in other dimensions, {0, 1, ..., k}−{ej}. In such
a case, the only server in such a group no longer delivers
its data to its neighboring server at stage j−1 but to a
one-hop neighbor in another dimension at stage j. The
selected one-hop neighbor thus aggregates all incoming
data flows and the data flow by itself (if any) at stage j,
called an intra-stage aggregation.

Such an intra-stage aggregation can further reduce the
cost of the aggregation tree since such a one-hop intra-
stage forwarding increases the tree cost by two but saves
the tree cost by at least four. The root cause is that for a
sole server in a group at a stage j the nearest aggregating
server along the original path to the receiver appears at
stage ≤j−2. Note that the cost of an inter-stage or an
intra-stage transmission is two due to the relay of an
intermediate switch. For example, the server v11 has no
neighbor in dimension e2=1 at stage 2, however, has two
neighbors, the servers v9 and v10, in dimension 0 at stage
2, as shown in Fig.2(b). If the server v11 uses the server
v9 or v10 as a relay for its data flow towards the receiver,
prior aggregation tree in Fig.2(b) can be optimized as the
new one in Fig.2(c). Thus, the cost of the aggregation tree
is decreased by two while the number of active links is
decremented by 1.

5

So far, the set of servers at stage j−1 can be achieved
under a partition of all servers at stage j according
to dimension ej . The number of outgoing data flows
from stage j−1 to its next stage j−2 is just equal to
the cardinality of the server set at stage j−1. Inspired
by such a fact, we apply the above method to other k
settings of ej and accordingly achieve other k server sets
that can appear at the stage j−1. We then simply select
the smallest server set from all k+1 ones. The setting
of ej is marked as the best routing symbol for stage j
among all k+1 candidates. Thus, the data flows from
stage j can achieve the largest gain of the in-network
aggregation at the next stage j−1.

Similarly, we can further derive the minimal set of
servers and the best choice of ej−1 at the next stage j−2,
given the server set at j−1 stage, and so on. Here, the
possible setting of ej−1 comes from {0, 1, ..., k} − {ej}.
Finally, server sets at all k+2 stages and the directed
paths between successive stages constitute an aggrega-
tion tree. The behind routing symbol at each stage is
simultaneously found. Such a method is called the IRS-
based aggregation tree building method.

Theorem 1: Given an incast transfer consisting of m
senders in BCube(n, k), the complexity of the IRS-based
aggregation tree building method is O(m× log3 N),
where N=nk+1 is the number of servers in a BCube(n, k).

Proof: Before achieving an aggregation tree, our
method performs at most k stages, from stage k+1 to
stage 2, given an incast transfer. The process to partition
all servers at any stage j into groups according to ej can
be simplified as follows. For each server at stage j, we
extract its label except the ej dimension. The resultant
label denotes a group that involves such a server. We
then add the server into such a group. The computa-
tional overhead of such a partition is proportional to
the number of servers at stage j. Thus, the resultant
time complexity at each stage is O(m) since the number
of servers at each stage cannot exceed m. Additionally,
the intra-stage aggregation after a partition of servers
at each stage incurs additional O(k×m) computational
overhead.

In the IRS-based building method, we conduct the
same operations under all of k+1 settings of ek+1. This
produces k+1 server sets for stage k at the cost of
O((k+1)2×m). In summary, the total computation cost of
generating the set of servers at stage k is O((k+1)2×m).
At stage k, our approach can identify the server set for
stage k−1 from k candidates resulting from k settings
of ek since ek+1 has exclusively selected one from the
set {0, 1, 2, ..., k}. The resultant computation cost is thus
O(k2×m). In summary, the total computation cost of the
IRS-based building method is O(k3×m) since it involves
at most k stages. Thus, Theorem 1 proved.

Our method for minimal aggregation tree in the BCube
and the method for minimal Steiner tree in the hyper-
cube proposed in [33] share similar process. Such two
methods differ from those MST-based and improved ap-
proximate methods for general graphs in Section 2.3 and

Algorithm 1 Clustering all nodes in a graph G′=(V ′, E′)

Require: A graph G′ = (V ′, E′) with |V ′| = n vertices.
1: Let groups denote an empty set;
2: while G′ is not empty do
3: Calculate the degree of each vertex in V ′;
4: Find the vertex with the largest degree in G′. Such

a vertex and its neighbor vertices form a group
that is added into the set groups;

5: Remove all elements in the resultant group and
their related edges from G′.

are in effect a (1+ǫ) approximation, as shown in [33]. The
evaluation result indicates that our method outperforms
the approximate algorithm for general graphs, whose
approximate ratio is less than 2 [27].

3.3 Shuffle aggregation subgraph building method

For a shuffle transfer in BCube(n, k), let S={s1, s2, ..., sm}
and R={r1, r2, ..., rn} denote the sender set and receiver
set, respectively. An intrinsic way for scheduling all
flows in the shuffler transfer is to derive an aggregation
tree from all senders to each receiver via the IRS-based
building method. The combination of such aggrega-
tion trees produces an incast-based shuffle subgraph in
G=(V,E) that spans all senders and receivers. The shuf-
fle subgraph consists of m×n paths along which all flows
in the shuffle transfer can be successfully delivered. If
we produce a unicast-based aggregation tree from all
senders to each receiver, the combination of such trees
results in a unicast-based shuffle subgraph.

We find that the shuffle subgraph has an opportunity
to be optimized due to the observations as follows. There
exist (k+1)×(n−1) one-hop neighbors of any server
in BCube(n, k). For any receiver r∈R, there may exist
some receivers in R that are one-hop neighbors of the
receiver r. Such a fact motivates us to think whether the
aggregation tree rooted at the receiver r can be reused to
carry flows for its one-hop neighbors in R. Fortunately,
this issue can be addressed by a practical strategy. The
flows from all of senders to a one-hop neighbor r1∈R of
r can be delivered to the receiver r along its aggregation
tree and then be forwarded to the receiver r1 in one hop.
In such a way, a shuffle transfer significantly reuses some
aggregation trees and thus utilizes less data center re-
sources, including physical links, servers, and switches,
compared to the incast-based method. We formalize such
a basic idea as a NP-hard problem in Definition 4.

