
Exploiting Geometric Partitioning in Task Mapping for Parallel Computers

Mehmet Deveci∗, Sivasankaran Rajamanickam†, Vitus J. Leung†, Kevin Pedretti†,

Stephen L. Olivier†, David P. Bunde‡, Ümit V. Çatalyürek∗, and Karen Devine†
∗The Ohio State University, Columbus, Ohio

† Sandia National Laboratories, Albuquerque, New Mexico
‡Knox College, Galesburg, IL

Abstract—We present a new method for mapping applica-
tions’ MPI tasks to cores of a parallel computer such that
communication and execution time are reduced. We consider
the case of sparse node allocation within a parallel machine,
where the nodes assigned to a job are not necessarily located
within a contiguous block nor within close proximity to each
other in the network. The goal is to assign tasks to cores so that
interdependent tasks are performed by “nearby” cores, thus
lowering the distance messages must travel, the amount of con-
gestion in the network, and the overall cost of communication.
Our new method applies a geometric partitioning algorithm
to both the tasks and the processors, and assigns task parts
to the corresponding processor parts. We show that, for the
structured finite difference mini-app MiniGhost, our mapping
method reduced execution time 34% on average on 65,536 cores
of a Cray XE6. In a molecular dynamics mini-app, MiniMD,
our mapping method reduced communication time by 26%
on average on 6144 cores. We also compare our mapping with
graph-based mappings from the LibTopoMap library and show
that our mappings reduced the communication time on average
by 15% in MiniGhost and 10% in MiniMD.

I. INTRODUCTION

Task mapping — the assignment of a parallel applica-

tion’s tasks to the processors of a parallel computer —

is increasingly important as the number of processors in

new supercomputers grows from O(100K) to O(1M) and

beyond. With large-diameter networks in these supercom-

puters and many users submitting jobs of various sizes,

processor allocations (the sets of processors assigned by

a job scheduler to parallel jobs) can become more sparse

and be spread further across the entire network. As a

result, communication messages can travel long routes in the

network and network links may become congested by heavy

traffic, which makes maintaining scalability in large-scale

machines difficult. These effects can be lessened through

the use of topology-aware task mapping. Recent experiments

have shown that task mapping can significantly impact

performance of parallel applications (e.g., [1], [4], [8], [12],

[21]); one application exhibited a 1.64X speedup due to

improved mapping [16].

An effective mapping of tasks to processors considers both

the tasks’ communication pattern and the physical network

topology to reduce application communication cost. We pro-

pose a new task mapping strategy that uses geometric infor-

mation to represent application tasks and compute resources.

We define metrics based on this geometric information to

represent the cost of communication between tasks, and use

these metrics to evaluate and select effective mappings.

Much research has focused on mapping tasks to block-

based allocations, such as those on IBM’s BlueGene systems

(e.g., [3], [8], [16], [28]). Our focus is on non-contiguous

(i.e., sparse) allocations, where nodes from any portion of the

machine can be assigned to a job without regard to the allo-

cation’s shape or locality. Such allocations are used in many

parallel systems (e.g., Cray, clusters). Mapping strategies

developed for general allocations can be used automatically

for the more restricted case of block allocations.

Most previous non-contiguous approaches have repre-

sented tasks’ communication patterns and network topolo-

gies as graphs; graph algorithms were then applied to find

good mappings. Finding optimal topology mappings has

been shown to be NP-Complete [19], so heuristics are often

used to reduce complexity (e.g., [7], [9], [10], [13], [14],

[22]). We, instead, use an inexpensive geometric partitioning

algorithm to reorder tasks and processors based on their

geometric locality, and use the reordering to map tasks that

are “close” to each other geometrically to processors that are

“close” to each other in the mesh or torus. Initial experimen-

tation with geometric approaches proved promising [23]; our

work improves the geometric strategies, compares them with

more sophisticated graph-based methods, demonstrates them

for additional applications, and provides software suitable

for use in parallel applications.

General-purpose, open-source graph-based mapping algo-

rithms are available. The LibTopoMap library [19] requires

as input a task-communication graph describing the amount

of communication between tasks, as well as static files

describing the network topology. It uses the ParMETIS graph

partitioner [20] to divide tasks into n parts, where n is the

number of nodes in the allocation, and then applies a graph

algorithm (Greedy, Recursive Bisection, Reverse Cuthill-

McKee) to map the parts to nodes. The JOSTLE [27] and

Scotch [25] libraries combine mapping with load balancing

by using recursive bisection of both network-topology and

application-data graphs to partition data and map the result-

ing parts to processors. Like these libraries, our approach

is designed for general-purpose use in applications and is

available in the Zoltan2 [11] library.

