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e problem of the previous researches on personalized ranking is that they focused on either explicit feedback data or implicit
feedback data rather than making full use of the information in the dataset. Until now, nobody has studied personalized ranking
algorithm by exploiting both explicit and implicit feedback. In order to overcome the defects of prior researches, a new personalized
ranking algorithm (MERR SVD++) based on the newest xCLiMF model and SVD++ algorithm was proposed, which exploited
both explicit and implicit feedback simultaneously and optimized the well-known evaluation metric Expected Reciprocal Rank
(ERR). Experimental results on practical datasets showed that our proposed algorithm outperformed existing personalized ranking
algorithms over di�erent evaluation metrics and that the running time of MERR SVD++ showed a linear correlation with the
number of rating. Because of its high precision and the good expansibility, MERR SVD++ is suitable for processing big data and
has wide application prospect in the 	eld of internet information recommendation.

1. Introduction

As e-commerce is growing in popularity, an important
challenge is helping customers sort through a large variety of
o�ered products to easily 	nd the ones they will enjoy the
most. One of the tools that address this challenge is the
recommender system, which is attracting a lot of attention
recently [1–4]. Recommender systems are a subclass of infor-
mation 	ltering systems that seek to predict the “rating” or
“preference” that users would give to an item [1]. Preferences
for items are learned from users’ past interactions with the
system, such as purchase histories or the click logs. 
e
purpose of the system is to recommend items that users
might like from a large collection. Recommender systems
have been applied to many areas on the Internet, such as the
e-commerce systemAmazon, the DVD rental systemNet�ix,
and Google News. Recommender systems are usually clas-
si	ed into three categories based on how recommendations
are made: content-based recommendations, collaborative
	ltering (CF), and hybrid approaches. In these approaches,
collaborative 	ltering is the most widely used and the most
successful.

Recently, collaborative 	ltering algorithm has been
widely studied in both academic and industrial 	elds.

e data processed by collaborative 	ltering algorithm are
divided into two categories: explicit feedback data (e.g.,
ratings, votes) and implicit feedback data (e.g., clicks, pur-
chases). Explicit feedback data are more widely used in the
research 	elds of recommender system [1, 2, 4–7]. 
ey are
o�en in the form of numeric ratings from users to express
their preferences regarding speci	c items. Implicit feedback
data are easier to collect. 
e research on implicit feedback
about CF is also called One-Class Collaborative Filtering
(OCCF) [8–15], in which only positive implicit feedback or
only positive examples can be observed. 
e explicit and
implicit feedback data can be expressed in matrix form as
shown in Figure 1. In the explicit feedbackmatrix, an element
can be any real number, but o�en ratings are integers in
the range (1∼5), such as the ratings on Net�ix, where a
missing element represents amissing example. In the implicit
feedback matrix, the positive-only user preferences data can
be represented as a single-valued matrix.

Collaborative 	ltering algorithms also can be divided into
two categories: collaborative 	ltering (CF) algorithms based
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Figure 1: Examples of an explicit feedback matrix (a) and an implicit feedback matrix (b) for a recommender system.

on rating prediction [2, 4, 5, 8, 9, 12, 16, 17] and personalized
ranking (PR) algorithms based on ranking prediction [3,
6, 7, 10, 11, 13–15, 18]. In collaborative 	ltering algorithms
based on rating prediction, one predicts the actual rating for
an item that a customer has not rated yet and then ranks
the items according to the predicted ratings. On the other
hand, for personalized ranking algorithms based on ranking
prediction, one predicts a preference ordering over the yet
unrated items without going through the intermeditate step
of rating prediction. Actually, from the recommendation
perspective, the order over the items is more important than
their rating.
erefore, in this paper, we focus on personalized
ranking algorithms based on ranking prediction.