Definition 4: For a shuffle transfer in BCube (n, k), the
minimal clustering problem of all receivers is how to
partition all receivers into a minimal number of groups
under two constraints. The intersection of any two
groups is empty. Other receivers are one-hop neighbors
of a receiver in each group.

Such a problem can be relaxed to find a minimal
dominating set (MDS) in a graph G′=(V ′, E′), where V ′

denotes the set of all receivers of the shuffle transfer, and
for any u, v∈V ′, there is (u, v)∈E′ if u and v are one-hop

6

neighbor in BCube(n, k). In such a way, each element of
MDS and its neighbors form a group. Any pair of such
groups, however, may have common elements. This is
the only difference between the minimal dominating set
problem and the minimal clustering problem. Finding a
minimum dominating set is NP-hard in general. There-
fore, the minimal clustering problem of all receivers for a
shuffle transfer is NP-hard. We thus propose an efficient
algorithm to approximate the optimal solution, as shown
in Algorithm 1.

The basic idea behind our algorithm is to calculate the
degree of each vertex in the graph G′ and find the vertex
with the largest degree. Such a vertex (a head vertex) and
its neighbors form the largest group. We then remove
all vertices in the group and their related edges from
G′. This brings impact on the degree of each remainder
vertex in G′. Therefore, we repeat the above processes
if the graph G′ is not empty. In such a way, Algorithm
1 can partition all receivers of any shuffle transfer as a
set of disjoint groups. Let α denote the number of such
groups.

We define the cost of a shuffle transfer from m senders
to a group of receivers Ri={r1, r2, ..., rg} as Ci, where
∑α

i≥1
|Ri|=n. Without loss of generality, we assume that

the group head is r1 in Ri. Let cj denote the cost of an
aggregation tree, produced by our IRS-based building
method, from all m senders to a receiver rj in the group
Ri where 1≤j≤|Ri|. The cost of such a shuffle transfer
depends on the entry point selection for each receiver
group Ri.

1) C1
i =|Ri|×c1+2(|Ri|−1) if the group head r1 is se-

lected as the entry point. In such a case, the flows
from all of senders to all of the group members are
firstly delivered to r1 along its aggregation tree and
then forwarded to each of other group members
in one hop. Such a one-hop forwarding operation
increases the cost by two due to the relay of a
switch between any two servers.

2) Cj
i=|Ri|×cj+4(|Ri|−β−1)+2×β if a receiver rj is

selected as the entry point. In such a case, the flows
from all of senders to all of the group members are
firstly delivered to rj along its aggregation tree. The
flow towards each of β one-hop neighbors of rj in
Ri, including the head r1, reaches its destination
in one-hop from rj at the cost of 2. The receiver
rj finally forwards flows towards other |Ri|−β−1
receivers, each of which is two-hops from rj due
to the relay of the group head r1 at the cost of 4.

Given Cj
i for 1≤j≤|Ri|, the cost of a shuffle transfer

from m senders to a receiver group Ri={r1, r2, ..., rg} is
given by

Ci = min{C1
i , C

2
i , ..., C

|Ri|
i }. (1)

As a result, the best entry point for the receiver group Ri

can be found simultaneously. It is not necessary that the
best entry point for the receiver group Ri is the group
head r1. Accordingly, a shuffle subgraph from m senders

(a) A tree of cost 14 with 11 active

links.

(b) A tree of cost 12 with 9 active links.

Fig. 3. Examples of aggregation trees for two incast trans-

fers, with the same sender set {v2, v5, v9, v10, v11, v14} and

the receiver v3 or v8.

to all receivers in Ri is established. Such a method is
called the SRS-based shuffle subgraph building method.

We use an example to reveal the benefit of our SRS-
based building method. Consider a shuffle transfer from
all of senders {v2, v5, v9, v10, v11, v14} to a receiver group
{v0, v3, v8} with the group head v0. Fig.2(c), Fig.3(a), and
Fig.3(b) illustrate the IRS-based aggregation trees rooted
at v0, v3, and v8, respectively. If one selects the group
head v0 as the entry point for the receiver group, the
resultant shuffle subgraph is of cost 46. When the entry
point is v3 or v8, the resultant shuffle subgraph is of cost
48 or 42. Thus, the best entry point for the receiver group
{v0, v3, v8} should be v8 not the group head v0.

In such a way, the best entry point for each of the
α receiver groups and the associated shuffle subgraph
can be produced. The combination of such α shuffle
subgraphs generates the final shuffle subgraph from m
senders to n receivers. Therefore, the cost of the resultant
shuffle subgraph, denoted as C, is given by C=

∑α
i≥1

Ci.

4 SCALABLE FORWARDING SCHEMES FOR

PERFORMING IN-NETWORK AGGREGATION

We start with a general forwarding scheme to perform
the in-network aggregation based on a shuffle subgraph.
Accordingly, we propose two more scalable and practical
forwarding schemes based on in-switch Bloom filters
and in-packet Bloom filters, respectively.

4.1 General forwarding scheme

As MapReduce-like systems grow in popularity, there is
a strong need to share data centers among users that sub-
mit MapReduce jobs. Let β be the number of such jobs
running in a data center concurrently. For a job, there
exists a JobTracker that is aware of the locations of m
map tasks and n reduce tasks of a related shuffle transfer.
The JobTracker, as a shuffle manager, then calculates an
efficient shuffle subgraph using our SRS-based method.
The shuffle subgraph contains n aggregation trees since
such a shuffle transfer can be normalized as n incast
transfers. The concatenation of the job id and the receiver
id is defined as the identifier of an incast transfer and its
aggregation tree. In such a way, we can differentiate all
incast transfers in a job or across jobs in a data center.

