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Abstract. Emerging multi- and many-core computer architectures pose
new challenges with respect to efficient exploitation of parallelism. In
addition, it is currently not clear which might be the most appropri-
ate parallel programming paradigm to exploit such architectures, both
from the efficiency as well as software engineering point of view. Be-
yond that, the application of high performance computing techniques
and the use of supercomputers will be essential to deal with the ex-
plosive accumulation of sequence data. We address these issues via a
thorough performance study by example of RAxML, which is a widely
used Bioinformatics application for large-scale phylogenetic inference un-
der the Maximum Likelihood criterion. We provide an overview over the
respective parallelization strategies with MPI, Pthreads, and OpenMP
and assess performance for these approaches on a large variety of paral-
lel architectures. Results indicate that there is no universally best-suited
paradigm with respect to efficiency and portability of the ML function.
Therefore, we suggest that the ML function should be parallelized with
MPI and Pthreads based on software engineering criteria as well as to
enforce data locality.

1 Introduction

Emerging parallel multi- and many-core computer architectures pose new chal-
lenges not only for the field of Bioinformatics, since a large number of widely
used applications will have to be ported to these systems. In addition, due to
the continuous explosive accumulation of sequence data, which is driven by novel
sequencing techniques such as, e.g., pyrosequencing [1], the application of high
performance computing techniques will become crucial to the success of Bioin-
formatics. Applications will need to scale on common desktop systems with 2–8
cores for typical everyday analyses as well as on large supercomputer systems
with hundreds our thousands of CPUs for analyses of challenging large–scale
datasets. While many problems in Bioinformatics such as BLAST searches [2],
statistical tests for host-parasite co-evolution [3], or computation of Bootstrap
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replicates [4] for phylogenetic trees are embarrassingly parallel [5], they might
nonetheless, soon require the introduction of an additional layer of parallelism,
i.e., hybrid [3,6] or multi–grain [7] parallelism to handle constantly growing
dataset–sizes. Moreover, for large embarrassingly parallel problems, hybrid par-
allelizations can potentially allow for more efficient exploitation of current com-
puter architectures by achieving super-linear speedups due to increased cache
efficiency (see Section 4 and [8]). To this end, we focus on fine–grained loop–level
parallelism, which is typically harder to explore than embarrassing parallelism.
We study performance of MPI-, OpenMP-, and Pthreads-based loop–level par-
allelism by example of RAxML [9] which is a widely used program (2,400 down-
loads from distinct IPs; over 5,000 jobs submitted to the RAxML web-servers)
for Maximum Likelihood-based (ML [10]) inference of phylogenetic trees. The
program has been used to conduct some of the largest phylogenetic studies to
date [11,12].

Apart from considerable previous experience with parallelizing RAxML and
mapping the phylogenetic ML function to a vast variety of hardware architec-
tures that range from Graphics Processing Units [13], over shared memory sys-
tems [8] and the IBM Cell [7], to the SGI Altix [14] and IBM BlueGene/L [15]
supercomputers, RAxML exhibits properties that make it a well-suited candi-
date for the proposed study: Firstly, the communication to computation ratio
can easily be controlled by using input alignments of different lengths; secondly
the computation of the ML function requires irregular access of floating point
vectors that are located in a tree; thirdly the parallelization strategies described
here are generally applicable to all ML-based programs for phylogenetic infer-
ence, including Bayesian methods.

The current study represents the first comparison of MPI, Pthreads, and
OpenMP for the phylogenetic ML function, which is among the most impor-
tant statistical functions in Bioinformatics. It is important to note that, despite
a more demanding development process, MPI naturally enforces data locality,
which might significantly improve performance on NUMA architectures and en-
sures portability to systems such as the IBM BlueGene.

1.1 Related Work

A previous study on the comparison of OpenMP, MPI, and Pthreads [16] fo-
cused on performance for sparse integer codes with irregular remote memory
accesses. Other recent papers [17,18] conduct a comparison of OpenMP versus
MPI on a specific architecture, the IBM SP3 NH2, for a set of NAS benchmark
applications (FT, CG, MG). The authors show that an OpenMP-based paral-
lelization strategy, that takes into account data locality issues, i.e., requires a
higher MPI-like programming effort, yields best performance. However, such an
approach reduces portability of codes. In a parallelization of a code for analy-
sis of Positron Emission Tomography images [19] the authors conclude that a
hybrid MPI-OpenMP approach yields optimal performance.

