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Abstract 

Generative probability models such as hidden ~larkov models pro

vide a principled way of treating missing information and dealing 

with variable length sequences. On the other hand , discriminative 

methods such as support vector machines enable us to construct 

flexible decision boundaries and often result in classification per

formance superior to that of the model based approaches. An ideal 

classifier should combine these two complementary approaches. In 

this paper, we develop a natural way of achieving this combina

tion by deriving kernel functions for use in discriminative methods 

such as support vector machines from generative probability mod

els. We provide a theoretical justification for this combination as 

well as demonstrate a substantial improvement in the classification 

performance in the context of D~A and protein sequence analysis. 

1 Introduction 

Speech, vision , text and biosequence data can be difficult to deal with in the context 

of simple statistical classification problems. Because the examples to be classified 

are often sequences or arrays of variable size that may have been distorted in par

ticular ways, it is common to estimate a generative model for such data, and then 

use Bayes rule to obtain a classifier from this model. However. many discrimina

tive methods, which directly estimate a posterior probability for a class label (as 

in Gaussian process classifiers [5]) or a discriminant function for the class label 

(as in support vector machines [6]) have in other areas proven to be superior to 
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generative models for classification problems. The problem is that there has been 

no systematic way to extract features or metric relations between examples for use 

with discriminative methods in the context of difficult data types such as those 

listed above. Here we propose a general method for extracting these discriminatory 

features using a generative model. V{hile the features we propose are generally 

applicable, they are most naturally suited to kernel methods. 

2 Kernel methods 

Here we provide a brief introduction to kernel methods; see, e.g., [6] [5] for more 

details. Suppose now that we have a training set of examples Xl and corresponding 

binary labels 51 (±1) . In kernel methods. as we define them. the label for a new 

example X is obtained from a weighted sum of the training labels. The weighting of 

each training label 52 consists of two parts: 1) the overall importance of the example 

Xl as summarized with a coefficient '\1 and 2) a measure of pairwise "similarity" 

between between XI and X, expressed in terms of a kernel function K(X2' X). The 

predicted label S for the new example X is derived from the following rule: 

s ~ sign ( ~ S, '\,K(X,. X) ) (1) 

We note that this class of kernel methods also includes probabilistic classifiers, in 

\vhich case the above rule refers to the label with the maximum probability. The 

free parameters in the classification rule are the coefficients '\1 and to some degree 

also the kernel function K . To pin down a particular kernel method. two things 

need to be clarified. First , we must define a classification loss . or equivalently, the 

optimization problem to solve to determine appropriate values for the coefficients 

'\1' Slight variations in the optimization problem can take us from support vector 

machines to generalized linear models. The second and the more important issue is 

the choice of the kernel function - the main topic of this paper. \Ve begin with a 

brief illustration of generalized linear models as kernel methods. 

2.1 Generalized linear models 

For concreteness we consider here only logistic regression models. while emphasizing 

that the ideas are applicable to a larger class of models l . In logistic regression 

models , the probability of the label 5 given the example X and a parameter vector 

e is given by2 

P(5IX. e) = (7 (5eT X) (2) 

where (7(z) = (1 + e- z) - l is the logistic function. To control the complexity of 

the model when the number of training examples is small we can assign a prior 

distribution p(e) over the parameters. \Ve assume here that the prior is a zero 

mean Gaussian with a possibly full covariance matrix L:. The maximum a posteriori 

(l\IAP) estimate for the parameters e given a training set of examples is found by 

1 Specifically. it applies to all generalized linear models whose transfer functions are 
log-concave. 

2Here we assume that the constant + 1 is appended to every feature vector X so that 

an adjustable bias term is included in the inner product eT X. 
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maximizing the following penalized log-likelihood: 

I: log P(S, IX 1 , B) + log P(B) 

where the constant c does not depend on B. It is straightforward to show, simply 

by taking the gradient with respect to the parameters , that the solution to this 

(concave) maximization problem can be written as3 

(4) 

Xote that the coefficients A, appear as weights on the training examples as in the 

definition of the kernel methods . Indeed. inserting the above solution back into the 

conditional probability model gives 

(5) 

By identifying !..:(X/. X) = X;'f.X and noting that the label with the maximum 

probability is the aile that has the same sign as the sum in the argument. this gives 

the decision rule (1). 

