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Exploiting Flow Dynamics for Superresolution in

Contrast-Enhanced Ultrasound
Oren Solomon , Student Member, IEEE, Ruud J. G. van Sloun , Member, IEEE, Hessel Wijkstra,

Massimo Mischi , Senior Member, IEEE, and Yonina C. Eldar , Fellow, IEEE

Abstract— Ultrasound (US) localization microscopy offers new
radiation-free diagnostic tools for vascular imaging deep within
the tissue. Sequential localization of echoes returned from inert
microbubbles (MBs) with low concentration within the blood-
stream reveals the vasculature with capillary resolution. Despite
its high spatial resolution, low MB concentrations dictate the
acquisition of tens of thousands of images, over the course
of several seconds to tens of seconds, to produce a single
superresolved image. Such long acquisition times and strin-
gent constraints on MB concentration are undesirable in many
clinical scenarios. To address these restrictions, sparsity-based
approaches have recently been developed. These methods reduce
the total acquisition time dramatically, while maintaining good
spatial resolution in settings with considerable MB overlap. Here,
we further improve the spatial resolution and visual vascular
reconstruction quality of sparsity-based superresolution US imag-
ing from low-frame rate acquisitions, by exploiting the inherent
flow of MBs and utilize their motion kinematics. We also provide
quantitative measurements of MB velocities and show that our
approach achieves higher MB recall rate than the state-of-the-art
techniques, while increasing contrast agents concentration. Our
method relies on simultaneous tracking and sparsity-based detec-
tion of individual MBs in a frame-by-frame manner, and as such,
may be suitable for real-time implementation. The effectiveness of
the proposed approach is demonstrated on both simulations and
an in vivo contrast-enhanced human prostate scan, acquired with
a clinically approved scanner operating at a 10-Hz frame rate.

Index Terms— Compressed sensing, contrast agents, Kalman
filter, superresolution, ultrasound (US).

I. INTRODUCTION

IN the past several decades, ultrasonic contrast agents

have been utilized successfully in numerous applications

[1]–[3]. In particular, contrast-enhanced ultrasound (CEUS)
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imaging takes the advantage of inert MBs that are injected

into the bloodstream, as means to image blood vessels

with the improved contrast, compared with the standard

B-mode US imaging [4]. In recent years, superresolution

US imaging emerged and enabled the fine visualization and

detailed assessment of capillary blood vessels in vivo [5]–

[11]. This approach was also extended to 3-D imaging for

the identification of microvascular morphology features of

tumor angiogenesis [12]. Superresolution US relies on con-

cepts borrowed from superresolution fluorescence microscopy

techniques such as photo-activated localization microscopy

(PALM) and stochastic optical reconstruction microscopy

(STORM) [13], [14], which localize individual fluorescing

molecules with subpixel precision over many frames and sum

all localizations to produce a superresolved image. In CEUS,

individual resonating MBs, similar in size to red blood cells,

serve as point emitters. Their subsequent localizations are

then accumulated to produce the final superresolved image

of the vascular bed with a tenfold improved spatial resolution

compared with standard CEUS imaging. To produce a reliable

reconstruction, low MB concentrations are typically used [6],

[7], such that in each frame, all MBs are well isolated from

one another. The localization procedure then amounts to pin-

pointing the centroid of a single Gaussian for each detected

MB in the captured movie.

Despite yielding a substantial improvement in spatial reso-

lution, superresolution US imaging typically requires tens of

thousands of images to produce a single superresolved image.

Acquisition of such a large number of frames results in long

scanning durations, leading to poor temporal resolution on

the reconstructed sequence. Furthermore, clinical bolus doses

injected to human patients result in high overlap between

different MBs [15]. These limitations hamper the clinical

applicability of localization-based superresolution techniques.

To overcome the temporal limitation of localization-based

superresolution without compromising the spatial resolution

of the reconstructed image, sparsity-based [16] approaches

were recently proposed [17]–[20]. These techniques favor

overlapping MBs to reduce the total acquisition time. Thus,

sparsity-based methods achieve faster temporal resolution

using standard clinical concentrations of MBs. In [17]–[19],

sparsity-based superresolution US hemodynamic imaging

(SUSHI), using ultrafast plane-wave acquisition, demonstrated

a superresolved time-lapse movie of 25 Hz, showing superre-

solved hemodynamic changes in blood flow within a rabbit’s

kidney. In [20], using a clinically approved scanner with an

acquisition rate of 10 Hz, a superresolved image of a human
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prostate vasculature was shown. In particular, a clear depiction

of vascular bifurcations was obtained, although significant MB

overlap was present, by performing frame-by-frame sparse

localization and subsequent accumulation of all localizations

to produce the final superresolved image.

One major difference between superresolution in US and in

microscopy is that the point emitters in US are flowing inside

the blood vessels, whereas in microscopy superresolution

imaging, fluorescent molecules are fixed to the subcellular

organelles. Since the motion of individual MBs is not ran-

dom but rather within blood vessels, this can be exploited

to improve the recovery process. This paper builds on our

previous results on superresolution US imaging [19], [20]

by exploiting the flow kinematics of individual MBs as an

additional prior in the sparse recovery process.

While previous superresolution works focused on ultra-

fast plane-wave image acquisition, see [5], [17], [19], most

clinically used scanners are low-rate scanners (10–25 Hz).

When using high frame-rate scanners, e.g., ultrafast plane-

wave imaging, fast superresolution imaging can be achieved

via SUSHI [17]–[19], exhibiting a smooth depiction of the

superresolved vessels, with a relatively low-complexity algo-

rithm. However, as the frame-rate decreases, MB detections

become more sporadic, even when using SUSHI, resulting in

an inconsistent depiction of the vessels. Thus, the so-called

missing information needs to be filled-in by other means, albeit

with higher computational cost.

Here, our aim is to bridge the gap between superres-

olution techniques and data obtained from research plat-

forms in laboratory environments, typically low-rate intensity

images where significant MB overlap is present. By doing

so, as demonstrated in Section IV, our technique enables

practitioners to analyze readily available CEUS scans and

obtain both architectural as well as functional blood flow

information. Such analysis can expedite the process of gaining

new insights regarding cancer diagnosis [21], treatment, in vivo

flow characterization [8], and more.

Our method combines weighted sparse recovery with simul-

taneous tracking of the individual MBs in the imaging plane.

MBs flow inside blood vessels, hence their movement from

one frame to the next is structured. Therefore, MBs are more

likely to be found in certain areas of the next frame, given

their current locations. Each MB track is used to estimate

the position of the MBs and fill-in for the missing spatial

information due to low-rate scanning, thus providing a smooth

depiction of the superresolved vessels. Since the capillary flow

is nonturbulent (peak Reynolds number of 0.001) [8], [22],

a linear propagation model is used to describe MBs flow from

one frame to the next. The accumulated position estimates

are then used to form a weighting matrix for weighted sparse

recovery which locates the MBs. This allows to favor more

likely locations in the sparse recovery process. With the

addition of each new frame, the tracks are updated online. Our

method is titled simultaneous sparsity-based superresolution

and tracking, or 3SAT1 (pronounced triple-SAT). Since our

approach tracks individual MBs, it is possible to also estimate

1Online code: http://www.wisdom.weizmann.ac.il/∼yonina/YoninaEldar

Fig. 1. Proposed concept of 3SAT. Individual MBs flow within a blood vessel
depicted here as a bifurcation by black solid contour lines. Large, transparent,
and red ellipses represent the echoes measured from individual MBs. In frame
t = 1, MBs are detected using sparse recovery (small red dots). Applying
a Kalman filter, their positions are propagated to the next frame (t = 2)
as marked by the black dashed arrows. Using the error covariance matrix
of the filter, the ellipses of most likely positions for the MBs are generated
as illustrated by the black dashed ellipses. These ellipses are then used as
weights in the sparse recovery process in the next frame (t = 2), and so on.
Blue lines: estimated trajectories of the MBs.

their velocities. We provide in vivo superresolution CEUS

imaging of a human prostate and show that its velocity

estimation agrees with the previously published results [15].