7

Conceptually, given an aggregation tree all involved
servers and switches can conduct the in-network ag-
gregation for the incast transfer via the following op-
erations. Each sender (a leaf vertex) greedily delivers a
data flow along the tree if its output for the receiver
has generated and it is not an aggregating server. If
a data flow meets an aggregating server, all packets
will be cached. Upon the data from all its child servers
and itself (if any) have been received, an aggregating
server performs the in-network aggregation on multiply
flows as follows. It groups all key-value pairs in such
flows according to their keys and applies the aggregate
function to each group. Such a process finally replaces
all participant flows with a new one that is continuously
forwarded along the aggregation tree.

To put such a design into practice, we need to make
some efforts as follows. For each of all incast transfers
in a shuffle transfer, the shuffle manager makes all
servers and switches in an aggregation tree are aware
of that they join the incast transfer. Each device in the
aggregation tree thus knows its parent device and adds
the incast transfer identifier into the routing entry for the
interface connecting to its parent device. Note that the
routing entry for each interface is a list of incast transfer
identifiers. When a switch or server receives a flow with
an incast transfer identifier, all routing entries on its
interfaces are checked to determine where to forward
or not.

Although such a method ensures that all flows in a
shuffle transfer can be successfully routed to destina-
tions, it is insufficient to achieve the inherent gain of
in-network aggregation. Actually, each flow of an incast
transfer is just forwarded even it reaches an aggregating
server in the related aggregation tree. The root cause is
that a server cannot infer from its routing entries that it
is an aggregating server and no matter knows its child
servers in the aggregation tree. To tackle such an issue,
we let each server in an aggregation tree maintain a pair
of id−value that records the incast transfer identifier and
the number of its child servers. Note that a switch is not
an aggregation server and thus just forwards all received
flows.

In such a way, when a server receives a flow with an
incast transfer identifier, all id−value pairs are checked
to determine whether to cache the flow for the future
aggregation. That is, a flow needs to be cached if the
related value exceeds one. If yes and the flows from all
its child servers and itself (if any) have been received,
the server aggregates all cached flows for the same
incast transfer as a new flow. All routing entries on its
interfaces are then checked to determine which interface
the new flow should be sent out. If the response is
null, the server is the destination of the new flow. If a
flow reaches a non-aggregating server, it just checks all
routing entries to identify an interface the flow should
be forwarded.

4.2 In-switch bloom filter based forwarding scheme

One trend of modern data center designs is to utilize
a large number of low-end switches for interconnection
for economic and scalability considerations. The space
of fast memory in such kind of switches is relatively
narrow and thus is quite challenging to support massive
incast transfers by keeping the incast routing entries.
To address such a challenge, we propose two types of
Bloom filter based incast forwarding schemes, namely,
in-switch Bloom filter and in-packet Bloom filter.

A Bloom filter consists of a vector of m bits, initially
all set to 0. It encodes each item in a set X by mapping
it to h random bits in the bit vector uniformly via h
hash functions. To judge whether an element x belongs
to X with n0 items, one just needs to check whether all
hashed bits of x in the Bloom filter are set to 1. If not,
x is definitely not a member of X . Otherwise, we infer
that x is a member of X . A Bloom filter may yield a false
positive due to hash collisions, for which it suggests that
an element x is in X even though it is not. The false
positive probability is fp ≈ (1−e−h×n0/m)h. From [34],
[35], fp is minimized as 0.6185m/n0 when h=(m/n0) ln 2.

For the in-switch Bloom filter, each interface on a
server or a switch maintains a Bloom filter that encodes
the identifiers of all incast transfers on the interface.
When the switch or server receives a flow with an incast
transfer identifier, all the Bloom filters on its interfaces
are checked to determine which interface the flow should
be sent out. If the response is null at a server, it is
the destination of the packet. Consider that a server is
a potential aggregating server in each incast transfer.
When a server receives a flow with an incast identifier,
it first checks all id−value pairs to determine whether
to cache the flow for the future aggregation. Only if the
related value is 1 or a new flow is generated by aggre-
gating cached flows, the server checks all Bloom filters
on its interfaces for identifying the correct forwarding
direction.

The introduction of Bloom filter can considerably com-
press the forwarding table at each server and switch.
Moreover, checking a Bloom filter on each interface only
incurs a constant delay, only h hash queries, irrespective
of the number of items represented by the Bloom filter.
In contrast, checking the routing entry for each interface
usually incurs O(log γ) delay in the general forwarding
scheme, where γ denotes the number of incast transfers
on the interface. Thus, Bloom filters can significantly
reduce the delay of making a forwarding decision on
each server and switch. Such two benefits help realize
the scalable incast and shuffle forwarding in data center
networks.

4.3 In-packet bloom filter based forwarding scheme

Both the general and the in-switch Bloom filter based for-
warding schemes suffer non-trivial management over-
head due to the dynamic behaviors of shuffle transfers.
More precisely, a new scheduled Mapreduce job will

8

bring a shuffle transfer and an associated shuffle sub-
graph. All servers and switches in the shuffle subgraph
thus should update its routing entry or Bloom filter on
related interface. Similarly, all servers and switches in a
shuffle subgraph have to update their routing table once
the related Mapreduce job is completed. To avoid such
constraints, we propose the in-packet Bloom filter based
forwarding scheme.