Through the above derivation , we have written the primal parameters B in terms 

of the dual coefficients A,.J. Consequently. the penalized log-likelihood function can 

be also written entirely in terms of A, : the resulting likelihood function specifies 

how the coefficients are to be optimized. This optimization problem has a unique 

solution and can be put into a generic form. Also , the form of the kernel function 

that establishes the connection between the logistic regression model and a kernel 

classifier is rather specific , i.e .. has the inner product form K(X,. X) = X;'f.X. 

However. as long as the examples here can be replaced with feature vectors derived 

from the examples. this form of the kernel function is the most general. \Ve discuss 

this further in the next section. 

3 The kernel function 

For a general kernel fUIlction to be valid. roughly speaking it only needs to be pos

itive semi-definite (see e.g. [7]). According to the t-Iercer 's theorem. any such valid 

kernel function admits a representation as a simple inner product bet\\'een suitably 

defined feature vectors. i.e .. !":(X,.Xj) = 0\,0.'\) . where the feature vectors come 

from some fixed mapping X -> ¢.'\. For example. in the previous section the kernel 

function had the form X;'f.Xj ' which is a simple inner product for the transformed 

feature vector ¢.'\ = 'f. 1- X. 

Specifying it simple inner product in the feature space defines a Euclidean met

ric space. Consequently. the Euclidean distances between the feature vectors are 

obtained directly from the kernel fUllction: with the shorthand notation K ,} = 

3This corresponds to a Legendre transformation of the loss functions log a( z) . 

.}This is possible for all those e that could arise as solutions to the maximum penalized 

likelihood problem: in other words. for all relevant e. 
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K(Xi , Xj) we get II<Px, - <PxJ W = K ti - 2Ktj + K jj . In addition to defining the 

metric structure in the feature space, the kernel defines a pseudo metric in the orig

inal example space through D(Xi,Xj) = II<px. - <pxJII. Thus the kernel embodies 

prior assumptions about the metric relations between the original examples. No 

systematic procedure has been proposed for finding kernel functions, let alone find

ing ones that naturally handle variable length examples etc. This is the topic of the 

next section. 

4 Kernels from generative probability models: the Fisher 

kernel 

The key idea here is to derive the kernel function from a generative probability 

model. We arrive at the same kernel function from two different perspectives, that 

of enhancing the discriminative power of the model and from an attempt to find 

a natural comparison between examples induced by the generative model. Both of 

these ideas are developed in more detail in the longer version of this paper[4]. 

We have seen in the previous section that defining the kernel function automatically 

implies assumptions about metric relations between the examples. We argue that 

these metric relations should be defined directly from a generative probability model 

P(XIO). To capture the generative process in a metric between examples we use 

the gradient space of the generative model. The gradient of the log-likelihood with 

respect to a parameter describes how that parameter contributes to the process of 

generating a particular example5 . This gradient space also naturally preserves all 

the structural assumptions that the model encodes about the generation process. 

To develop this idea more generally, consider a parametric class of models P(XIO) , 

o E e. This class of probability models defines a Riemannian manifold Ale with 

a local metric given by the Fisher information matrix6 I, where I = Ex{UxU{}, 

Us = \1 () log P(XIB), and the expectation is over P(XIO) (see e.g. [1]). The gradient 

of the log-likelihood , Us , is called the Fisher score, and plays a fundamental role in 

our development. The local metric on lvle defines a distance between the current 

model P(XIO) and a nearby model P(XIO+J). This distance is given by D(O, 0+15) = 
~JT 16, which also approximates the KL-divergence between the two models for a 

sufficiently small 6. 