Shan et al. [20] address scalability issues of a dynamic unstructured mesh
adaptation algorithm using three alternative parallel programming paradigms
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(MPI, SHMEM, CC-SAS) on shared and distributed memory architectures and
report medium scalability for an MPI-based parallelization which however pro-
vides a high level of portability.

Our study covers a larger diversity of current architectures than the afore-
mentioned papers, in particular with respect to multi-core systems, and assesses
performance of three common programming paradigms for the ML function. To
the best of our knowledge, this is the first comparative study, that provides a
comparison of the three programming paradigms for loop-level parallelism on
multi-core architectures, cluster, and SMP architectures.

2 General Fine–Grained Parallelization Scheme

The computation of the likelihood function consumes over 90-95% of total execu-
tion time in all current ML implementations (RAxML [9], IQPNNI [21], PHYML
[22], GARLI [23], MrBayes [24]). Due to its intrinsic fine-grained parallelism, the
ML function thus represents the natural candidate for parallelization at a low level
of granularity. Though the ML method also exhibits a source of embarrassing par-
allelism at a significantly more coarse–grained level [15], in our study, we exclu-
sively focus on fine–grained parallelism, which will become increasingly important
for multi–gene analyses (see [11,25] for examples) or even larger whole–genome
phylogenies that can have memory requirements exceeding 16–32GB.

To compute the likelihood of a fixed unrooted tree topology with given branch
lengths, initially one needs to compute the entries for all internal likelihood
vectors that essentially reflect the probabilities of observing an A,C,G, or T at
an inner node for each site of the input alignment, bottom-up towards a virtual
root that can be placed into any branch of the tree.

Note that, all computations of the partial likelihood vectors towards the vir-
tual root can be conducted independently. As outlined in Figure 1 synchro-
nization is only required before reduction operations that are conducted by the
functions that compute the overall log likelihood score of the tree or optimize
branch lengths (branch length optimization not shown in Figure 1). The compu-
tation of partial likelihood array entries consumes about 75% of total execution
time. Once the partial likelihood arrays have been computed, the log likelihood
value can then be calculated by essentially summing up over the likelihood vec-
tor values to the left and right of the virtual root. This means, that a reduction
operation is required at this point.

In order to obtain the Maximum Likelihood value all individual branch lengths
must be optimized with respect to the overall likelihood score. For a more de-
tailed description please refer to [5] and [10]. Note that, most current search
algorithms such as GARLI, RAxML, or PHYML, do not re-optimize all branch
lengths and do not re-compute all partial likelihood arrays after a change in
tree topology but rather carry out local optimizations as outlined in Figure 1
in the neighborhood of the tree region that is affected by the change. The main
bulk of all of the above computations consists of for-loops over the length m of
the multiple sequence input alignment, or more precisely over the number m′ of
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Fig. 1. Outline of the parallelization scheme used for Pthreads and MPI

distinct patterns in this alignment. The individual iterations of the for-loops of
length m′ in the functions that are used to calculate the phylogenetic likelihood
function are independent and can therefore be computed in parallel, i.e., the
maximum degree of parallelism is m′. This property is due to one of the fun-
damental assumptions of the ML model which states that individual alignment
columns evolve independently [10].

3 Parallelization with OpenMP, Pthreads, and MPI

3.1 OpenMP

The parallelization of RAxML with OpenMP, is straight–forward, since only a
few pragma’s have to be inserted into the code. Note that, in the current RAxML
release (available as open-source code at http://icwww.epfl.ch/∼stamatak/,
version 7.0.4) we only parallelized the standard GTR model of nucleotide sub-
stitution [26] under the Γ model of rate heterogeneity [27]. The parallelization
scheme is analogous to the concept presented in [8], however there is one funda-
mental difference: OpenMP might induce serious numerical problems, because
the order of additions in reduction operations is non-deterministic. Given, e.g.,
four partial likelihood scores l0, ..., l3 from 4 threads t0, ..., t3 the order of addi-
tions to compute the overall likelihood is unspecified and can change during the
inference. This behavior might cause two —otherwise exactly identical— math-
ematical operations to yield different likelihood scores. This has caused serious
problems in RAxML with 4 threads on a large multi-gene alignment, i.e., it is
not only a theoretical problem. To this end we modified the straight–forward
OpenMP parallelization of the for-loops to enforce a guaranteed addition order
for reduction operations.