Given a shuffle transfer, we first calculate a shuffle
subgraph by invoking our SRS-based building method.
For each flow in the shuffle transfer, the basic idea of
our new method is to encode the flow path information
into a Bloom filter field in the header of each packet of
the flow. For example, a flow path from a sender v14 to
the receiver v0 in Fig.2(c) is a sequence of links, denoted
as v14→w6, w6→v2, v2→w0, and w0→v0. Such a set of
links is then encoded as a Bloom filter via the standard
input operation [34], [36]. Such a method eliminates
the necessity of routing entries or Bloom filters on the
interfaces of each server and switch. We use the link-
based Bloom filters to encode all directed physical links
in the flow path. To differentiate packets of different
incast transfers, all packets of a flow is associated with
the identifier of an incast transfer the flow joins.

When a switch receives a packet with a Bloom filter
field, its entire links are checked to determine along
which link the packet should be forwarded. For a server,
it should first check all id−value pairs to determine
whether to cache the flow for the future aggregation.
That is, the packet should be forwarded directly if
the related value is 1. Once a server has received all
value flows of an incast transfer, e.g., server v10 collects
value=3 flows in Fig.3(b), such flows are aggregated as
a new flow. To forward such packets, the server checks
the Bloom filter with its entire links as inputs to find a
forwarding direction.

Generally, such a forwarding scheme may incur false
positive forwarding due to the false positive feature
of Bloom filters. When a server in a flow path meets
a false positive, it will forward flow packets towards
another one-hop neighbors besides its right upstream
server. The flow packets propagated to another server
due to a false positive will be terminated with high
probability since the in-packet Bloom filter just encodes
the right flow path. Additionally, the number of such
mis-forwarding can be less than one during the entire
propagation process of a packet if the parameters of a
Bloom filter satisfy certain requirements.

For a shuffle transfer in BCube(n, k), a flow path is at
most 2(k+1) of length, i.e., the diameter of BCube(n, k).
Thus, a Bloom filter used by each flow packet encodes
n0 = 2(k+1) directed links. Let us consider a forwarding
of a flow packet from stage i to stage i−1 for 1≤i≤k
along the shuffle subgraph. The server at stage i is an
i-hop neighbor of the flow destination since their labels
differ in i dimensions. When the server at stage i needs
to forward a packet of the flow, it just needs to check
i links towards its i one-hop neighbors that are also

(i−1)-hops neighbors of the flow destination. The flow
packet, however, will be forwarded to far away from
the destination through other k+1−i links that should
be ignored directly when the server makes a forwarding
decision. Among the i links on the server at stage i,
i−1 links may cause false positive forwarding at a given
probability when checking the Bloom filter field of a
flow packet. The packet is finally sent to an intermediate
switch along the right link. Although the switch has
n links, only one of them connects with the server at
stage i−1 in the path encoded by a Bloom filter field in
the packet. The servers along with other n−2 links of
the switch are still i-hops neighbors of the destination.
Such n−2 links are thus ignored when the switch makes
a forwarding decision. Consequently, no false positive
forwarding appears at a switch.

In summary, given a shuffle subgraph a packet will
meet at most k servers before reaching the destination
and may occur false positive forwarding on each of at

most
∑k−1

i=1
i server links at probability fp. Thus, the

number of resultant false positive forwarding due to
deliver a packet to its destination is given by

fp×
∑k−1

i=1
i = 0.6185

m

2(k+1) × k × (k−1)/2, (2)

here n0=2(k+1). If we impose a constriant that the value
of Formula (2) is less than 1, then

m ≥ 2(k+1)× log0.6185
2

k × (k−1)
. (3)

We can derive the requried size of Bloom filter field
of each packet from Formula (3). We find that the value
of k is usually not large for a large-scale data center, as
shown in Section 5.5. Thus, the Bloom filter field of each
packet incurs additional traffic overhead.

5 PERFORMANCE EVALUATION

We start with our prototype implementation. We then
evaluate our methods and compare with other works un-
der different data center sizes, shuffle transfer sizes, and
aggregation ratios. We also measure the traffic overhead
of our in-packet Bloom filter based forwarding scheme.

5.1 The prototype implementation

Our testbed consists of 61 virtual machines (VM) hosted
by 6 servers connected with an Ethernet. Each server
equips with two 8-core processors, 24GB memory and a
1TB disk. Five of the servers run 10 virtual machines as
the Hadoop virtual slave nodes, and the other one runs
10 virtual slave nodes and 1 master node that acts as
the shuffle manager. Each virtual slave node supports
two map tasks and two reduce tasks. We extend the
Hadoop to embrace the in-network aggregation on any
shuffle transfer. We launch the built-in wordcount job
with the combiner, where the job has 60 map tasks and
60 reduce tasks, respectively. That is, such a job employs
one map task and reduce task from each of 60 VMs. We

9

associate each map task ten input files each with 64M. A
shuffle transfer from all 60 senders to 60 receivers is thus
achieved. The average amount of data from a sender
(map task) to the receiver (reduce task) is about 1M after
performing the combiner at each sender. Each receiver
performs the count function. Our approaches exhibit
more benefits for other aggregation functions, e.g., the
sum, maximum, minimum, top-k and KNN functions.

To deploy the wordcount job in a BCube(6, k) data
center for 2≤k≤8, all of senders and receivers (the map
and reduce tasks) of the shuffle transfer are randomly
allocated with BCube labels. We then generate the SRS-
based, incast-based, and unicast-based shuffle subgraphs
for the shuffle transfer via corresponding methods. Our
testbed is used to emulate a partial BCube(6,k) on which
the resultant shuffle subgraphs can be conceptedly de-
ployed. To this end, given a shuffle subgraph we omit all
of switches and map all of intermediate server vertices
to the 60 slave VMs in our testbed. That is, we use
a software agent to emulate an intermediate server so
as to receive, cache, aggregate, and forward packets.
Thus, we achieve an overlay implementation of shuffle
transfer. Each path between two neighboring servers in
the shuffle subgraph is mapped to a virtual link between
VMs or a physical link across servers in our testbed.