The Fisher score Us = \l(} log P(XIB) maps an example X into a feature vector 

that is a point in the gradient space of the manifold Ale. We call this the Fisher 

score mapping. This gradient Us can be used to define the direction of steepest 

ascent in log P(X 10) for the example X along the manifold, i.e. , the gradient in the 

direction 6 that maximizes log P( X 10) while traversing the minimum distance in 

the manifold as defined by D(O, 0 + 6). This latter gradient is known as the natural 

gradient (see e.g. [1]) and is obtained from the ordinary gradient via <Ps = I - I Ux. 

We will call the mapping X ~ <Px the natural mapping of examples into feature 

vectors7 . The natural kernel of this mapping is the inner product between these 

5For the exponential family of distributions, under the natural parameterization () , 

these gradients , less a normalization constant that depends on () , form sufficient statistics 

for the example. 

6For simplicity we have suppressed the dependence of I and Ux on the parameter 

setting (), or equivalently, on the position in the manifold . 

7 Again, we have suppressed dependence on the parameter setting () here. 
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feature vectors relative to the local Riemannian metric: 

(6) 

We call this the Fisher kernel owing to the fundamental role played by the Fisher 

scores in its definition. The role of the information matrix is less significant; indeed, 

in the context of logistic regression models, the matrix appearing in the middle of 

the feature vectors relates to the covariance matrix of a Gaussian prior, as show 

above. Thus, asymptotically, the information matrix is immaterial, and the simpler 

kernel KU(Xi , Xj) ex u.Z, Ux) provides a suitable substitute for the Fisher kernel. 

We emphasize that the Fisher kernel defined above provides only the basic compar

ison between the examples, defining what is meant by an "inner product" between 

the examples when the examples are objects of various t.ypes (e .g. variable length 

sequences). The way such a kernel funct.ion is used in a discriminative classifier 

is not specified here. Using the Fisher kernel directly in a kernel classifier, for ex

ample, amounts to finding a linear separating hyper-plane in the natural gradient. 

(or Fisher score) feature space. The examples may not. be linearly separable in this 

feature space even though the natural metric st.ructure is given by t.he Fisher kernel. 

It may be advantageous to search in the space of quadratic (or higher order) deci

sion boundaries, which is equivalent to transforming the Fisher kernel according to 

R(Xt , Xj) = (1 + K(X t • x)))m and using the resulting kernel k in the classifier. 

\Ve are now ready to state a few properties of the Fisher kernel function. So long as 

the probability model P(XIB) is suitably regular then the Fisher kernel derived from 

it is a) a valid kernel function and b) invariant to any invertible (and differentiable) 

transformation of the model parameters. The rather informally stated theorem 

below motivates the use of this kernel function in a classification setting. 

Theorem 1 Given any suitably regular probability model P(XIB) with parameters 

B and assuming that the classification label is included as a latent variable, the 

Fisher kernel K(X 1 , X)) = V~ , I-I Ux] derived from this model and employed in 

a kernel classifier is. asymptotically. never inferior to the MAP decision rule from 

this model. 

The proofs and other related theorems are presented in the longer version of this 

paper [4]. 

To summarize, we have defined a generic procedure for obtaining kernel functions 

from generative probability models. Consequently the benefits of generative mod

els are immediately available to the discriminative classifier employing this kernel 

function . We now turn the experimental demonstration of the effectiveness of such 

a combined classifier. 

5 Experimental results 

Here we consider two relevant examples from biosequence analysis and compare 

the performance of the combined classifier to the best generative models used in 

these problems. vVe start with a DNA splice site classification problem, where the 

objective is to recognize true splice sites, i.e. , the boundaries between expressed 

regions (exons) in a gene and the intermediate regions (introns) . The dat.a set used 

in our experiments consisted of 9350 DNA fragments from C. elegans. Each of the 
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2029 true examples is a sequence X over the DNA alphabet {A, G, T, C} of length 

25; the 7321 false examples are similar sequences that occur near but not at 5' 

splice sites. All recognition rates we report on this data set are averages from 7-fold 

cross-validation. 