An illustration of the proposed concept is shown in Fig. 1.

The methods proposed in this work relate to those presented

in [8], in which the authors incorporated an automated detec-

tion and tracking mechanism for localized MBs. However,

3SAT differs from [8] in the following ways. First, in [8],

the automatic tracking algorithm is not used to improve

the localization procedure over consecutive frames. Instead,

individual MBs were localized over all frames with low

MBs concentration, and only then detection and tracking

was performed on the localizations to improve the velocities

estimation. Here, 3SAT exploits detections from the previous

frames to improve the detections in the next frame, using

sparse recovery to overcome MBs overlap, resulting from

clinical bolus doses. Second, the coarse measurements of MB

movements based on optical flow (OF) estimation [23]–[26]

over the captured low-resolution sequence are exploited to

improve the tracking performance. Thus, 3SAT incorporates

not only position measurements but also velocity measure-

ments in the adopted Kalman filtering framework [27], [28].

These measurements help in improving the overall tracking

performance of the MBs, which, in turn, improves the sparse

recovery process. Typically, OF estimation is performed over

sequential pairs of images. Here, we combine OF estimation

with the Kalman filtering, as a mean to include additional

information from the previous frames and improve the overall

estimation accuracy.

The rest of this paper is organized as follows. Section II

describes 3SAT and each of its building blocks. Sections III
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Fig. 2. Main building blocks of 3SAT. First, MBs velocities are estimated from frame k using OF estimation. The detected MBs from the previous frame
k −1 are then propagated to frame k, assuming a constant velocity model using the Kalman filter and the measured velocities obtained from the OF estimation.
This procedure yields a new estimate for the true MB positions and velocities, and also forms the weighting matrix for frame k. This weighting matrix is then

used in the sparse recovery process to yield the superresolved frame k. This process repeats itself for each new frame in the movie. Here, Z−1 represents a
delay of one time unit. The entire 3SAT process is summarized in Algorithm 2.

and IV present in silico as well as in vivo results. A discussion

and conclusions are provided in Section V.

Throughout this paper, x represents a scalar, x represents a

vector, X represents a matrix, and IN×N is the N × N identity

matrix. The notation XT represents the transpose of X and

XH its conjugate transpose. We denote by || · ||p the standard

p-norm and by ||·||F the Frobenius norm. Subscript xl denotes

the lth element of x and xl is the lth column of X, while

superscript (·)p refers to the pth MB. The estimated vector in

frame k, given the estimate in the (k −1)th frame, is indicated

by sk|k−1. Similarly, Pk|k−1 indicates its estimated covariance

matrix k, given the k−1 estimate. The i j th element of a matrix

A is denoted A[i, j ]. The notation x̃ explicitly indicates that

x is the Fourier domain representation of x.

II. SIMULTANEOUS SPARSITY-BASED SUPERRESOLUTION

AND TRACKING

A. Principle

In this work, our primary aim is to improve sparsity-based

superresolution US from movies that are acquired from low-

rate clinical scanners, where we have access only to the final

intensity images displayed on the screen. We start from a

CEUS sequence of K frames where each frame consists of

M × M pixels. A contrast-specific imaging mode based on

a power modulation pulse scheme is used to reject tissue

signal and enhance the signal from MBs [15], [21], [29], such

that only MBs are visualized. Since our primary focus is

on sequences acquired from low-rate scanners during the

acquisition period movement of the probe and scanned organ

are inevitable. This movement introduces inaccuracies in

the estimation process of MB positions and velocities [10].

Thus, prior to 3SAT processing, all frames are registered,

as described in [20], to compensate for this inaccuracy. After

tissue and MBs separation, the spatially correlated tissue

sequence is used for registration. For each image in the

sequence, an affine transformation is determined which maps it

to the first image in the sequence. This transformation is then

applied to each corresponding contrast image so that at the

end, all contrast images are spatially aligned. The registration

process is performed in MATLAB (The MathWorks, Inc.)

using the imregtform function. After registration, the input data

for 3SAT consist of K registered low-resolution frames.

Fig. 2 shows the main flow and building blocks of 3SAT.

Given the weighting matrix, based on trajectories estimated

from the (k − 1)th frame, 3SAT performs weighted sparse

recovery to estimate the positions of the MBs on a high-

resolution grid in the kth frame. Next, we estimate in the kth

frame a crude velocity measurement of the MBs by apply-

ing OF estimation on the captured low-resolution sequence.

Thus, for each MB, both positions and corresponding velocity

measurements are obtained, which are used in the automatic

tracking algorithm to update the positions and velocities of the

individually detected MBs via Kalman filtering. The newly

estimated positions and velocities are used to generate an

updated weighting matrix for sparse recovery of MB positions

in the (k+1)th frame, while providing quantitative information

on the flow kinematics.
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The reconstruction process of 3SAT can be considered as

sparse recovery with time-varying support, where the sup-

port represents the MBs locations. Previous works on sparse

recovery with varying support have been proposed in the

compressed sensing literature, such as [30]–[33]. 3SAT differs

from these methods in the following manner. First, previous

works assume a first-order recursion for the propagation model

of the nonzero entries of the sparse signals, i.e., xk+1 =

αxk + vk , where xk is a scalar entry from the sparse vector,

vk is the additive Gaussian noise, and α is a known constant.

In this case, only the support of the sparse signal is of interest,

but in CEUS, MBs kinematics also include varying velocities.

Here, an extended model is considered, which includes the

position estimation of the MBs together with their velocities,

as presented in Section II-C. Second, as MBs flow over time,

new MBs emerge and some MBs vanish from the imaging

plane, due to the 3-D geometry of the blood vessels. It is,

thus, desirable to associate new MBs to previous localizations

to improve the overall tracking and to achieve a more reliable

estimation of their motion kinematics. This association process

is not considered in prior works but is taken into account

in 3SAT by the use of an automatic association algorithm (as

described in Section II-C), combined with Kalman filtering.

We next detail the main building blocks of 3SAT.

B. Weighted Sparse Recovery

We start with a description of our sparse recovery algorithm,

which is performed on each frame separately. Similar to [19],

a frame is modeled as a summation of Lk individual MB

echoes

Zk(x, y) =

Lk
∑

i=1

u(x − xi , y − yi )σi (1)

where u(·, ·) is the (intensity-based) point spread function

(PSF) of the transducer and σi is the magnitude of the returned

echo from the i th MB located at position (xi , yi ). The PSF of

the transducer is assumed to be known. In practice, the PSF

can be measured from the acquired images, as described

in [19] and [20].

Following similar derivations to [19], we discretize the kth

frame in (1) as Zk, k = 1, . . . , K of size M×M , and denote its

vectorized form zk . We also introduce a high-resolution grid

of size N × N pixels, such that N = P M for some P ≥ 1 and

denote the (vectorized) superresolved frame k, which contains

the locations of the MBs on the high-resolution grid, by ik .

Using knowledge of the PSF, the measured frame zk is related

to the superresolved frame ik via

zk = Hik (2)

where H is a known dictionary matrix based on the PSF.