We compare our SRS-based shuffle subgraph against
the incast-based shuffle subgraph, the Steiner-based one,
the unicast-based one, and the existing method in terms
of four metrics. They are the resultant network traffic,
the number of active links, the number of cache servers,
and the input data size at each receiver. The network
traffic denotes the sum of network traffic over all edges
in the shuffle subgraph. Actually, the existing method is
just the unicast-based method but does not perform the
in-network aggregation.

The Steiner-based shuffle subgraph is similar to the
incast-based one but each aggregation tree results from
the Steiner-tree algorithm. The Steiner-tree algorithm we
choose is the one described in [27], whose benefit is
the computation speed. The algorithm works as follows.
At first, a virtual complete graph is generated upon
the incast members. Then, a minimum spanning tree
is calculated on the virtual complete graph. Finally, the
virtual link in the virtual complete graph is replaced by
the shortest path between any two incast members in
the original topology, with unnecessary links deleted.

5.2 Impact of the data center size

Consider a shuffle transfer with 60 senders and 60
receivers that are randomly selected in a data center
with BCube(6,k) as its network structure. We conduct
experiments and collect the performance metrics after
completing such a shuffle transfer along different shuf-
fle subgraphs. Fig.4 shows the changing trends of the
performance metrics on average, among 100 rounds of
experiments, under different methods and settings of k.

Fig.4(a) indicates that our SRS-based, the Steiner-
based, and the unicast-based methods considerably save

2 3 4 5 6 7 8
0

1

2

3

4

5

6
x 10

4

k

R
e
s
u
lt
a
n
t
n
e
tw

o
rk

 t
ra

ff
ic

Existing method

Unicast−based Shuffle

Steiner−based Shuffle

SRS−based Shuffle

(a) The resultant network traffic.

2 3 4 5 6 7 8
0

1

2

3

4

5
x 10

4

k

N
u

m
b

e
r

o
f

a
c
ti
v
e

 l
in

k
s

Unicast−based Shuffle

Incast−based Shuffle

SRS−based Shuffle

(b) The number of active links.

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

k
N

u
m

b
e

r
o

f
c
a

c
h

e
 s

e
rv

e
rs

Incast−based Shuffle

SRS−based Shuffle

Unicast−based Shuffle

(c) Number of cache servers.

2 3 4 5 6 7 8
0

10

20

30

40

50

60

k

In
p
u
t
d
a
ta

 s
iz

e

Existing method

Unicast−based Shuffle

SRS−based Shuffle

(d) Input data size at each receiver.

Fig. 4. The changing trends of four performance metrics

for shuffle transfers with 60 senders and 60 receivers in

BCube(6,k), where k ranges from 2 to 8.

the resultant network traffic compared to the existing
method, irrespective of the data center size, i.e., 6k+1.
Table 1 shows that the SRS-based method causes less
network traffic than the incast-based method. More
precisely, the SRS-based, incast-based, Steiner-based,
and unicast-based methods save the network traffic by
32.87%, 32.69%, 28.76%, and 17.64% on average com-
pared to the existing method. Such results demonstrate
the large gain of in-network aggregation in BCube(6,k)
even for a small shuffle transfer. Additionally, our SRS-
based and incast-based methods considerably outper-
form the unicast-based one due to the following reason.

Our two methods schedule all of involved flows at
the level of a single or a group of incast transfers while
the unicast-based method does it at the level of each
individual flow. Actually, the number of aggregating
servers in the incast-based method increases while that
in the unicast-based method decreases along with the
increase of k, as shown in Fig.4(c). Thus, the incast-based
method always has more opportunity to performing the
in-network aggregation than the unicast-driven method.
The SRS-based method improves the incast-based one
by reusing as many incast aggregation trees as possible
and thus utilizes less number of aggregating servers and
active links, as shown in Fig.4(c) and Fig.4(b). Note that

TABLE 1

The network traffic under the same settings of Figure 4.

Shuffle k=2 k=3 k=4 k=5 k=6 k=7
SRS-based 8544 12250 20102 25608 30806 37754
Incast-based 8730 12298 20098 25606 30806 37754

10

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2
x 10

7

Number of elements in shuffle transfers

R
e
s
u
lt
a
n
t
n
e
tw

o
rk

 t
ra

ff
ic

Existing method

Unicast−based Shuffle

Steiner−based Shuffle

SRS−based Shuffle

(a) The resultant network traffic.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10
x 10

6

Number of elements in shuffle transfers

N
u
m

b
e
r

o
f
a
c
ti
v
e
 l
in

k
s

Unicast−based Shuffle

Incast−based Shuffle

SRS−based Shuffle

(b) The number of active links.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2
x 10

6

Number of elements in shuffle transfers

N
u
m

b
e
r

o
f
c
a
c
h
e
 s

e
rv

e
rs

Incast−based Shuffle

Unicast−based Shuffle

SRS−based Shuffle

(c) Number of cache servers.

0 500 1000 1500 2000 2500 3000
2

3

4

5

6

7

8

Number of elements in shuffle transfers

In
p
u
t
d
a
ta

 s
iz

e
 (

lo
g
)

Existing method

Unicast−based Shuffle

SRS−based Shuffle

(d) Input data size at each receiver.

Fig. 5. The changing trends of two performance metrics

along with the increase of elements in a shuffle transfer

in BCube(8,5) with 262144 servers, where the number of

senders equals to that of the receivers.

the SRS-based method becomes the incast-based method
when k≥6. The reason is that the data center is too large
such that a small number of receivers, e.g., randomly
selected 60 receivers, do not contain any pair of one-hop
neighbors. Consequently, each partition of all receivers
just covers one receiver. Besides such benefits, our SRS-
based method significantly reduces the size of input data
at each receiver, as shown in Fig.4(d), and thus reduces
the delay during the reduce phase of a job.