e problem of the previous researches on personalized
ranking is that they focused on either explicit feedback data
or implicit feedback data rather than making full use of the
information in the dataset. However, in most real world rec-
ommender systems both explicit and implicit user feedback
are abundant and could potentially complement each other.
It is desirable to be able to unify these two heterogeneous
forms of user feedback in order to generate more accu-
rate recommendations. 
e idea of complementing explicit
feedback with implicit feedback was 	rst proposed in [16],
where the author considered explicit feedback as how the
users rated the movies and implicit feedback as what movies
were rated by the users. 
e two forms of feedback were
combined via a factorized neighborhood model (called Sin-
gular Value Decomposition++, SVD++), an extension of
traditional nearest item-based model in which the item-
item similarity matrix was approximated via low rank fac-
torization. In order to make full use of explicit and implicit
feedback, Liu et al. [17] proposed Co-Rating model, which
developed matrix factorization models that could be trained
from explicit and implicit feedback simultaneously. Both
SVD++ and Co-Rating are based on rating prediction. Until
now, nobody has studied personalized ranking algorithm by
exploiting both explicit and implicit feedback.

In order to overcome the defects of prior researches,
this paper proposes a new personalized ranking algorithm

(MERR SVD++), which exploits both explicit and implicit
feedback and optimizes Expected Reciprocal Rank (ERR)
based on the newest Extended Collaborative Less-Is-More
Filtering (xCLiMF)model [18] and SVD++ algorithm. Exper-
imental results on practical datasets showed that our pro-
posed algorithm outperformed existing personalized ranking
algorithms over di�erent evaluation metrics and that the
running time of MERR SVD++ showed a linear correlation
with the number of rating. Because of its high precision
and the good expansibility, MERR SVD++ is suitable for
processing big data and has wide application prospect in the
	eld of internet information recommendation.


e rest of this paper is organized as follows: Section 2
introduces previous related work; Section 3 demonstrates the
problem formalization and SVD++ algorithm; a new per-
sonalized ranking algorithm (MERR SVD++) is proposed
in Section 4; the experimental results and discussion are
presented in Section 5, followed by the conclusion and future
work in Section 6.

2. Related Work

2.1. Rating Prediction. In conventional CF tasks, the most
frequently used evaluation metrics are the Mean Absolute
Error (MAE) and the Root Mean Square Error (RMSE).

erefore, rating prediction (such as the Net�ix Prize) has
been the most popular method for solving the CF problem.
Rating prediction methods are always regression based: they
minimize the error of predicted ratings and true ratings.

e simplest algorithm for rating prediction is �-Nearest-
Neighbor (KNN) [19], which predicts the missing ratings
from the neighborhood of users or items. KNN is a memory-
based algorithm, and one needs to compute all the similarities
betweendi�erent users or items.More e�cient algorithms are
model based: they build a model from the visible ratings and
compute all the missing ratings from the model. Widely used
model-based rating prediction methods include PLSA [20],
the Restricted Boltzmann Machine (RBM) [21], and a series
of matrix factorization techniques [22–25].
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2.2. Learning to Rank. LTR is the core technology for
information retrieval. When a query is input into a search
engine, LTR is responsible for ranking all the documents
or Web pages according to their relevance to this query or
other objectives. Many LTR algorithms have been proposed
recently, and they can be classi	ed into three categories:
pointwise, listwise, and pairwise [3, 26].

In the pointwise approach, it is assumed that each query-
document pair in the training data has a numerical or ordinal
score. 
en the LTR problem can be approximated by a
regression problem: given a single query-document pair, its
score is predicted.

As the name suggests, the listwise approach takes the
entire set of documents associatedwith a query in the training
data as the input to construct amodel and predict their scores.


e pairwise approach does not focus on accurately
predicting the degree of relevance of each document; instead,
it mainly cares about the relative order of two documents. In
this sense, it is closer to the concept of “ranking.”