We follow [19], [34] and consider recovering ik in the discrete

Fourier domain. In this domain, H̃ has the following structure:

H̃ = Ũ(FM ⊗ FM )

where ⊗ symbolizes the Kronecker product of two matrices.

Here, Ũ is an M2 × M2 diagonal matrix, whose diagonal

contains the vectorized 2-D discrete Fourier transform (DFT)

Algorithm 1 FISTA for Minimizing (4)

Require: z̃k , H̃, Wk , λ > 0, maximum iterations Dmax

Initialize y1 = x0 = 0, w = diag{Wk}, t1 = 1 and d = 1

Calculate L f = ||H̃H H̃||2
while d ≤ Dmax or stopping criteria not fulfilled do

gd = H̃H H̃yd − H̃H z̃k

xd = T λ
L f

w

(

yd − 1
L f

gd

)

Project to the non-negative orthant xd(xd < 0) = 0 and to

the real numbers xd = real(xd)

td+1 = 1
2

(

1 +

√

1 + 4t2
d

)

yd+1 = xd +
td−1
td+1

(xd − xd−1)

d ← d + 1

end while

return ik = xDmax

of the PSF, and FM is a partial M × N DFT matrix, whose M

rows contain the M lowest frequencies of a full N × N DFT

matrix. Considering (2) in the discrete Fourier domain leads to

a numerically efficient sparse solver, as described in [34]. The

estimation of ik is achieved by solving the following convex

optimization problem:

min
ik≥0

||z̃k − H̃ik ||
2
2 + λ||ik ||1 (3)

where λ ≥ 0 is a regularization parameter and z̃k is the Fourier

transform of zk . Note the ik is a real quantity.

In [20], the superresolved image is constructed by solv-

ing (3) for each frame k and accumulating all localizations.

To improve the sparse recovery process, we propose solving

the following weighted l1 minimization problem:

min
ik≥0

||z̃k − H̃ik ||
2
2 + λ||Wk ik ||1. (4)

The matrix Wk is an N2 × N2 diagonal weights matrix which

incorporates the flow dynamics of the MBs in the sparse

recovery process and changes with each frame. Intuitively,

this matrix assigns higher weights to locations less probable

to contain MBs, thus forces the sparse recovery process to

favor specific locations in the frame, which are more likely

to contain the MBs. In practice, (4) is minimized using the

fast iterative/shrinkage thresholding algorithm (FISTA) [35],

[36], described in Algorithm 1, or by using the reweighted

iterative l1 method [37] (we project to the real numbers to

avoid residual imaginary errors in the estimation of xd , as ik
is a real quantity). Algorithm 1 is applied for each frame in

the movie separately.

In Algorithm 1, L f is the Lipschitz constant of the quadratic

term of (4), readily given as the maximum eigenvalue of HH H,

and Tα is the soft-thresholding operator, defined as

Tα(x)[i ] = max (0, |xi | − αi ) · sign(xi )

where α and x are the vectors of the same length.

We next describe how to construct Wk per frame using MBs

trajectories, Kalman filtering, and OF.
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C. Microbubble Tracking

The (diagonal of the) weighting matrix Wk is inversely

proportional to the accumulated probability of detected MBs

from the (k − 1)th frame to be found in new locations in the

kth frame. Its construction requires identifying and tracking

individual MBs, as shown in Section II-D. We now turn to

explain this process. First, the state of the pth MB in frame k

is defined as s
p
k ∈ R

4 with

s
p
k =

[

x
p
k , vx

p
k , y

p
k , vy

p
k

]T
.

Here, x
p
k and y

p
k are the Cartesian coordinates that indicate

the position of the pth MB in frame k, and vx
p
k and vy

p
k its

respective velocities. The accumulation of all states of the pth

MB from frame 1 to frame K p , Tp = [s
p
1 , . . . , s

p
K p

] ∈ R
4×K p ,

is referred to as the track of the pth MB.

To proceed, consider an arbitrary frame, k. At this stage,

we posses all the states of Pk−1 previously tracked MBs,

s1
k−1, . . . , s

Pk−1

k−1 . Given the next low-resolution frame zk , our

main two goals are the following.

1) Recover the locations of the Lk MBs which are embod-

ied in frame zk . The number Lk of MBs in frame

k is generally different than the number of MBs in

the previous frame Lk−1. This possible discrepancy

occurs since blood vessels have a 3-D topology, and

consequently MBs may shift in and out of the imaging

plane.

2) Associate each newly detected MB to a previously

known track, or open a new track if no such association

is possible. This enables constructing the weighting

matrix Wk by propagating the tracks of individual MBs,

while providing the estimation of MB velocities.

The tracking and association process is illustrated in Fig. 3.

The output of Algorithm 1 is the (k − 1)th superresolved

frame, ik−1, whose nonzero values correspond to the positions

of the MBs present in this frame. Next, given all previously

known tracks T1, . . . , TPk−1 , these positions need to be asso-

ciated with the tracks. The updated tracks are essential to

the formulation of Wk . The goal of the uppermost block

in Fig. 3 is to associate each individually detected MB to

one of the known Pk−1 tracks, or to open a new track if no

such correspondence is found. Specifically, this matching and

association process is realized using the multiple hypothesis

tracking (MHT) procedure.

The MHT algorithm, as first suggested by Reid [38], is con-

sidered one of the most popular data association techniques

[28] and has been applied to a wide variety of multi-target

tracking problems [39]. The key idea in MHT is to produce

a tree of potential hypotheses for each target, in our case MB

locations. Upon receiving new measurements, the likelihood

of each possible track is calculated and the most likely

tracks are selected. This can be performed by formulating

and solving the maximum weighted independent set [40],

[41], for example. The likelihood calculation relies on all past

observations of each target [40]. The MHT algorithm is known

to produce good data association results due to its pruning

stage. Ambiguities are assumed to be resolvable when new

data are acquired. As such, given the latest measurements in

Fig. 3. Automatic tracking and data association procedure (detailed building
blocks of the “automatic tracking algorithm” block in Fig. 2). New detected
MBs from the (k − 1)th superresolved frame are associated with previously
known Pk−1 tracks, or open new tracks, while nonassociated tracks are closed
(uppermost block, realized by the MHT algorithm). Then, using the Kalman
filtering, these new Pk tracks are propagated to the next frame (central block).
Estimated velocities in the xy plane (Vxk−1

, Vyk−1
) using OF on the low-

resolution k − 1 frame are associated with the newly detected MBs and used
as measured velocities for the Kalman filter update. Thus, an updated track
estimation is produced. Finally, the propagated tracks form the weighting
matrix Wk (lowest block). The tracks serve as inputs to the algorithm in the
next frame, when new localizations arrive, and the tracking and association
process repeats itself.

frame k, the method estimates the likelihood based upon J

previous measurements (where J can be controlled) to resolve

past ambiguities in the (k−J )th frame irrevocably, and updates

all tracks accordingly for the current frame. Thus, data-to-

track association decisions are always based upon previous J

frames, in a sliding-window manner. An example of associated

track numbers to new localizations is presented in Fig. 4 (left).

In practice, we use the Lisbon implementation, taken from

[42], [43], which offers full integration into the MATLAB

environment. Due to its flexibility, the integration of this

implementation with the specific problem at hand, in this case,

2-D tracking of MBs, is easy and fast.

At the end of this association stage, existing tracks have

been assigned new measurements (MBs positions and veloci-

ties), and new tracks are generated, if new MBs were detected.