In summary, our SRS-based and incast-based methods
support a small size shuffle transfer well with less data
center resources and network traffic compared to the
unicast-based and existing methods, irrespective of the
size of the data center. Moreover, our SRS-based and
incast-based methods can improve the performance of
the Steiner-based method at some extent. The root cause
is that our methods can efficiently exploit the topological
feature of BCube and utilize more aggregating servers
than the Steiner-based method although they have sim-
ilar number of active links.

5.3 Impact of the shuffle transfer size

Consider that a MapReduce-like job may sometimes
involve several hundreds even thousands map and re-
duce tasks. We will evaluate our methods over shuffle
transfers with varying number of members. It is difficult
for our testbed to execute a large-scale wordcount job
due to its limited resources. We thus conduct extensively
simulations to demonstrate the scaling property of our
methods. To achieve a shuffle transfer with m senders

and n receivers, m=n=50×i for 1≤i≤30, we created a
synthetic wordcount job. The wordcount job provides
the input data of 64M for each sender, generated by the
built-in RandomTextWriter of Hadoop. The data trans-
mission from each sender to the receiver is controlled
to be 1M on average. Fig.5 shows the changing trends
of the performance metrics along with the increase of
the number of elements, i.e., m+n, in shuffle transfers
in BCube(8,5). The number of servers in BCube(8,5) is
262144 that is large enough for a data center.

Our results indicate that the SRS-based, incast-based,
Steiner-based, and unicast-based shuffle methods sig-
nificantly save the network traffic by 55.33%, 55.29%,
44.89%, and 34.46% on average compared to the existing
method as m=n ranges from 50 to 1500. Such benefits
of the three methods are more notable as the increase of
m=n and thus demonstrate the gain of the in-network
aggregation in large shuffle transfers. Moreover, our
SRS-based method always utilizes less links (hence less
servers and network devices) compared to the unicast-
based and incast-basded methods, as shown in Fig.5(b).

On the other hand, the incast-based method always
exploits more aggregating servers than the unicast-based
method as the shuffle size increases, as shown in Fig.5(c).
Thus, the incast-based method always has more oppor-
tunity to performing the in-network aggregation than
the unicast-driven method. This is the fundamental rea-
son why our incast-based method causes less network
traffic than the unicast-based method. Our SRS-based
method improves the incast-based one by reusing as
many incast aggregation trees as possible. Consequently,
the SRS-based method achieves the largest gain of the
in-network aggregation with the least number of aggre-
gating servers and active links compared to the incast-
based and unicast-based methods, as shown in Fig.5(b)
and Fig.5(c). Besides the above benefits, our SRS-based
method significantly reduces the size of input data at
each receiver, as shown in Fig.5(d), and thus reduces the
delay during the reduce phase of a job.

In summary, our SRS-based and incast-based ap-
proaches can support a shuffle transfer of any size well at
the cost of less data center resources and network traffic
compared to the unicast-based and existing methods.

5.4 Impact of the aggregation ratio

Recall that we make an assumption for easing our prob-
lem analysis in Section 3.1 and large-scale simulations.
Data flows each of which consists of key-value pairs can
be aggregated as a new one whose size is the largest
size among such flows. That is, the set of keys in each
involved data flow is the subset of that in the largest
data flow. We further evaluate our SRS-based approach
under a more general shuffle transfer.

Given s data flows towards to the same receiver in a
general shuffle transfer, let fi denote the size of the ith

data flow for 1≤i≤s. Let δ denote the aggregation ratio
among any number of data flows, where 0≤δ≤1. After

11

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

x 10
5

Aggregation factor

R
e

s
u

lt
a

n
t

n
e

tw
o

rk
 t

ra
ff

ic
 (

M
)

Existing method

Unicast−based Shuffle

SRS−based Shuffle

(a) A shuffle transfer, m=n=250.

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9
x 10

6

Aggregation factor

R
e

s
u

lt
a

n
t

n
e

tw
o

rk
 t

ra
ff

ic
 (

M
)

Existing method

Unicast−based Shuffle

SRS−based Shuffle

(b) A shuffle transfer, m=n=1000.

Fig. 6. The changing trends of the network traffic along

with the increase of aggregation factor under different

settings of shuffle transfers in BCube(8,5).

aggregating such s flows, the size of the new data flow
is given by

max{f1, f2, ..., fs}+ δ ×
(

∑s

i=1
fi −max{f1, f2, ..., fs}

)

.

Our analysis in Section 3.1 and the above large-scale
simulations fall into a special scenario, i.e., δ=0, where
the in-network aggregation on flows achieves the largest
gain. On the contrary, δ=1 is another special scenario
where any two of the s data flows do not share any
key. In such a case, the in-network aggregation on the s
data flows does not bring any gain; hence, the unicast-
driven method is equivalent to the existing method.
Here, we evaluate our SRS-based approach in a more
general scenario where 0≤δ≤1.

We measure the resultant network traffic of the SRS-
based, unicast-based, and existing methods under two
representative shuffle transfers in BCube(8,5) as δ ranges
from 0 to 1. Fig.6 indicates that our SRS-based method
always incurs much less network traffic than other two
methods. Such results demonstrate the gain of the in-
network aggregation for more general shuffle transfers.
Assume that the value of the random variable δ follows
a uniform distribution (if any). In such a case, our SRS-
based method saves the resultant network traffic by
28.78% in Fig.6(a) and 45.05% in Fig.6(b) compared to
the existing method, respectively. Thus, our SRS-based
method outperforms other two methods in more general
scenario, irrespective of the size of shuffle transfer.