2.3. Personalized Ranking Algorithms for Collaborative Fil-
tering. 
e algorithms about personalized ranking can also
be divided into two categories: personalized ranking with
implicit feedback (PRIF) [6, 7, 10, 11, 13–15] and personalized
ranking with explicit feedback (PREF) [18, 27–29]. 
e
foremost of PRIF is Bayesian Personalized Ranking (BPR)
[11], which converts the OCCF problem into a ranking
problem. Pan et al. [13] proposedAdaptive BayesianPersonal-
ized Ranking (ABPR), which generalized BPR algorithm for
homogeneous implicit feedback and learned the con	dence
adaptively. Pan et al. [15] have proposed Group Bayesian
Personalized Ranking (GBPR), via introducing richer inter-
actions among users. In GBPR, it introduces group prefer-
ence, to relax the individual and independence assumptions
of BPR. Jahrer and Toscher [6] proposed SVD and AFM,
which used a ranking based objective function constructed
by matrix decomposition model and a stochastic gradient
descent optimizer. Takács and Tikk [7] proposed RankALS,
which presented a computationally e�ective approach for
the direct minimization of a ranking objective function
without sampling. Gai [10] proposed a new PRIF algorithm
(Pairwise Probabilistic Matrix Factorization (PPMF)) to fur-
ther improve the performance of previous PRIF algorithms.
Recently, Shi et al. [14] proposed Collaborative Less-is-More
Filtering (CLiMF), in which the model parameters were
learned by directly maximizing the well-known information
retrieval metric: Mean Reciprocal Rank (MRR). However,
CLiMF is not suitable for other evaluation metrics (e.g.,
MAP, AUC, and NDCG). References [6, 7, 10, 11, 13–15]
can improve the performance of OCCF by solving the data
sparsity and imbalance problems of PRIF to a certain extent.
As for PREF, [27] was adapted from PLSA and [28] employed
the KNN technique of CF, both of which utilized the pairwise
ranking method. Reference [29] utilized the listwise method
to build its ranker, which was a variation of Maximum
Margin Factorization [22]. Shi et al. [18] proposed Extended
Collaborative Less-Is-More Filtering (xCLiMF)model, which
could be seen as a generalization of the CLiMF method.

e key idea of the xCLiMF algorithm is that it builds a

recommendation model by optimizing Expected Reciprocal
Rank, an evaluation metric that generalizes Reciprocal Rank
(RR) in order to incorporate user’ explicit feedback. Refer-
ences [18, 27–29] can also improve the performance of PREF
by solving the data sparsity and imbalance problems of PREF
to a certain extent.

3. Problem Formalization and SVD++

3.1. Problem Formalization. In this paper, we use capital
letters to denote a matrix (such as �). Given a matrix �,��� represents its element, �� indicates the �th row of �, ��
symbolizes the �th column of�, and�� stands for the trans-
pose of�.

3.2. SVD++. Given that a matrix � = (���)�×�, the total
number of users is �, and the total number of items is �, if� is an explicit feedback matrix, then��� ∈ {0, 1, 2, 3, 4, 5} or��� is unknown. We want to approximate � with a low rank

matrix �̂ = (�̂��)�×�, where �̂ = ���, � ∈ �×�, � ∈ �×�,� and� denote the explicit feature matrix with ranks of � for
users and items, respectively, � ≪ �, and � denotes the rank
of�, � ≤ min(�, �).

If � is an implicit feedback matrix, then ��� ∈ {0, 1} or��� is unknown. We want to approximate � with a low rank

matrix �̂ = (�̂��)�×�, where �̂ = ���, � ∈ �×�, � ∈�×�,� and� denote the implicit feature matrix with ranks
of � for users and items, respectively.

SVD++ is a collaborative 	ltering algorithm unifying
explicit and implicit feedback based on rating prediction and
matrix factorization [16]. In SVD++, matrix � denotes the
explicit and implicit feature matrix of items simultaneously.


e feature matrix of users can be de	ned as

�� + |� (�)|−1/2 ∑
�∈
(�)

��, (1)

where �� is used to characterize the user’s explicit feed-

back, |�(�)|−1/2∑�∈
(�)�� is used to characterize the user’s

implicit feedback, �(�) denotes the set of all items that user� gave implicit feedback, and�� denotes the implicit feature
vector of item �.

So the prediction formula of �̂�� in SVD++ can be de	ned
as

�̂�� = (�� + |� (�)|−1/2 ∑
�∈
(�)

��)
�

��. (2)

4. Exploiting Explicit and Implicit Feedback
for Personalized Ranking

In this section, we will 	rstly introduce our MERR SVD++
model, then give the learning algorithm of this model, and
	nally analyze its computational complexity.