To use the combined classifier in this setting requires us to choose a generative 

model for the purpose of deriving the kernel function. In order to test how much 

the performance of the combined classifier depends on the quality of the underlying 

generative model, we chose the poorest model possible. This is the model where 

the DKA residue in each position in the fragment is chosen independently of others, 

i.e., P(XIB) = n;!l P(XzIBz) and , furthermore , the parameters Bz are set such that 

P( Xzl OJ) = 1/4 for all i and all Xl E {A. G, T, C} . This model assigns the same 

probability to all examples X. We can still derive the Fisher kernel from such a 

model and use it in a discriminative classifier. In this case we used a logistic regres

sion model as in (5) with a quadratic Fisher kernel K(X/. X j ) = (1 + K(Xz, Xj))2. 

Figure 1 shows the recognition performance of this kernel method, using the poor 

generative model, in comparison to the recognition performance of a naive Bayes 

model or a hierarchical mixture model. The comparison is summarized in ROC 

style curves plotting false positive errors (the errors of accepting false examples) 

as a function of false negative errors (the errors of missing true examples) when 

we vary the classification bias for the labels. The curves show that even with such 

a poor underlying generative model, the combined classifier is consistently better 

than either of the better generative models alone. 

In the second and more serious application of the combined classifier. we consider 

the well-known problem of recognizing remote homologies (evolutionary/structural 

similarities) between protein sequences8 that have low residue identity. Considerable 

recent work has been done in refining hidden l\Iarkov models for this purpose as 

reviewed in [2], and such models current achieve the best performance. We use 

these state-of-the-art HMMs as comparison cases and also as sources for deriving the 

kernel function. Here we used logistic regression with the simple kernel K u (X1 ' X J)' 
as the number of parameters in the Hj\IMs was several thousand. 

The experiment was set up as follows. We picked a particular superfamily (glycosyl

transferases) from the TIl'vI-barrel fold in the SCOP protein structure classification 

[3], and left out one of the four major families in this superfamily for testing while 

training the HMJlvI as well as the combined classifier on sequences corresponding 

to the remaining three families . The false training examples for the discriminative 

method came from those sequences in the same fold but not in the same superfam

ily. The test sequences consisted of the left-out family (true examples) and proteins 

outside the TIM barrel fold (false examples). The number of training examples var

ied around 100 depending on the left-out family. As the sequences among the four 

glycosyltransferase families are extremely different, this is a challenging discrimi

nation problem. Figure lc shows the recognition performance curves for the HMM 

and the corresponding kernel method, averaged over the four-way cross validation. 

The combined classifier yields a substantial improvement in performance over the 

HJl..IM alone. 

8These are variable length sequences thus rendering many discriminative methods 

inapplicable. 
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Figure 1: a) & b) Comparison of classification performance between a kernel clas

sifiers from t he uniform model (solid line) and a mixture model (dashed line) . In 

a) t he mixt ure model is a naive Bayes model and in b) it has t hree components in 

each class . c) Comparison of homology recognition performance between a hidden 

Mar kov model (dashed line) and t he corresponding kernel classifier (solid line). 

6 Discussion 

The model based kernel function derived in this paper provides a generic mechanism 

for incorporating generative models into discriminative classifiers. For discrimina

tion, the resulting combined classifier is guaranteed to be superior to the generative 

model alone wit h little addi t ional computational cost . Vie note that t he power of 

t he new classifier arises to a large ext.ent from the use of Fisher scores as features 

in place of original examples. It is possible to use t hese features with any classifier. 

e.g. a feed-forward neural net, but kernel methods are most naturally suited for 

incorporating them. 

F inally we note that while we have used classification to guide the development of 

the kernel function , t he results are directly applicable to regression. clustering. or 

even interpolation problems, all of which can easily exploit metric relations among 

the examples defined by the Fisher kernel. 
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