We further compare of our SRS-based shuffle and
SRS-based shuffle (no agg.) methods in terms of the
completion time of map-reduce jobs on average. As ex-
pected, when the aggregation ration approaches to 1 the
performance of such two methods is the same, because
there is no opportunity to aggregate packets on-path.
As aggregation ration decreases, our SRS-based shuffle
method always achieves the lower shuffle and reduces
time due to reduce the number of packets forward and

TABLE 2

The minimum size of Bloom filter field in each packet.

k=2 k=3 k=4 k=5 k=6 k=7
Bits (m) <19 19 38 58 79 102
BCube(6,k) 216 1296 7776 46656 279936 1679616

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

Aggregation factor

T
im

e
 (

s
)

lo
g

s
c
a

le

SRS−based Shuffle (no agg.)

SRS−based Shuffle

(a) A shuffle transfer, m=n=250.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Aggregation factor

T
im

e
 (

s
)

lo
g
s
c
a
le

SRS−based Shuffle (no agg.)

SRS−based Shuffle

(b) A shuffle transfer, m=n=1000.

Fig. 7. The changing trends of the delay along with the

increase of aggregation factor under different settings of

shuffle transfers in BCube(8,5).

increase the available bandwidth. This is clearly seen in
Fig.7(a) and Fig.7(b).

5.5 The size of bloom filter in each packet

Among the three forwarding schemes for performing the
in-network aggregation, we prefer the in-packet Bloom
filter based forwarding scheme. The only overhead of
such a scheme is the traffic overhead resulting from not
only the false positive forwarding but also the Bloom
filter field in each packet. We reveal that, for a packet of
any shuffle transfer, no false positive forwarding occurs
during the entire forwarding process along with a SRS-
based shuffle subgraph only if Formula (3) holds.

For data centers with network structures BCube(6, k)s,
Table 2 shows the minimum size of Bloom filter field in
each packet. The traffic overhead due to the Bloom filter
field in each packet increases along with the increase of
k. The overhead, however, is less than 10 bytes in data
centers, with no more than 279936 servers, that is large
enough for a production data center.

6 CONCLUSION

In many commonly used workloads, shuffle transfers
contribute most of the network traffic and make the
network bandwidth become a bottleneck in data cen-
ters. To efficiently use the available network bandwidth,
we propose to aggregate correlated data flows during
their transmission process. To this end, we model the
minimal incast aggregation tree and shuffle aggregation
subgraph problems that are NP-hard. We propose two
approximate methods, IRS-based and SRS-based meth-
ods, for building an efficient incast aggregation tree and
shuffle aggregation subgraph. We then present scalable
forwarding schemes using Bloom filters to implement
in-network aggregation. We evaluate our method and
related work using a prototype and large-scale simula-
tions. The results show that our method can significantly
reduce the network traffic and save the data center
resources compared to others.

12

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers
for their constructive comments. The work is partially
supported by the NSFC under Grant No. 61170284, the
National Basic Research Program (973 program) under
Grant No. 2014CB347800, and the China Postdoctoral
Science Foundation under Grant No. 2013M542370.

REFERENCES

[1] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein, “Mapre-
duce online,” in Proc. 7th USENIX NSDI, CA, USA, 2010, pp. 313–
328.

[2] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey, “Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level language,”
in Proc. OSDI, San Diego, California, USA, 2008, pp. 1–14.

[3] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “CIEL: A universal execution engine
for distributed data-flow computing,” in Proc. 8th USENIX NSDI,
Boston, MA, USA, 2011, pp. 227–236.

[4] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proc. ACM SIGMOD, Indiana, USA, 2010,
pp. 135–146.

[5] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A
scalable and fault-tolerant network structure for data centers,” in
Proc. ACM SIGCOMM, Seattle, Washington, USA, 2008.

[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A high performance, server-centric network
architecture for modular data centers,” in Proc. ACM SIGCOMM,
Barcelona, Spain, 2009.

[7] M. A. Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM,
Seattle, Washington, USA, 2008.

[8] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
and P. P. and, “Vl2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, Barcelona, Spain, 2009.

[9] D. Guo, T. Chen, D. Li, Y. Liu, X. Liu, and G. Chen, “Bcn:
Expansible network structures for data centers using hierarchical
compound graphs,” in Proc. 30th IEEE INFOCOM, Shanghai,
China, 2011, pp. 61–65.

[10] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen, “Expansible
and cost-effective network structures for data centers using dual-
port servers,” IEEE Transactions on Computers, vol. 62, no. 7, pp.
1303–1317, 2013.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
in Proc. ACM SIGCOMM, Toronto, ON, Canada, 2011, pp. 98–109.

[12] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case
for evaluating mapreduce performance using workload suites,”
in Proc. 19th IEEE/ACM MASCOTS, Singapore, 2011, pp. 390–399.

[13] R. Mysore, A. Pamboris, and N. Farrington, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in Proc. ACM
SIGCOMM, 2009.

[14] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in Proc. 37th ACM ISCA, Saint-
Malo, France, 2010, pp. 338–347.

[15] J. H. Ahn, N. L. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: topology, routing, and packaging of efficient large-scale
networks,” in Proc. ACM/IEEE Conference on High Performance
Computing(SC), Portland, Oregon, USA, 2009.

[16] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and
hyperbus structures for a computer network,” IEEE Transactions
on Computers, vol. 33, no. 4, pp. 323–333, 1984.

[17] S. Alan, K. Srikanth, and S. E. Gn, “Sidecar: building
programmable datacenter networks without programmable
switches,” in HotNets, Monterey, CA, USA, 2010.

[18] P. Costa, “Bridging the gap between applications and networks
in data centers,” Operating Systems Review, vol. 47, no. 1, pp. 3–8,
2013.

[19] H. Abu-Libdeh, P. Costa, A. Rowstron, G. OShea, and A. Don-
nelly, “Symbiotic routing in future data centers,” in Proc. ACM
SIGCOMM, New Delhi, India, 2010.