4.1. Exploiting Explicit and Implicit Feedback for Personalized
Ranking. In practical applications, the user scans the results
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list from top to bottom and stops when a result is found that
fully satis	es the user’s information need. 
e usefulness of
an item at rank � is dependent on the usefulness of the items
at rank less than �. Reciprocal Rank (RR) is an important
evaluationmetric in the research 	eld of information retrieval
[14], and it strongly emphasizes the relevance of results
returned at the top of the list. 
e ERR measure is a
generalized version of RR designed to be used with multiple
relevance level data (e.g., ratings). ERR has similar properties
to RR in that it strongly emphasizes the relevance of results
returned at the top of the list.

Using the de	nition of ERR in [18, 30], we can describe
ERR for a ranked item list of user � as follows:

ERR� = �∑
�=1

������ , (3)

where��� denotes the rank position of item � for user �, when
all items are ranked in descending order of the predicted
relevance values. And��� denotes the probability that the user� stops at position �. As in [30], ��� is de	ned as follows:

��� = ��� �∏
�=1

(1 − ���� (��� < ���)) , (4)

where �(!) is an indicator function, equal to 1 if the condition
is true, and otherwise 0. And ��� denotes the probability that
user � 	nds the item � relevant. Substituting (4) into (3), we
obtain the calculation formula of ERR�:

ERR� = �∑
�=1

������
�∏
�=1

(1 − ���� (��� < ���)) . (5)

We use a mapping function similar to the one used in
[18], to convert ratings (or levels of relevance in general) to
probabilities of relevance, as follows:

��� = {{{{{
2��� − 12�max

, ��� > 0
0 ��� = 0, (6)

where ��� is an indicator function. Note that ��� > 0 (��� =0) indicates that user �’s preference to item � is known
(unknown). ��� denotes the rating given by user � to item �,
and�max is the highest rating.

In this paper, we de	ne that �(�) denotes the set of all
items that user � gave explicit feedback, so �(�) = �(�) in
the dataset that the users only gave explicit feedback, and the
implicit feedback dataset is created by setting all the rating
data in explicit feedback dataset as 1. A toy example can be
seen in Figure 2. If the dataset contains both explicit feedback
data and implicit feedback data, �(�) = �(�) + &(�),&(�) denoting the set of all items that user � only gave
implicit feedback. A toy example can be seen in Figure 3.

e in�uence of implicit feedback on the performance of
MERR SVD++ can be found in Section 5.4.2. If we use the
traditional SVD++ algorithm to unify explicit and implicit

feedback data, the prediction formula of �̂�� in SVD++ can
be de	ned as

�̂�� = (�� + |� (�)|−1/2 ∑
�∈
(�)

��)
�

��. (7)

So far, through the introduction of SVD++, we can
exploit both explicit and implicit feedback simultaneously
by optimizing evaluation metric ERR. So we call our model
MERR SVD++.

Note that the value of rank ��� depends on the value of�̂��. For example, if the predicted relevance value �̂�� of item� is the second highest among all the items for user �, then we
will have ��� = 2.

Similar to other ranking measures such as RR, ERR is
also nonsmooth with respect to the latent factors of users and
items, that is, �, �, and �. It is thus impossible to optimize
ERRdirectly using conventional optimization techniques.We
thus employ smoothing techniques that were also used in
CLiMF [14] and xCLiMF [18], to attain a smoothed version
of ERR. In particular we approximate the rank-based terms1/��� and �(��� < ���) in (5) by smooth functions with
respect to the model parameters �, �, and �. 
e approx-
imate formula is as follows:

� (��� < ���) ≈ * (�̂�� − �̂��) ,
1��� = * (�̂��) , (8)

where *(!) is a logistic function, that is, *(!) = 1/(1 + -−�).
Substituting (8) into (5), we obtain a smoothed approxi-

mation of ERR�:

ERR� = �∑
�=1

���* (�̂��) �∏
�=1

(1 − ���* (�̂�(�−�))) . (9)

Note that for notation convenience, we make use of the
substitution �̂�(�−�) = �̂�� − �̂��.