If an existing track was not updated, then this track is closed

and cannot be further updated, indicating that the individual

MB of this track is no longer present in the movie. The next

stage of 3SAT is measurement integration with corresponding

tracks, and propagation of the updated tracks to frame k.

Track update and propagation is performed by applying

Kalman filtering to each track, individually. Individual tracks

represent the history of each detected MB. This history helps

propagate the MBs to the next frame more accurately and

to obtain improved velocity estimation. To this end, consider

the pth track. We assume a linear propagation model for the

locations of the individual MBs between consecutive frames

given by

s
p
k = �s

p
k−1 + η

p
k (5)
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Fig. 4. Example of association of new measurements to existing tracks (left).
In each frame, detected MBs are associated with track identification numbers
that correspond either to existing or new tracks (MB to tracks association block
in Fig. 3). Thus, the association of new data points to tracks occurs. Red box:
enlarged area. MBs were smoothed slightly for visualization purposes only.
An example of the (diagonal of the) weighting matrix Wk presented as an
N × N image (weighting matrix generator block in Fig. 3) (right). Darker
areas (lower values) correspond to more likely positions for MBs, and thus
these pixels are given lower weights.

where

� =

⎡

⎢

⎢

⎣

1 �T 0 0

0 1 0 0

0 0 1 �T

0 0 0 1

⎤

⎥

⎥

⎦

with 1/�T being the frame rate of the US machine. Model (5)

corresponds to the discretized version of the continuous

white noise acceleration (CWNA) model, or second-order

kinematic model [44]. Ideally, a constant velocity model has

zero acceleration, or zero second-order derivative. In practice,

CWNA assumes that the velocity of each MB has slight

perturbations, described by zero-mean white noise with power

spectral density ρ. In (5), this uncertainty is captured by

the zero-mean additive Gaussian noise vector η
p
k , associated

with a covariance matrix E{η
p

k η
pT

k } = Q
p

k . Following [44],

the CWNA covariance matrix Q
p
k is given by

Q
p

k =

⎡

⎢

⎢

⎣

1/3�T 3 q1/2�T 2 0 0

1/2�T 2 �T 0 0

0 0 1/3�T 3 1/2�T 2

0 0 1/2�T 2 �T

⎤

⎥

⎥

⎦

ρ

where ρ is chosen empirically.

The measurement model for the pth MB is then given by

y
p

k = s
p

k−1 + ζ
p

k (6)

where ζ
p

k is zero-mean independent i.i.d. Gaussian noise with

covariance matrix E{ζ
p

k ζ
pT

k } = R
p
k . In practice, this matrix is

chosen to be diagonal. As R
p
k is data dependent, the values

of the diagonal are chosen empirically based on the expected

velocity magnitudes of individual MBs in the data. As val-

idation, these numbers are also compared with simulations

of similar velocity magnitudes distribution, as exemplified in

Section IV, Fig. 4.

From the superresolved image ik−1, we measure the position

of the MBs. Specifically, consider an MB which is detected

in position [nk�X , ny�Y ], where �X and �Y are the known

sizes of each pixel in the superresolved image and [nk, ny ]

are some integers. If the MHT algorithm decided that this

MB belongs to the pth track, then y
p
k [1] = nk�X and

y
p

k [3] = nk�Y . The velocities of the MBs, or y
p

k [2] and y
p

k [4],

are measured using OF estimation [23] on the low-resolution

movie frames, as will be described in Section II-E.

The Kalman filter update rules are now formulated based on

the propagation (5) and the measurement (6) models. MB state

propagation to the next frame and its corresponding propagated

estimation covariance matrix are given by

s
p
k|k−1 = �s

p
k−1|k−1

P
p

k|k−1 = �P
p

k−1|k−1�
T + Q

p

k . (7)

Using (7), the weighting matrix Wk is calculated as described

in Section II-D. Next, (4) is minimized to recover the kth

superresolved frame, ik . After the association process is fin-

ished, for each track, we update its last state via the Kalman

filter equations. The Kalman gain is given by

K
p
k = P

p
k|k−1

(

P
p
k|k−1 + R

p
k

)−1
(8)

and the innovation step along with the updated estimation error

covariance matrix are

s
p
k|k = s

p
k|k−1 + K

p
k

(

y
p
k − s

p
k|k−1

)

P
p
k|k =

(

I4×4 − K
p
k

)

P
p
k|k−1. (9)

From the innovation step (9), the states are updated as s
p
k =

s
p
k|k with estimation covariance matrix P

p
k = P

p
k|k .

D. Weighting Matrix Formulation

After the states for all MBs are propagated using (7) and

associated with existing or new tracks, we turn to formulate

the weighting matrix Wk , as illustrated in Fig. 3 (bottom).

The propagated state s
p
k|k−1 represents the position and veloc-

ity of the pth MB and has its associated estimation error

covariance matrix P
p
k|k−1. Based on state predictions, a spatial

MB-likelihood map Jk is formulated, by assigning proba-

bilities drawn from an anisotropic Gaussian distribution of

which the mean and covariance are dictated by their respective

predictions/updates in the Kalman framework. This process is

illustrated in Fig. 5.

By aggregating the estimated positions and Gaussians of all

of the Pk−1 propagated MBs, a spatial map of their possi-

ble true locations on the high-resolution grid is constructed,

denoted as Jk . The i j th element of this N × N matrix is

expressed as

Jk[i, j ]=

Pk−1
∑

p=1

A pe
−q p

(

1

σ
p
x

2

(

i−x
p
0

)2
−cp

(

i−x
p
0

)(

j−y
p
0

)

+ 1

σ
p
y

2

(

j−y
p
0

)2

)

(10)

with A p = (|2πP
p
k|k−1|)

1/2, [x
p
0 , y

p
0 ] = [s

p
k|k−1[1], s

p
k|k−1[3]],

σ
p

x = P
p

k|k−1[1, 1], σ
p
y = P

p
k|k−1[3, 3], q p = 1/(2(1 − ρ p2)),

cp = 2ρ p/(σ
p

x σ
p
y ) and ρ p = P

p
k|k−1[1, 3]/(σ

p
x σ

p
y ). The

diagonal of the weighting matrix Wk is the inverse of the



SOLOMON et al.: EXPLOITING FLOW DYNAMICS FOR SUPERRESOLUTION IN CEUS 1579

Fig. 5. Generation of the weighting matrix Wk [as described in (10)

and (11)]. Previously estimated state s
p
k−1|k−1

is propagated to state s
p
k|k−1

,

according to (7). Its propagated error covariance matrix P
p
k|k−1

is then used

to draw an ellipse around its location, where σ
p
x = P

p
k|k−1 [1, 1] and σ

p
y =

P
p
k|k−1 [3, 3]. Aggregation of all propagated uncertainty ellipses generates an

image of possible MBs locations. The matrix Wk is proportional to the inverse
of this image.