While OpenMP clearly requires the lowest amount of programming overhead,
it is less straight-forward to identify and resolve issues that require a higher
degree of control over mechanisms such as thread affinity, memory locality, or
reduction operation order.
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3.2 Pthreads and MPI

The basic parallelization concept for Pthreads and MPI is analogous to the strat-
egy for the BlueGene/L as outlined in [15]. While this parallelization mainly
focused on proof–of–concept aspects and only implements the GTR+Γ model
(see above) for a single version of the RAxML search algorithm, the paralleliza-
tion presented here represents a complete re-implementation that covers the full
functionality and plethora of models provided by RAxML (please consult the
RAxML Manual for details [28]). The main goal of this re-engineering effort was
to develop a single code that will scale well on multi-core architectures, shared
memory machines, as well as massively parallel machines. Since the concepts de-
vised for the Pthreads- and MPI-based parallelizations are conceptually similar
we provide a joint description.

In a distributed memory scenario each of the p worker processes allocates a
fraction m′/p of memory space (where m′ is the number of unique columns in the
alignment) required for the likelihood array data–structures which account for ≈
90% of the overall memory footprint. Threads will just use an analogous portion
of a global data structure. Thus the memory space and computational load for
likelihood computations is equally distributed among the processes/threads and
hence the CPUs. Moreover, the vector fractions m′/p are consistently enumer-
ated in all processes, either locally (MPI) or globally (Pthreads).

The master thread/process orchestrates the distribution or assignment of data
structures at start-up and steers the search algorithm as well as the computation
of the likelihood scores. Thus, the master simply has to broadcast commands
such as, e.g., compute likelihood array entries, given certain branch lengths, for
vectors w, x, y, and z (see example in Figure 1) for the respective fraction m′/p
and compute the likelihood score. In the Pthreads-based version the master
thread also conducts an equally large part m′/p of the likelihood computations.

Global reduction operations, which in both cases (likelihood computation
& branch length optimization) are simply an addition over m′ double values,
are performed via the respective MPI collective reduction operation while jobs
are distributed with MPI_Broadcast. The Pthreads version is implemented ac-
cordingly, i.e., threads are generated only once at program start and then syn-
chronized and coordinated via a master-thread. Job distribution and reduction
operations in the Pthreads-based version are less straight-forward than with
MPI, since Pthreads lack an efficient barrier method. Therefore, we implemented
a dedicated function that uses a busy-wait strategy.

In contrast to the branch length optimization and likelihood computation
operations, the computation of partial likelihood arrays frequently consists of
a series of recursive calls, depending on how many vectors must be updated
due to (local) changes in the tree topology or model parameters (see Figure 1).
In order to reduce the communication frequency such series of recursive calls
are transformed into a single iterative sequence of operations by the master.
The master then sends the whole iterative sequence of inner likelihood vector
updates that are stored by their vector numbers in an appropriate tree traversal
data structure via a single broadcast to each worker or makes it available in
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shared memory. Note that, in contrast to the “classic” fork-join paradigm used
in OpenMP, this approach explicitly makes use of a dependency analysis of the
algorithm and reduces the number of synchronization points.

An important change with respect to the previous version is the striped as-
signment of alignment columns and hence likelihood array structures to the
individual threads of execution (see Figure 1). The rationale is that this al-
lows for better and easier load distribution, especially for partitioned analyses
of multi–gene datasets. Using a striped allocation every processor will have an
approximately balanced portion of columns for each partition. Moreover, this
also applies to mixed analyses of DNA and protein data, since the computation
of the likelihood score for a single site under AA models is significantly more
compute-intensive than for nucleotide data.

An important observation since the release of the Pthreads-based version in
January 2008 is that the parallel code is used much more frequently than the pre-
vious OpenMP–based version since it compiles “out-of-the-box” on Unix/Linux
and Macintosh platforms with gcc and allows for explicit specification of the
number of threads via the command line. Such considerations are important for
tools whose users are mainly non–experts. Development and maintenance expe-
rience over the last years has shown that potential users quickly abandon a tool
if it requires installation of additional software and compilers. The programming
effort to re-engineer RAxML and implement the Pthreads- as well as MPI-based
parallelizations amounted to approximately 6 weeks.