Given the monotonicity of the logarithm function, the
model parameters that maximize (9) are equivalent to the
parameters that maximize ln((1/|�(�)|)ERR�). Speci	cally,
we have

��, �,� = arg max
� ,�,�

{ERR�}
= arg max
�,�,�

{ln ((1/� (�))ERR�)}

= arg max
�,�,�

{{{ln( �∑
�=1

���* (�̂��)|� (�)|
�∏
�=1

(1 − ���* (�̂�(�−�))))}}} .
(10)
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Figure 2: A toy example of the dataset that the users only gave explicit feedback. (a) denotes the explicit feedback dataset. (b) denotes the
implicit feedback dataset.
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Figure 3: A toy example of the dataset that contains both explicit feedback data and implicit feedback data. (a) denotes the explicit feedback
dataset. (b) denotes the implicit feedback dataset, and the numbers in bold denote the dataset that users only gave implicit feedback.

Based on Jensen’s inequality and the concavity of the
logarithm function in a similar manner to [14, 18], we derive
the lower bound of ln((1/|�(�)|)ERR�) as follows:

ln( 1|� (�)|ERR�)
= ln[

[
�∑
�=1

���* (�̂��)|� (�)|
�∏
�=1

(1 − ���* (�̂�(�−�)))]]
≥ 1|� (�)|
⋅ �∑
�=1

��� ln[
[* (�̂��) �∏

�=1
(1 − ���* (�̂�(�−�)))]]

= 1|� (�)|
⋅ �∑
�=1

��� [[ln* (�̂��) + �∑
�=1

ln (1 − ���* (�̂�(�−�)))]] .

(11)

We can neglect the constant 1/|�(�)| in the lower bound and
obtain a new objective function:

H (��, �,�)
= �∑
�=1

��� [[ln* (�̂��) + �∑
�=1

ln (1 − ���* (�̂�(�−�)))]] . (12)

Taking into account all� users and using the Frobenius norm
of the latent factors for regularization, we obtain the objective
function of MERR SVD++:

H (�,�,�) = �∑
�

�∑
�=1

��� [[ln* (�̂��)

+ �∑
�=1

ln (1 − ���* (�̂�(�−�)))]] − I2 (‖�‖2 + ‖�‖2
+ ‖�‖2) ,

(13)
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in which I denotes the regularization coe�cient and ‖�‖
denotes the Frobenius norm of�. Note that the lower boundH(�, �,�) is much less complex than the original objective
function in (9), and standard optimization methods, for
example, gradient ascend, can be used to learn the optimal
model parameters �, �, and�.

4.2. Optimization. We can now maximize the objective
function (13) with respect to the latent factors
arg max,�,�H(�,�,�). Note that H(�,�,�) represents an
approximation of the mean value of ERR across all the users.
We can thus remove the constant coe�cient 1/�, since it
has no in�uence on the optimization of H(�, �,�). Since the
objective function is smooth we can use gradient ascent for
the optimization. 
e gradients can be derived in a similar
manner to xCLiMF [18], as shown in the following:

KHK�� = �∑
�=1

��� [[* (−�̂��)��

+ �∑
�=1

���*� (�̂�� − �̂��) (�� − ��)1 − ���* (�̂�� − �̂��) ]
] − I��,

(14)

KHK�� = ��� [[* (−�̂��)�� + �∑
�=1

���*� (�̂�� − �̂��)

⋅ ( 11 − ���* (�̂�� − �̂��)
− 11 − ���* (�̂�� − �̂��))]

](�� + |� (�)|−1/2

⋅ ∑
�∈
(�)

��) − I��,

(15)

KHK�� = ��� [[* (−�̂��)��

+ �∑
�=1

���*� (�̂�� − �̂��) (�� − ��)1 − ���* (�̂�� − �̂��) ]
] − I��.

(16)


e learning algorithm for the MERR SVD++ model is
outlined in Algorithm 1.


e published research papers in [8–11, 13, 18] show
that the use of the normal distribution �(0, 0.01) for the
initialization of feature matrix is very e�ective, so we still use
this approach for the initialization of �, �, and � in our
proposed algorithm.