[20] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in
Proc. ACM SoCC, Cascais, Portugal, 2011, p. 2.

[21] L. Gyarmati and T. Trinh, “Scafida: A scale-free network inspired
data center architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 40, no. 5, pp. 5–12, Oct. 2010.

[22] G. Lu, C. Guo, Y. Li, and Z. Zhou, “Serverswitch: A programmable
and high performance platform for data center networks,” in Proc.
8th NSDI, Boston, MA, USA, 2011, pp. 15–28.

[23] J. Cao, C. Guo, G. Lu, Y. Xiong, Y. Zheng, Y. Zhang, Y. Zhu, and
C. Chen, “Datacast: a scalable and efficient reliable group data
delivery service for data centers,” in Proc. ACM CoNEXT, Nice,
France, Dec. 2012, pp. 37–48.

[24] L. Yu and J. Li, “Grouping-based resilient statistical en-route
filtering for sensor networks,” in INFOCOM, Rio de Janeiro,
Brazil, 2009, pp. 1782–1790.

[25] L. A. Villas, A. Boukerche, H. S. Ramos, H. A. B. F. de Oliveira,
R. B. de Araujo, and A. A. F. Loureiro, “Drina: A lightweight and
reliable routing approach for in-network aggregation in wireless
sensor networks,” IEEE Transactions on Computers, vol. 62, no. 4,
pp. 676–689, 2013.

[26] P. Costa, A. Donnelly, and A. R. G. OShea, “Camdoop: Exploiting
in-network aggregation for big data applications,” in Proc. 9th
NSDI, San Jose, CA, Apr. 2012.

[27] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for
steiner trees,” Acta Informatica (Historical Archive), vol. 15, no. 2,
pp. 141–145, Jun. 1981.

[28] G. Robins and A. Zelikovsky, “Tighter bounds for graph steiner
tree approximation,” SIAM J. Discrete Math, vol. 19, no. 1, pp.
122–134, 2005.

[29] B. Bloom, “The steiner tree problem with edge lengths 1 and 2,”
Information Processing Letters, vol. 32, pp. 171–176, 1989.

[30] A. Z. Zelikovsky, “The 11/6-approximation algorithm for the
steiner problem on networks,” Algorithmica, vol. 9, no. 5, pp. 463–
470, 1993.

[31] P. Berman and V. Ramaiyer, “Improved approximation algorithms
for the steiner tree problem,” Journal of Algorithms, vol. 17, no. 3,
pp. 381–408, 1994.

[32] A. Z. Zelikovsky, “Better approximation bounds for the network
and euclidean steiner tree problems,” SIAM Journal on Computing,
vol. 26, no. 3, pp. 857–869, 1997.

[33] T. Jiang and Z. M. D. Pritikin, “Near optimal bounds for steiner
tree in the hypercube,” SIAM Journal on Discrete Mathematics,
vol. 40, no. 5, pp. 1340–1360, 2011.

[34] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 1, pp. 120–133, 2010.

[35] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of
counting bloom filter,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 5, pp. 651–664, 2010.

[36] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2005.

Deke Guo received the B.S. degree in industry
engineering from Beijing University of Aeronau-
tic and Astronautic, Beijing, China, in 2001, and
the Ph.D. degree in management science and
engineering from National University of Defense
Technology, Changsha, China, in 2008. He is an
Associate Professor with the College of Informa-
tion System and Management, National Univer-
sity of Defense Technology, Changsha, China.
His research interests include distributed sys-
tems, software-defined networking, data center

networking, wireless and mobile systems, and interconnection networks.
He is a member of the ACM and the IEEE.

13

Junjie Xie received the B.S. degree in computer
science and technology from Beijing Institute of
Technology, Beijing, China, in 2013. He is cur-
rently working toward the M.S. degree in College
of Information System and Management, Na-
tional University of Defense Technology, Chang-
sha, China. His research interests include dis-
tributed systems, data centers, software defined
networks and interconnection networks.

Xiaolei Zhou received the B.S. degree in in-
formation management from Nanjing University,
Nanjing, China, in 2009, and the M.S. degree in
military science from National University of De-
fense Technology, China, in 2011. He is currently
working toward the Ph.D. degree in College of
Information System and Management, National
University of Defense Technology, China. His
current research interests include wireless sen-
sor networks, Internet of things, and data center
networking. He is a student member of the IEEE.

Xiaomin Zhu received the B.S. and M.S. de-
grees in computer science from Liaoning Tech-
nical University, Liaoning, China, in 2001 and
2004, respectively, and the Ph.D. degree in com-
puter science from Fudan University, Shanghai,
China, in 2009. In the same year, he won the
Shanghai Excellent Graduate. He is currently
an associate professor with the College of In-
formation System and Management at National
University of Defense Technology, Changsha,
China. His research interests include scheduling

and resource management in green computing, cluster computing,
cloud computing, and multiple satellites. He has published more than
50 research articles in refereed journals and conference proceedings
such as IEEE TC, IEEE TPDS, JPDC, JSS and so on. He is a member
of the IEEE, the IEEE Communication Society, and the ACM.

Wei Wei received the M.S. and Ph.D. degrees
from Xian Jiaotong University, Xian, China, in
2011 and 2005, respectively. He is an assis-
tant Professor at Xian University of Technology.
His research interests include wireless sensor
network, pervasive computing, and distributed
computing. He is a member of the IEEE.

Xueshan Luo received the B.S. degree in in-
formation engineering from Huazhong Institute
of Technology, Wuhan, China, in 1985, and the
M.S. and Ph.D. degrees in system engineering
from the National University of Defense Tech-
nology, Changsha, China, in 1988 and 1992,
respectively. Currently, he is a professor of In-
formation System and Management, National
University of Defense Technology. His research
interests are in the general areas of information
system and operation research.

14