4 Experimental Setup and Results

4.1 Test Datasets, Experimental Setup and Platforms

In order to test scalability of the three parallel versions of RAxML we extracted
DNA datasets containing 50 taxa with 50,000 columns (d50 50000, 23,285 pat-
terns) and 500 taxa with 5,000 columns (d500 5000, 3,829 patterns) from a 2,177
taxon 68 gene mammalian dataset [29]. In addition, we extracted DNA subsets
with 50 taxa and 500,000 base-pairs (d50 500000, 216,025 patterns) as well as
250 taxa and 500,000 base-pairs (d250 500000, 403,581 patterns) from a large
haplotype map alignment [14].

We used the Intel compiler suite version 10.1 for all three program versions
on all platforms. Additionally, the platform-specific compiler optimizations flags
used where identical for each of the three versions with only one exception: On
the Altix interprocedural optimizations (IPO) caused a performance degradation
by a factor of 3 if applied to the sequential version. Therefore we disabled these
optimizations in that case. For all other compilations we enabled IPO as it
slightly improved performance.

To measure the speedup we started RAxML tree searches under the GTR+Γ
model on a fixed Maximum Parsimony starting tree (see [28] for details) on all
platforms. Note that, we only report the best speedup values for every number
of cores used on multi-core platforms with respect to the optimal thread to CPU
assignment/mapping. Due to architectural issues, an execution on two cores
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that are located on a single socket, can be much slower than an execution with
two cores, located on two distinct sockets (see [30] for a more detailed study
of thread-to-core mapping effects on performance). For instance we observed
execution time differences of around 40% on the Intel Clovertown system for
different assignments of two threads to the 8 cores of the system and over 50%
for distinct mappings of four threads.

As test platforms we used a 2-way quad-core AMD Barcelona system (8 cores),
a 2-way quad-core Intel Clovertown system (8 cores), an 8-way dual-core Sun
x4600 system (16 cores) that is based on AMD Opteron processors. We mea-
sured execution times for sequential execution as well as parallel execution on 2,
4, 8, and 16 (applies only to x4600) cores. In addition, we used a cluster of 4-way
SMP (4 single cores) 2.4 GHz AMD Opteron processors, that are interconnected
via Infiniband, to test scalability of the Pthreads-, OpenMP-, and MPI-based
versions up to 4 CPUs, and up to 128 CPUs (127 worker processes) for the MPI-
based version. Finally, we used an SGI Altix 4700 system with a total of 9,728
Intel Itanium2 Montecito cores, an aggregated peak performance of 62.3 Ter-
aflops, and 39 Terabyte of main memory (the HLRB2 supercomputer at the Leib-
niz Rechenzentrum, http://www.lrz-muenchen.de/services/compute/hlrb).
On the SGI Altix we assessed scalability of the Pthreads- and OpenMP-based
versions up to 32 CPUs and up to 256 CPUs for the MPI-based version.

As outlined above we directly compare MPI, Pthreads, and OpenMP on the
SGI Altix and AMD Opteron cluster. In addition, we provide comparisons be-
tween OpenMP and Pthreads on the Barcelona, Clovertown, and x4600 systems.

4.2 Results

In Figures 2(a) through 2(c) we indicate speedup values for the Pthreads and
OpenMP versions on datasets d50 50000 and d500 5000 on the three multi-
core systems: Barcelona, Clovertown, and x4600. We show results for these two
datasets because they differ significantly in their computation to communica-
tion ratio, i.e., this ratio is approximately 100 times less favorable for dataset
d500 5000. Note that, the memory footprint of dataset d500 5000 is about twice
as high as for d50 50000. On the Barcelona both versions scale almost linearly
up to 8 cores, while there is a significant decrease in parallel efficiency on the
Clovertown. This is due to the UMA architecture and the L2 cache which is
shared between each two cores: the memory bandwidth can be saturated by
only 4 threads and the cache available to each thread is halfed if all cores are
utilized. Both Pthreads and OpenMP scale well up to 16 cores on the x4600.
However, there is a significant decrease in parallel efficiency for the OpenMP-
based version on the more communication-intensive dataset d500 5000 above 8
cores. Thus, the Pthreads-based communication mechanisms we implemented,
yields significantly better speedups for the full 16 cores on this system.