Algorithm 2 3SAT

Require: Low-resolution movie Zk, k = 1, . . . , K

Initialize W1 = IN2×N2

Perform sparse superresolution on z1 using Algorithm 1

for k = 2, . . . , K do

Given zk and Wk−1, perform sparse super resolution on

zk using Algorithm 1 and estimate ik
Estimate OF on zk using MATLAB’s opticalFlow com-

mand and estimate velocity components Vxk and Vyk

Given ik , Vxk and Vyk , construct new measurement vectors

for all Pk detected MBs y
p
k , p = 1, . . . , Pk

Associate y
p
k to existing tracks Tp, p = 1, . . . , Pk /open

new tracks/close old tracks using the MHT algorithm

(Fig. 3)

Update last state of existing/new tracks Tp using (9)

Propagate last state of existing/new tracks Tp with (7)

Given the updated tracks, construct weighting matrix Wk

using (11)

end for

return Super-resolved frames ik, i = 1, . . . , K and MB

tracks T1, . . . , T PK

vectorized form of Jk plus a regularization value ǫ, to avoid

division by zero

Wk [i, i ] =
1

Jk[⌊i/N⌋ , (i mod N)] + ǫ
, i = 1, . . . , N2

(11)

where ⌊·⌋ is the floor operation and (x mod y) is the modulo

operation with the swap 0 → N . An illustration of such a

weighting matrix can be observed in Fig. 4 (right). Vectoriza-

tion of this N × N image is the diagonal of Wk . The main

building blocks of 3SAT are described in Algorithm 2.

As noted before, in (6), we assume that we measure not

only the positions of detected MBs but also their velocities.

We now turn to describe how this velocity measurement is

performed.

E. Velocity Regularization Via Optical Flow Estimation

To improve the tracking procedure of individual MBs,

velocity measurements are provided to the Kalman fil-

ter as part of the input to (6). This is done by OF

estimation [23]–[26] from the low-resolution movie. Although

the formulation originates from the low-resolution movie,

in which individual MBs are not separable, this added velocity

information helps in regularizing the tracking of individual

MBs. Consider, for example, a newly detected MB. This

MB has a single position measurement. Without additional

information on its general direction of movement, the tracking

filter will propagate the MB to a position, which, in general,

is not related to its actual position in the next frame. If, on the

other hand, additional information in the form of its coarse

velocity is available, then the filter will propagate the MB to

a location in which the MB is more likely to be detected in

the next frame.

OF estimation methods are easily implemented using the

opticalFlow command in MATLAB. We achieved good per-

formance with the method of Lukas and Kanade [26] with

a Gaussian smoothing kernel and a standard deviation of

1.5 pixels.

In practice, each low-resolution frame Zk is first interpolated

to the size of the N × N superresolved images Ik , and OF

estimation is performed subsequently. This procedure ensures

that each pixel in the superresolved image is associated with

a velocity vector from its corresponding interpolated low-

resolution frame. Together, the obtained velocities are con-

sidered as measurements for the Kalman filter, along with

MBs localizations from the superresolved frame Ik . Formally,

the xy velocity fields obtained by OF estimation over the

interpolated low-resolution frame Zk are denoted as Vxk and

Vyk . That is, both Vxk and Vyk are N × N matrices, and each

of their pixels correspond to the pixel-wise lateral and axial

estimated velocities, respectively. Next, for MBs detected in

pixels [i p, jp] from Ik , we associate the corresponding velocity

values from Vxk and Vyk

y
p
k [2] = Vxk [i p, jp]

y
p

k [4] = Vyk [i p, jp] p = 1, . . . , Pk . (12)

Thus, the first and third entries of the measurement vector y
p
k

in (6) represent the measured position of the pth detected MB

in the kth frame, and the second and fourth entries represent

its measured velocity.

Note that OF estimation is performed on the low-resolution

movie and not on the superresolved frames, as the basic

assumption of OF, known as the pixel intensity consistency

assumption [24] does not hold on the superresolved images.

This is because a typical superresolved image looks like the

image displayed in Fig. 4 (left). The enlarged box shows

the localization of three MBs (smoothed only for display

purposes). Typically, in the next frame, these MBs move con-

siderably, which prevents reliable OF estimation. In contrast,

a much more reliable OF estimation is achieved on the low-

resolution images due to the spreading of the echoes from the

MBs over several adjacent pixels.
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Fig. 6. Simulation results. (a) Groundtruth image of bifurcating blood vessels. (b) Superlocalization reconstruction. (c) Superresolution sparse recovery
obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed velocity trajectories over the MIP
image obtained from the 3SAT recovery. Yellow lines: selected profiles are presented in Fig. 7. All reconstructions are displayed in logarithmic scale with a
dynamic range of 40 dB.

Since the velocities are measured on the low-resolution

images, from non-resolved MBs, they do not represent the

velocities of individually resolved MBs. Instead, they consti-

tute a coarse, low-resolution estimate of the average velocities

from the nonresolved MBs. As such, the velocity measure-

ments are weighted with ten times larger values in the covari-

ance matrix R
p

k than the position measurements.

III. MATERIALS AND METHODS

A. Numerical Simulations

Using MATLAB, we simulate a bolus injection of 140 MBs

into vascular bifurcations over an acquisition period of 96

frames, with the frame rate of 10 Hz (total acquisition time

is 10 s), and pixel size of 0.15 × 0.15 mm2. Acquisition of

the MBs was simulated by summing RF-modulated PSFs for

each of the MB locations. RF lines were subsequently demod-

ulated using the Hilbert transform. Images were formed by

subsequentially taking the absolute value of the demodulated

data. The received modulation frequency is 7 MHz (second

harmonic of 3.5 MHz, similar to our in vivo acquisition

setup), with a Gaussian PSF having a standard deviation of

0.14 mm in the axial direction and 0.16 mm in the lateral

direction. The entire acquisition process was approximated by

a linear mapping from MB locations to beamformed image,

through the PSF. The extracted second harmonic component

was simulated through the use of an RF modulation at that

frequency. MBs flow from the highest point of Fig. 6(a)

down to the terminals of all branches. To simulate the bolus

injection, the probability for an MB to appear at the point of

origin follows a Gaussian distribution in the following manner.

MB velocities’ magnitudes and directions were generated by

taking the maximum between values drawn from a normal

distribution with a mean of 1 mm/s and standard deviation

of 1 mm/s, and zero, to avoid negative magnitude values.

Additive white Gaussian noise with a standard deviation

of 0.03 was added.

We set P = 8 and recover the superresolved images

on an eight times denser grid than the low-resolution grid.

The regularization parameter was chosen to be λ = 0.002.

We iterate over 4000 iterations per frame and set ǫ = 1,

ρ = 260, and Rk = diag{0.1, 1, 0.1, 1}. In the MHT algorithm,

the probability for not detecting an existing target was chosen

as 0.1, the probability for a new target to appear is 0.2, and

the probability for false alarm is 0.01. A maximum number

of six leaves are used.

B. In Vivo Experiments

The CEUS data of a human prostate from a patient who

underwent radical prostatectomy were acquired at the AMC

University Hospital (Amsterdam, the Netherlands), using a 2-

D transrectal US probe (C10-3v) and an iU22 scanner (Phillips

Healthcare, Bothell, WA, USA). The scanner operated in a

contrast-specific mode at a frame rate of 1/�T = 10 Hz

with central transmission frequency of 3.5- and 7-MHz central

frequency upon reception of the second harmonic. A 2.4-mL

MB bolus of SonoVue (Bracco, Milan, Italy) was administered

intravenously, and 100 frames (10 s) were collected for further

analysis. The pixel size is 0.146×0.146 mm2 and the mechan-

ical index was set to 0.06 to attain sufficient SNR, while

limiting MB destruction [45], [46]. The study was approved

by the local ethics committee of the Academical Medical

Center, University Hospital of Amsterdam, the Netherlands.

All patients signed informed consent.

We consider two examples taken from the in vivo scan. For

all experiments, we set P = 4 and recover the superresolved

images on four times denser grid than the low-resolution grid.