4.3. Computational Complexity. Here, we 	rst analyze the
complexity of the learning process for one iteration. By
exploiting the data sparseness in �, the computational com-

plexity of the gradient in (14) is N(��̂2� + ��). Note that �̂

Input: Training set�, learning rate P, regularization I,

e number of the feature �, and the maximal number
Of iterations itermax
Output: feature matrix �, �,�
for � = 1, 2, . . . , � do

%Index relevant items for user �;�(�) = {� | ��� > 0, 0 ≤ � ≤ �};
end

Initialize �(0), �(0) and�(0) with random values,
and Q = 0;
repeat

for � = 1, 2, . . . , � do

%Update ��;�(�+1)� = �(�)� + P KHK�(�)� ;

for � ∈ �(�) do
%Update ��,��;��(�+1) = ��(�) + P KHK��(�) ;

��(�+1) = ��(�) + P KHK��(�) ;
End

EndQ = Q + 1;
until Q ≥ itermax� = �(�), � = �(�),� = �(�);

Algorithm 1: MERR SVD++.

denotes the average number of relevant items across all the
users. 
e computational complexity of the gradient in (16)

is also N(��̂2� + ��). 
e computational complexity of the

gradient in (15) is N(��̂2� + ��̂�). Hence, the complexity
of the learning algorithm in one iteration is in the order ofN(��̂2�). In the case that �̂ is a small number, that is, �̂2 ≪ �,
the complexity is linear to the number of users in the data
collection. Note that we have R = �̂�, in which R denotes the
number of nonzeros in the user-item matrix. 
e complexity
of the learning algorithm is then N(��̂R). Since we usually
have �̂ ≪ R, the complexity is N(�R) even in the case that �̂
is large, that is, being linear to the number of nonzeros (i.e.,
relevant observations in the data). In sum, our analysis shows
that MERR SVD++ is suitable for large scale use cases. Note
that we also empirically verify the complexity of the learning
algorithm in Section 5.4.3.

5. Experiment

5.1. Datasets. We use two datasets for the experiments. 
e
	rst is the MovieLens 1 million dataset (ML1m) [18], which
contains ca. 1M ratings (1–5 scale) from ca. 6K users and 3.7K
movies. 
e sparseness of the ML1m dataset is 95.53%. 
e
second dataset is the Net�ix dataset [2, 16, 17], which contains
100,000,000 ratings (1–5 scale) from 480,189 users on 17,770
movies. Due to the huge size of the Net�ix data, we extract a
subset of 10,000 users and 10,000 movies, in which each user
has rated more than 100 di�erent movies.
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5.2. Evaluation Metrics. Just as has been justi	ed by [17],
NDCG is a very suitable evaluation metric for personalized
ranking algorithmswhich combine explicit and implicit feed-
back. And our proposed MERR SVD++ algorithm exploits
both explicit and implicit feedback simultaneously and
optimizes the well-known personalized ranking evaluation
metric Expected Reciprocal Rank (ERR). So we use the
NDCG and ERR as evaluation metrics for the predictability
of models in this paper.

NDCG is another most widely used measure for ranking
problems. To de	ne NDCG� for a user �, one 	rst needs to
de	ne DCG�:

DCG� = �∑
�=1

2pref(�) − 1
log (� + 1) , (17)

where pref(�) is a binary indicator returning 1 if the �th item is
preferred and 0 otherwise. DCG� is then normalized by the
ideal ranked list into the interval [0, 1]:

NDCG� = DCG�
IDCG�

, (18)

where IDCG� denotes that the ranked list is sorted exactly
according to the user’s tastes: positive items are placed at the
head of the ranked list.
eNDCGof all the users is themean
score of each user.

ERR is a generalized version of Reciprocal Rank (RR)
designed to be used with multiple relevance level data (e.g.,
ratings). It has similar properties to RR in that it strongly
emphasizes the relevance of results returned at the top of the
list. Using the de	nition of ERR in [18], we can de	ne ERR
for a ranked item list of user � as follows:

ERR� = �∑
�=1

������
�∏
�=1

(1 − ���� (��� < ���)) . (19)

Similar to NDCG, the ERR of all the users is the mean score
of each user.

Since in recommender systems the user’s satisfaction is
dominated by only a few items on the top of the recommenda-
tion list, our evaluation in the following experiments focuses
on the performance of top-5 recommended items, that is,
NDCG@5 and ERR@5.