In Figure 2(d) we provide the relative speedups (relative with respect to a run
with 31 worker processes 1) for the MPI version on the large and memory-intensive

1 A sequential execution was not possible due to run-times and memory requirements.
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Fig. 2. Scalability of Pthreads, OpenMP, and MPI versions on various architectures

d250 500000 dataset up to 128 CPUs of the AMD Opteron cluster and up to 256
cores on the SGI Altix 4700. This plot demonstrates that the entirely re-designed
MPI version for production runs achieves similar parallel efficiency as the previous
proof-of-concept implementation [14,15].

InFigures 3(a) to 3(d)weprovide a direct comparison of thePthreads,OpenMP,
and MPI versions for the AMD Opteron cluster and the SGI Altix 4700. Speedup
values for dataset d50 50000 on the Opteron cluster (Figure 3(a)) are super-linear
due to increased cache efficiency for all three programming paradigms. On the
larger d50 500000 dataset (Figure 3(b)) scalability of OpenMP and Pthreads are
similar, while the MPI-based version yields slightly sub-linear speedups on the
Opteron cluster for 7 and 15 worker processes. This is due to the fact that exe-
cution times in these cases become relatively short, such that the initial sequen-
tial portion of the code (striped data distribution) has an impact on performance.
The more communication–intensive dataset d500 5000 also scales well for all three
paradigms on the AMD Opteron system (Figure 3(c)). In general, the OpenMP
version scales best on this system. However, this is not the case on all architec-
tures, especially for more communication-intensivedatasets sizes (see Figure 2(c)).
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Fig. 3. Performance Comparison of Pthreads, OpenMP, and MPI versions

Both MPI and Pthreads also yield super-linear speedups in most cases. Finally, in
Figure 3(d) we provide performance data for all three parallel versions on the
SGI Altix for dataset 50 50000 up to 31 worker processes/threads. The MPI
and Pthreads versions scale significantly better than OpenMP for more than 7
threads/workers which is also consistent with the observations on the x4600 (see
Figure 2(c)). For more than 15 threads/workers, MPI outperforms Pthreads as
the MPI version only accesses local memory while the Pthreads version has to
access most of its data structures remotely at the master – with lower bandwidth
and higher latency.

5 Conclusion and Future Work

We have conducted a detailed performance study of parallel programming para-
digms for exploitation of fine–grained loop–level parallelism, by example of the
widely used phylogenetic ML function as implemented in RAxML on a broad
variety of current multi-core, cluster, and supercomputer architectures. Results
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indicate that none of the three paradigms outperforms the others across all
architectures. We thus conclude that the selection of programming paradigms
should be based on software engineering and portability criteria.

One important aspect is that Bioinformatics applications are typically used by
non-experts such that the easier to compile Pthreads option should be preferred
over OpenMP and MPI for shared memory architectures. The usage of MPI
on shared memory machines could lead to serious performance degradations in
the case that MPI implementations are used that have not been optimized for
communication via shared memory.

In terms of portability, we argue in favor of the usage of both Pthreads and
MPI, since programs can easily be compiled for massively parallel machines such
as the BlueGene as well as for shared memory architectures. Note that, we do
not consider hybrid parallelism here because, as already mentioned, ML-based
inferences exhibit embarrassing parallelism at a more coarse-grained level. In ad-
dition, Pthreads allow for explicit allocation of local memory, i.e., to distribute
the data structures and thus facilitate the joint development and maintenance
of the MPI and Pthreads versions. In this case, synchronization and communi-
cation can be handled via one single generic interface that can then be mapped
to appropriate MPI or Pthreads constructs and greatly reduce the complexity of
the code. Moreover, such an —in principle— distributed memory Pthreads-based
parallelization can improve performance on NUMA architectures. A striped dis-
tribution of alignment sites, which is required to achieve load–balance on con-
catenated DNA and AA (Protein) data would induce a significant programming
overhead in OpenMP as well. Our experiments show that the performance of the
Pthreads-based and OpenMP-based implementations is platform–specific, such
that one should opt for the more generic approach. Finally, the Pthreads-based
version can be further improved by removal of some synchronization points and
exploitation of data locality.

Thus, future work will cover the performance analysis and profiling of data
locality impact for a Pthreads–based version that allocates and uses local instead
of global likelihood vector data structures.
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