Since variations in PSF shape and orientation are inevitable

over large fields of view, as in the case when scanning with

a transrectal probe, for each case, the PSF was estimated

separately. In both cases, we use 2000 iterations per frame,

ǫ = 0.5, ρ = 500, and Rk = diag{0.1, 1, 0.1, 1}. For both

examples, in the MHT algorithm, the probability for not

detecting an existing target was set to 0.1, the probability

for a new target to appear to 0.5, the probability for false

alarm to 0.01 and a maximum number of leaves to 6. All

superlocalization reconstructions were performed after apply-

ing wavelet-based denoising to suppress residual tissue signal,

as the power modulation scheme does not remove the tissue

signal completely. Without this denoising step, many false

positive detections were observed. FISTA and 3SAT recoveries

were performed on the separated CEUS signal, without any

prior denoising.

IV. RESULTS

A. Numerical Simulations

Fig. 6 shows the reconstruction results of the simulated

data set of flowing MBs within a simulated vascular net-
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Fig. 7. (a) Intensity profiles (a.u.) taken along the yellow lines in Fig. 6.
(b) Intensity profiles (a.u.) taken along the yellow lines in Fig. 10.

work. Fig. 6(a) shows the groundtruth architecture, while

Fig. 6(b)–(d) shows the reconstruction results of superlocaliza-

tion [47], sparsity-driven superresolution [20] [minimizing (3)]

and 3SAT, respectively. Fig. 6(e) shows an overlay of MB

trajectories, colored by their estimated velocities over the

maximum intensity projection (MIP) image.

Visual inspection reveals that 3SAT recovery [Fig. 6(d)]

seems the smoothest and most continuous, that is depict-

ing a more complete image of the underlying vascular net-

work, compared with the superlocalization (which seems

very discontinuous and includes false positive detections) and

sparsity-based reconstructions, depicted in Fig. 6(b) and (c),

respectively. The green arrow in Fig. 6(a) indicates a bifurcat-

ing blood vessel, which is almost nondepicted in the super-

localization image Fig. 6(b) and is discontinuous in Fig. 6(c)

of the sparsity-driven approach. Conversely, 3SAT Fig. 6(d)

detects this blood vessel completely, showing a continuous

connection to the main blood vessel. The red arrow indicates

another example of clear bifurcation depictions by 3SAT,

which are discontinuous in the other reconstructions.

Fig. 6(e) shows that the estimated velocities are in the

range 0–3 mm/s. A histogram of the measured velocities is

shown in panel (c) of Fig. 11, where the velocities distribution

is indeed between 0 and 3 mm/s. This histogram is compared

with the scaled (truncated) Gaussian distribution from which

MB velocities where generated (solid transparent curve).

A good match between the two distributions is achieved,

validating the performance and reliability of 3SAT.

In panel (a) of Fig. 7, selected intensity profiles

(a.u.) were measured along the dashed yellow lines

in Fig. 6(a), (b), and (d). In this example, it is evident that

the 3SAT profile detects the two peaks (vessel branching)

also present in the ground truth, with good agreement, while

the superlocalization procedure fails to detect the rightmost

peak. This situation is expected since most frames consist

of overlapping MBs, especially at bifurcations. In scenar-

ios of extensive overlap, superlocalization tends to result in

aggregations of detections, often leading to mis-detections of

nearby vessels, as opposed to sparsity-based techniques that

are designed to account for this overlap. Table I gives the

comparison of the peak-to-peak distance for the bifurcations

TABLE I

PEAK-TO-PEAK DISTANCES FOR THE INTENSITY PROFILES IN FIG. 6
(FOR 3SAT, WITHOUT/WITH POSTPROCESSING SMOOTHING)

Fig. 8. MIP image of the in vivo prostate scan used in this study
(left). Right rectangle: first examined the area of the prostate (Fig. 9). Left
rectangle: second area (Fig. 10). Time–intensity profile calculated as the mean
frame intensity as a function of scan time (right). Red highlighted region:
processed time segment in both examples. This area exhibits recirculation of
MBs in the patient’s bloodstream. Time–intensity curve for the right rectangle
is shown in Fig. 12(d), while the corresponding curve for the left rectangle
is shown in (e).

along the yellow lines in Fig. 6, as measured in the ground

truth image, superlocalization, and 3SAT recoveries. Imaging

at 7 MHz, the imaging wavelength λ0 is 220 µm (speed of

sound 1540 m/s). A common measure of resolution is the full-

width-at-half-max (FWHM), which for a Gaussian function is

approximately 2.355σ , or in case of the simulation 330 µm

in the lateral direction. Thus, the values attained by 3SAT,

in this example, correspond to a separation distance smaller

than λ0/2, and 3.5–4 times improvement in the FWHM,

demonstrating that 3SAT achieves subwavelength imaging.

B. In Vivo Experiments

In this section, we present in vivo reconstruction results

of 3SAT. US acquisition parameters and reconstruction para-

meters are given in Section III. Fig. 8 (left) shows the MIP

image of the entire prostate, while the rectangles correspond to

the selected processed areas. In this study, we focus on selected

patches and do not process the entire aperture of the prostate,

since we use a curved transrectal probe which spans a wide

field of view (FOV). Since the FOV is large, the PSF depends

on the scanned region (e.g., the PSF for the right rectangle is

not the same for the left one). A main assumption we make

is that of a linear, shift-invariant acquisition model, hence we

process smaller patches over which this assumption seems to

hold. For each processed area the PSF is estimated from the

data, independently. The right figure shows the time–intensity

curve calculated as the mean intensity at each frame from

the entire FOV. The red area marks the observation window

over which processing is performed. This time span was

chosen during the wash-out phase of the MBs but also exhibits

recirculation of MBs and an increase in MB concentration at

the beginning of the acquired period.
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Fig. 9. 3SAT applied to an in vivo scan from a human prostate. (a) MIP image from 100 frames. (b) Superlocalization recovery. (c) Superresolution sparse
recovery obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed velocity trajectories
over the MIP image obtained from the 3SAT recovery. All images are displayed in logarithmic scale with a dynamic range of 30 dB.

Fig. 10. Additional example of 3SAT recovery of an in vivo human prostate scan. (a) MIP image from 100 frames. (b) Superlocalization recovery.
(c) Superresolution sparse recovery obtained by minimizing (3) via FISTA. (d) 3SAT recovery by accumulating all recovered MB trajectories. (e) Superimposed
velocity trajectories over the MIP image obtained from the 3SAT recovery. All images are displayed in logarithmic scale with a dynamic range of 30 dB.

Figs. 9 [right rectangle in Fig. 8 (left)] and 10 [left rectangle

in Fig. 8 (left)] compare between different reconstructions in

two areas of a prostate CEUS scan. In both Figs. 9 and 10,

(a) shows the MIP image. This image is diffraction limited

and was generated as reference for standard non superres-

olution image processing by taking the pixelwise maximum

value over the entire movie. Fig. 9(b) shows the resulting

superlocalization-based image, by localizing individual MBs

per frame. Fig. 9(c) depicts sparsity-based superresolution as

obtained by minimizing (3) via FISTA, while Fig. 9(d) shows

the 3SAT output. Finally, Fig. 9(e) displays an overlay of the

estimated velocities’ trajectories on the MIP image.