5.3. Experiment Setup. For each dataset, we randomly
selected 5 rated items (movies) and 1,000 unrated items
(movies) for each user to form a test set. We then randomly
selected a varying number of rated items from the rest to
form a training set. For example, just as in [14, 18], under
the condition of “Given 5,” we randomly selected 5 rated
items (disjoint to the items in the test set) for each user in
order to generate a training set. We investigated a variety of
“Given” conditions for the training sets, that is, 5, 10, and 15
for the ML1m dataset and 10, 20, and 30 for the extracted
Net�ix dataset. Generated recommendation lists for each user
are compared to the ground truth in the test set in order to
measure the performance.

All the models were implemented in MATLAB R2009a.
ForMERR SVD++, the value of the regularization parameter

I was selected from range {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}
and optimal parameter value was used. And the learning rateP was selected from set S, S = {P | P = 0.0001 × 2�, P ≤0.5, T > 0 and T is a constant}, and the optimal parameter
value was also used. In order to compare their performances
fairly, for all matrix factorization models we set the number
of features to be 10. 
e optimal values of all parameters
for all the baseline models used are determined individually.
More detailed setting methods of the parameters for all the
baselines can be found in the corresponding references. For
all the algorithms used in our experiments, we repeated the
experiment 5 times for each of the di�erent conditions of each
dataset, and the performances reported were averaged across
5 runs.

5.4. Experiment Results. In this section we present a series
of experiments to evaluate MERR SVD++. We designed
the experiments in order to address the following research
questions:

(1) Does the proposed MERR SVD++ outperform state-
of-the-art personalized ranking approaches for top-N
recommendation?

(2) Does the performance of MERR SVD++ improve
when we only increase the number of implicit feed-
back data for each user?

(3) Is MERR SVD++ scalable for large scale use cases?

5.4.1. Performance Comparison. We compare the perfor-
mance of MERR SVD++ with that of 	ve baseline algo-
rithms. 
e approaches we compare with are listed below:

(i) Co-Rating [17]: a state-of-the-art CF model that
can be trained from explicit and implicit feedback
simultaneously.

(ii) SVD++ [16]: the 	rst proposed CF model that com-
bines explicit and implicit feedback.

(iii) xCLiMF [18]: a state-of-the-art PR approach which
aims at directly optimizing ERR, for top-N recom-
mendation in domains with explicit feedback data
(e.g., ratings).

(iv) Co	Rank [29]: a PR approach that optimizes the
NDCG measure [28] for domains with explicit feed-
back data (e.g., ratings). 
e implementation is based
on the publicly available so�ware package from the
authors.

(v) CLiMF [14]: a state-of-the-art PR approach that opti-
mizes the Mean Reciprocal Rank (MRR) measure
[31] for domains with implicit feedback data (e.g.,
click, follow). We use the explicit feedback datasets
by binarizing the rating values with a threshold. On
the ML1m dataset and the extracted Net�ix dataset,
we take ratings 4 and 5 (the highest two relevance
levels), respectively, as the relevance threshold for
top-N recommendation.


e results of the experiments on the ML1m and the
extractedNet�ix datasets are shown in Figure 4. Rows denote
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Figure 4: 
e performance comparison of MERR SVD++ and baselines.

the varieties of “Given” conditions for the training sets based
on the ML1m and the extracted Net�ix datasets and columns
denote the quality of NDCG and ERR. Figure 4 shows
that MERR SVD++ outperforms the baseline approaches
in terms of both ERR and NDCG in all of the cases. 
e
results show that the improvement of ERR aligns consistently
with the improvement of NDCG, indicating that optimizing
ERR would not degrade the utility of recommendations that
are captured by the NDCG measure. It can be seen that
the relative performance of MERR SVD++ improves as the
number of observed ratings from the users increases. 
is
result indicates that MERR SVD++ can learn better top-N
recommendation models if more observations of the graded
relevance data from users can be used. 
e results also
reveal that it is di�cult to model user preferences encoded

in multiple levels of relevance with limited observations, in
particular, when the number of observations is lower than the
number of relevance levels.

Compared to Co-Rating, which is based on rating
prediction, MERR SVD++ is based on ranking prediction
and succeeds in enhancing the top-ranked performance by
optimizing ERR. As reported in [17], the performance of
SVD++ is slightly weaker than that of Co-Rating, which is
because SVD++ model only attempts to approximate the
observed ratings and does not model preferences expressed
in implicit feedback. 
e results also show that Co-Rating
and SVD++ signi	cantly outperform xCLiMF and Co	Rank,
which con	rms our belief that implicit feedback could indeed
complement explicit feedback. It can be seen in Figure 4
that xCLiMF signi	cantly outperforms CLiMF in terms of
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Figure 5: 
e in�uence of implicit feedback on the performance of
MERR SVD++.

both ERR and NDCG, across all the settings of relevance
thresholds and datasets. 
e results indicate that the infor-
mation loss from binarizing multilevel relevance data would
inevitably make recommendation models based on binary
relevance data, such as CLiMF, suboptimal for the use cases
with explicit feedback data.

Hence, we give a positive answer to our 	rst research
question.

5.4.2. 	e In
uence of Implicit Feedback on the Performance
of MERR SVD++. 
e in�uence of implicit feedback on the
performance of MERR SVD++ can be found in Figure 5.
Here, �(�) = �(�) + &(�). &(�) denotes the set of all
items that user � only gave implicit feedback. Rows denote
the increased numbers of implicit feedback for each user
and columns denote the quality of ERR and NDCG. In our
experiment, the increased numbers of implicit feedback for
each user are the same. We use the extracted Net�ix dataset
under the condition of “Given 10.” Figure 5 shows that the
quality of ERR and NDCG of MERR SVD++ synchronously
and linearly improves with the increase of implicit feedback
for each user, which con	rms our belief that implicit feedback
could indeed complement explicit feedback.

With this experimental result, we give a positive answer
to our second research question.

5.4.3. Scalability. 
e last experiment investigated the scala-
bility of MERR SVD++, by measuring the training time that
was required for the training set at di�erent scales. Firstly,
as analyzed in Section 4.3, the computational complexity
of MERR SVD++ is linear in the number of users in the
training set when the average number of items rated per
user is 	xed. To demonstrate the scalability, we used di�erent
numbers of users in the training set under each condition:
we randomly selected from 10% to 100% users in the training
set and their rated items as the training data for learning the
latent factors. 
e results on the ML1m dataset are shown in
Figure 6. We can observe that the computational time under
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Figure 6: Scalability analysis of MERR SVD++ in terms of the
number of users in the training set.

each condition increases almost linearly to the increase of the
number of users. Secondly, as also discussed in Section 4.3,
the computational complexity of MERR SVD++ could be
further approximated to be linear to the amount of known
data (i.e., nonzero entries in the training user-item matrix).
To demonstrate this, we examined the runtime of the learning
algorithm against di�erent scales of the training sets under
di�erent “Given” conditions. 
e result is shown in Figure 6,
from which we can observe that the average runtime of the
learning algorithm per iteration increases almost linearly as
the number of nonzeros in the training set increases.


e observations from this experiment allow us to answer
our last research question positively.

6. Conclusion and Future Work


e problem of the previous researches on personalized
ranking is that they focused on either explicit feedback
data or implicit feedback data rather than making full use
of the information in the dataset. Until now, nobody has
studied personalized ranking algorithm by exploiting both
explicit and implicit feedback. In order to overcome the
defects of prior researches, in this paper we have presented
a new personalized ranking algorithm (MERR SVD++) by
exploiting both explicit and implicit feedback simultaneously.
MERR SVD++ optimizes the well-known evaluation metric
Expected Reciprocal Rank (ERR) and is based on the newest
xCLiMF model and SVD++ algorithm. Experimental results
on practical datasets showed that our proposed algorithm
outperformed existing personalized ranking algorithms over
di�erent evaluation metrics and that the running time of
MERR SVD++ showed a linear correlation with the num-
ber of rating. Because of its high precision and the good
expansibility, MERR SVD++ is suitable for processing big
data and can greatly improve the recommendation speed
and validity by solving the latency problem of personalized
recommendation and has wide application prospect in the
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	eld of internet information recommendation. And because
MERR SVD++ exploits both explicit and implicit feedback
simultaneously, MERR SVD++ can solve the data sparsity
and imbalance problems of personalized ranking algorithms
to a certain extent.

For futurework, we plan to extend our algorithm to richer
ones, so that our algorithm can solve the grey sheep problem
and cold start problem of personalized recommendation.
Also we would like to explore more useful information from
the explicit feedback and implicit feedback simultaneously.
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