We first consider Fig. 9. By qualitative consideration,

the comparison of (b)–(d) and (a) shows that all methods seem

to achieve superresolution, with a relatively good agreement

among them. That is, main superresolved features seem to

be present in all three methods, such as a small vertical

blood vessel located at the bottom left portion of the images

of (b)–(d). However, the 3SAT image (d) qualitatively appears

smoother and more continuous, showing distinct trajectories

that are absent in the sparse recovery and superlocaliza-

tion images. These consist of a larger set of disconnected

and isolated MBs. Moreover, Fig. 9(e) presents the veloc-

ity magnitude estimations from the tracked MBs. The vast

majority of obtained MB flow velocities are on the order of

up to 1–2 mm/s, in line with the previous observations on

blood flow in microvessels [15]. This is also confirmed by

the velocity magnitude histograms, displayed in Fig. 11(a).

However, additional higher velocities up to ∼4 mm/s are also

observed. Such velocities may correspond to larger vessels,

with increased flow.

Fig. 11. Top row: estimated velocity histograms. (a) Experimental data set
shown in Fig. 9. (b) Experimental data set shown in Fig. 10. (c) Simulation
data set shown in Fig. 6. Transparent solid curve indicates a scaled Gaussian
distribution with mean and standard deviation of 1. Bottom row: track length
histogram of corresponding data sets. (d) Experimental data set of (a).
(e) Experimental data set of (b). (f) Simulated data set of (c). Track lengths
are measured as the number of measurements associated with each track.
Numbers correspond to the mean track length of each histogram.

Considering Fig. 10(b)–(d), qualitatively show once more

superresolution imaging of the prostate vasculature, compared

with the MIP image of (a). These figures further support

the conclusions drawn in Fig. 9. In this example, we also

quantify the resolution increase of superlocalization and 3SAT,

compared with the MIP image. The yellow lines indicate

a selected intensity profile of a blood vessel. This vessel

can clearly be seen in the MIP image. Fig. 7(b) shows the
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Fig. 12. Detected MBs per frame for both experimental data sets shown in (a) Fig. 9, (b) Fig. 10, and (c) simulation. (d)–(f) Corresponding time–intensity
curves for each scan. These curves were calculated as the framewise mean pixel intensity over time.

corresponding intensity profiles of the MIP, superlocalization,

and 3SAT recoveries (arbitrary units, intensity normalized to

one). Both superlocalization and 3SAT achieve narrowing of

the blood vessel contour, as compared with the MIP profile

(blue solid line).

Fig. 10(e) depicts pointlike and short trajectories, with

low velocities, alongside longer and smoother trajectories.

Such pointlike trajectories are attributed to the fact that the

vascular bed of the prostate is inherently 3-D, with many

blood vessels crossing the imaging plane of the probe. Thus,

lateral and axial velocities (with respect to the transducer

position) of MBs flowing within these blood vessels can be

small. In contrast, the simulated MBs in Fig. 6 are simulated

in a plane and clearly show long and smooth trajectories.

Further quantification is also shown in Fig. 11(d)–(f), showing

a histogram of track lengths (bold numbers of above these

figures indicate mean velocity length), in which larger track

lengths are observed in the simulation, and shorter lengths in

the experimental data sets.

We further quantify the number of detected MBs in each

frame, for each of the superresolution methods discussed

above. Fig. 12(a)–(c) indicates the number of detected MBs

per frame for the experimental data presented in Figs. 9 and 10

and the simulation shown in Fig. 6. The lines indicate the

number of detected MBs for 3SAT (solid blue), sparsity-based

superresolution via FISTA [dash-dot orange, (a) and (b)] and

superlocalization (dot brown). The dash-dot orange line in (c)

indicates the ground truth number of MBs in the simulation.

Considering (a), it is evident that all three methods perform

similarly, and detect a similar number of MBs in each frame.

In this case, MB density is such that all methods perform

similarly. On the other hand, (b) shows an increasing number

of detected MBs for all the methods. After ∼35 frames, 3SAT

clearly detects more MBs compared with superlocalization and

FISTA-based sparse recovery (first ∼10 frames show higher

detection rate for superlocalization, but this is likely the result

of false detections due to residual tissue signal or noise in the

CEUS data). This scan was taken during the wash-out phase of

MBs circulation; however, the increase in detections indicates

that this data is a part a recirculation of the MBs, in which

MB concentration increases as time progresses. The simulation

corresponding to (c) simulates the entire circulation of MBs

in the blood steam, from the wash-in phase up to the wash-

out phase. Fig. 12(c) shows that 3SAT is able to consistently

detect more MBs, achieving an improved estimation of the

number of MBs per frame, as compared with the ground truth

curve. The discrepancy between the ground truth and 3SAT

curves is due to aggregated MBs, which cannot be resolved

by any of the methods. In (c), corresponding detections of the

FISTA method are not displayed due to a high rate of false

detections.

Fig. 12(d)–(f) shows the corresponding time–intensity

curves for each scan, measured as the framewise mean pixel

intensity over time. In [48], a linear relation between the

intensity and MB concentration was verified for concentrations

up to 1 mg/L. Visual inspection shows that the time–intensity

curves in the bottom figure correlate with the 3SAT curves in

the corresponding (a)–(c), further supporting the conclusion

that 3SAT accurately detects the number of MBs per frame,

as compared with superlocalization, for such concentrations.

Most notable is the curve in (e), which matches that of 3SAT,

showing an increase in MB detections over time. Furthermore,

it shows that indeed the high number of detections by the

superlocalization method in the first ∼10 frames is most likely

the result of false detections.

All panels support the conclusion that at low MB concentra-

tions (∼2–3 MB/mm2), 3SAT performs similar to superlocal-

ization, but exhibits improved performance, when the density

increases (∼10 MB/mm2), which is about 3 − 5 times denser

MB concentration.2

2Concentration values were measured by dividing the number of detected
MBs per frame with each respective FOV.
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V. DISCUSSION AND CONCLUSION

This is the first work to exploit the inherent motion kinemat-

ics of individual MBs as a structural prior for superresolution.

Since individual MBs flow within blood vessels, their positions

can be predicted from one frame to the next. 3SAT exploits this

additional information to improve sparse recovery, by solving

a support aware minimization problem, as formulated in (4).

Using Kalman filtering, 3SAT is able to track and propagate

the trajectories of individual MBs from one frame to the

next. Moreover, we introduce velocity measurements via OF

estimation to improve the tracking process for superresolution

imaging. In a recent study, de Senneville et al. [49] introduced

a similar concept of MB transport to quantify the velocity

amplitude of bolus arrival in CEUS as a diagnostic tool.

3SAT extends these ideas by relying on OF as measure-

ments, while estimating individually resolved MBs’ velocities.

Figs. 9 and 10 show the power and potential of 3SAT on

in vivo data. Both clear and smooth superresolution imaging

are achieved, as well as a quantitative measurement of the

flow velocities of individual MBs, quantification of resolution

enhancement and MB detection rates. This study shows that

the 3SAT approach achieves a higher and more accurate detec-

tion rate of MBs than the superlocalization-based approach,

when MB density increases, as depicted in Fig. 12.

3SAT operates well with high MB concentrations

(e.g., ∼10 MB/mm2), for which significant MB overlap is

present, as quantified in Fig. 12. However, the detection rate

of MBs is noise dependent. In very noisy scenarios, 3SAT

is not guaranteed to recover all individual MBs, although in

the experiments showed in this paper, detection rates are high.

By exploiting the sparse nature of the individual MB echoes,

3SAT is able to depict the vasculature with a relatively low

number of frames. In our in vivo experiments we used two

data sets of 100 frames. However, as MB density increases

even further, several mechanisms of 3SAT may fail. First,

the sparse-recovery algorithm may not be able to accurately

detect and localize all of the MBs in each frame. Second, MHT

data-to-track association may also fail to properly associate

new localizations to existing tracks, as resolved MBs become

extremely close to one another. Moreover, high MB velocities

relative to the scanner frame rate may also limit the correct

association of MBs to tracks. Finally, OF estimation will fail

to produce reliable results in areas of many overlapping MBs

which move in different directions, resulting in an almost-zero

averaged velocity estimate on the low-resolution grid. Reduc-

ing the frame rate even more will also cause OF estimation and

MHT data-to-track association to fail. The former, since the

basic assumption of pixel intensity consistency breaks down

as the frame rate decreases. The latter, since the association of

new measurements to existing tracks becomes less likely than

the opening of new tracks, even if they belong to previous

tracks. Yet, as reported in this work, for clinical bolus doses

and 10-Hz scanners, 3SAT depicts a smoother and more

consistent vasculature and is able to detect more MBs than

the state-of-the-art techniques in high concentration scenarios.

As can be observed in Fig. 8 (right), the processed acquisi-

tion period was taken during the wash-out phase of the MBs.

This period was chosen, and correspondingly the two subre-

gions, in order to test the performance of 3SAT in relatively

low and constant densities (Fig. 9) and in higher densities

(Fig. 10). In Fig. 10, recirculation of MBs appears, showing an

increase in MB signal and density. These two subregions serve

to assess 3SAT in both scenarios and compare its performance

to superlocalization. In fact, Fig. 12 demonstrates both in

vivo and in silico that as MB density increases, 3SAT is

able to reliably recover more MBs than superlocalization.

Furthermore, since the removal of tissue signal is not perfect,

it seems that superlocalization is more prone to false detections

than sparsity-based approaches. This happens since sparsity-

based approaches use explicit information about the measured

PSF, whereas superlocalization does not.

Velocity estimates of 3SAT may vary when considering

different periods during the entire MBs circulation period.

This may happen as MB velocities may differ during the

wash-in and wash-out phase. Furthermore, considering longer

acquisition periods may reveal finer blood vessels as statis-

tically, the likelihood of MBs to flow through these vessels

increases. However, such longer durations may lead to poorer

MB detection and velocity estimation, as motion becomes

more dominant and the registration process might fail. Min-

imization of these errors further motivates the use of high

MB concentrations and the development of methods which

can compensate for MBs overlap, such as 3SAT.

In [19], a similar model to (1) was introduced over the

beam-formed complex in-phase and quadrature signal (in

which acquired echoes from different MBs are superimposed

together), while this work assumes such a model over the

real-valued intensity images. Although intensity images are

formed through a nonlinear operation of envelope detection,

in practice, both in simulations and in vivo experiments,

we observed good reconstruction performance using model

(1), as presented in Section IV.

The use of a Kalman filter for MB tracking has two main

motivations. First, the Kalman filter is an online estimator,

which is suitable for real-time applications. Using this filter

for online tracking of MBs can lead to a real-time clinical

application of 3SAT. Second, it is known that capillary flow

is nonturbulent [8], [22]. Thus, a simple linear propagation

model is reasonable for the tracking procedure.

There are several limitations to 3SAT. The first is inherent

to all US superresolution techniques. MBs must flow through

the vasculature in order to detect it, thus setting a minimal

acquisition time for any superresolution imaging technique.

In 3SAT, by using high-concentration bolus doses and sparse

recovery, we reduce the acquisition time, but only to the degree

that MBs flow within the finest blood vessels during that

period.

Second, 3SAT includes several parameters which should be

selected properly, among which are the sparsity regularization

parameters λ, ǫ, ρ and the probabilities for the MHT algo-

rithm. In this work, these parameters were chosen manually,

but according to some important guidelines. Typically ǫ should

be relatively small, similar to the values we chose, to avoid

numerical errors, but ultimately may vary from one scan to

the other. Next, the second and fourth entries of the diagonal
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of Q
p
k correspond to the variance of the velocity estimates

in the x- and y-directions, respectively. Therefore, in fact,

the standard deviation of each velocity estimate is proportional

to (�Tρ)1/2. This suggests guidelines to the determination

of the power spectral density of the noise, ρ. In our in vivo

examples and based on past literature, see [22], we know that

blood flow in small vessels is typically 0–2 mm/s and can be

higher (e.g., 4 mm/s as we measure in some parts of our in

vivo examples) in larger vessels. Thus, ρ is set according to the

expected velocities in the imaged medium. Since �T = 0.1 s,

choosing ρ = 500 results in a standard deviation of 7 mm/s,

which accommodates for slight variations in the estimated

velocity values of our model. The probabilities for the MHT

algorithm were chosen to be similar to those specified in the

MATLAB example provided with the code package.

The selection of the parameter λ corresponds to the given

SNR and the number of expected MBs in the image. This

number can of course change between the wash-in and wash-

out phases of MBs flow, as MB concentration changes. In our

experiments, this parameter was chosen according to an upper

bound on the expected number of MB per mm2. However,

this number can also change between scans of different

organs or different parts of the same organ, and in this case,

additional validation and testing will have to be performed.

As was also mentioned in [8], 3SAT is designed to work

with 2-D images but is affected by the inherent 3-D geometry

of blood vessels going in and out of the imaging plane. Thus,

some of the detected MBs cannot be tracked over several

consecutive frames, resulting in single detections, as was

presented in Figs. 9 and 10. This is an inherent limitation to

all 2-D-based superresolution techniques. It can probably be

alleviated with the introduction of 3-D probes and volumetric

scans, which will enable 3-D tracking of individual MBs.

Before concluding, we would like to discuss some com-

putational aspects of online sparse tracking, as the number

of detected MBs grows. Angelosante et al. [32] suggested an

l1 relaxed adaptation of the Kalman filter to account for the

possible exponential growth in computational complexity with

the problem dimensions. In practice, although 3SAT applies

Kalman filtering to each detected MB, this computational

growth was not observed to be dramatic, even when tens of

MBs were tracked simultaneously. We ascribe this to the fact

that the state of each MB is relatively low dimensional (four

entries of positions and velocities), so that matrix inversions

are relatively inexpensive.

Another possible computational burden stems from the

MHT algorithm, which is known to grow exponentially in

complexity as the number of tracks increases. Ackermann

and Schmitz [8] considered a modified version of Markov

Chain Monte Carlo (MCMC) data association [50] to account

for this growth. The computational complexity of MHT can

also be controlled by limiting the pruning depth, achieving a

tradeoff between accurate data association and computational

complexity. In general, any automatic association algorithm

may be used in the uppermost block in Fig. 3 instead of

MHT, such as the joint probabilistic data association (JPDA)

[51] or the MCMC algorithm of [8].

To conclude, in this work, we presented a new algorithm

to improve sparsity-based superresolution CEUS imaging,

taken mainly from low-frame rate clinical scanners. By for-

mulating a weighted sparse recovery minimization problem,

combined with online tracking of individual MBs, we are

able to improve the sparse recovery process and fill-in for

additional information of MB positions. 3SAT achieves a

smoother depiction of the vasculature and provides quantitative

information regarding MB kinematics and MB detection rates.

We applied our algorithm to both simulations and in vivo

human prostate scans, obtained from low-frame rate (10 Hz),

clinically approved US machines, demonstrating superresolu-

tion recovery of the vascular bed with 100 frames. On these

scans, we demonstrate that as MB density increases, 3SAT

is able to recover more MBs compared with the state-of-the-

art methods, while achieving superresolution imaging. Since

3SAT employs an online estimation process, it may be suitable

for real-time applications within commercially available US

machines.
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