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.15

27

The main contributions of this paper follow.

• We present a new geometric algorithm for task mapping

in non-contiguous processor allocations (Section IV).

• We present metrics for evaluating mappings in mesh-

and torus-based networks (Sections II and III), and validate

these metrics using performance counter information from

the Cray Gemini routers (Section V).

•We demonstrate our algorithm in two proxy applications

on up to 64K cores, and assess the quality of our mappings

with respect to application communication cost and execu-

tion time (Section V).

• We compare our geometric mappings to applications’

default mappings, application-specific optimizations, and the

LibTopoMap graph-based mapping library, showing that our

geometric mappings reduce both communication time and

communication metrics for the target applications relative

to other methods (Section V).

II. MAPPING METRICS

We use two primary metrics to represent the network

communication: average hop count (the average length of

paths taken by messages) and maximum congestion (the

maximum number of messages sent across communication

links). In this paper, we assume static routing of messages.

Also, we assume that each message is transferred over a

single path (i.e., messages are not split and sent through

multiple paths), and that all links have the same capacity.

Let Gt(Vt, Et) be the graph representing task commu-

nication, where Vt is the set of tasks, and Et is the set

of edges that represent communication between tasks. If

t1, t2 ∈ Vt, edge (t1, t2) ∈ Et if and only if tasks t1 and

t2 communicate. In the same way, let Gn(Vn, En) be the

graph representing the network topology. Vn is the set of

nodes, and En is the set of edges that represent the physical

communication links between nodes. If n1, n2 ∈ Vn, edge

(n1, n2) ∈ En if and only if nodes n1 and n2 have a

connecting link between them. Let Γ be a function for the

assignment of tasks to nodes. That is, n1 = Γ(t1), if t1 is

assigned to a core in node n1. Using these assumptions, we

define dilation as follows:

dilation(t1, t2) = SPL(Γ(t1),Γ(t2), Gn), (1)

where SPL is a function that returns the shortest path length

between two nodes. The total dilation is

Dilation(Γ) =
∑

(t1,t2)∈Et

dilation(t1, t2) (2)

Dilation is related to the average number of edges traversed

by each message (average hop count):

AverageHopCount(Γ) = Dilation(Γ)/|Et| (3)

In this paper, we measure the average hop count, and use the

terms “hop count” and “average hop count” interchangeably.

The congestion metric is defined as follows:

Congestion(e) =
∑

(t1,t2)∈Et

inSP (e,Γ(t1),Γ(t2), Gn),

(4)

where inSP returns 1 if and only if e is in the shortest path

between Γ(t1) and Γ(t2). Otherwise, it returns 0. Therefore,

the congestion on a link is the number of messages that go

through it. Then the maximum congestion is

MaxCongestion(Γ) = max
e∈En

{Congestion(e)} (5)

Maximum congestion represents the maximum number of

messages that go through any link. We refer to maximum

congestion as “congestion” in the rest of this paper. Since

communication is a real time process and is affected by

many outside factors (e.g., network traffic and overhead from

competing jobs), theoretical metrics can only approximate

actual communication time. Experiments in Section V vali-

date the efficacy of our two metrics.

III. TARGETED COMPUTING ENVIRONMENT

Mesh- or torus-based networks are common in parallel

computers; for example, Cray’s XT and XE computers and

IBM’s BlueGene computers have torus-based networks. In

the Cray XE6’s 3D torus, for example, each Gemini router

connects to six neighboring routers, two each in the x, y
and z dimensions (see Figure 1). Messages’ routes between

nodes can be represented as a path of “hops” along network

links in x, y and z. Differences in bandwidth along the

various dimensions can exist depending on the physical

connections (e.g., backplane, mezzanine, cable) used in each

dimension. However, in this work, we assume uniform band-

width in all dimensions; accounting for varying bandwidth

is reserved for future work.

Node 1 Node 2
Cray

Gemini

X+ X- Y+ Y- Z+ Z-
Network Links to Neighbors

Figure 1. Layout of a Cray Gemini router

In mesh- and torus-based systems, “coordinates” of the

routers within the network are often made available by

calls to a system library. A router with 3D coordinates

(i, j, k) can communicate with a router with coordinates

(i + 1, j + 1, k + 1) via a three-hop path, with one hop in

each of the x, y and z dimensions. The torus provides wrap-

around, so that messages take the shortest path (i.e., proceed

in the positive or negative direction) along each dimension.

28

In the Cray XE6, these coordinates are available from

Resiliency Communication Agent (RCA) tool through calls

to rca_get_meshcoord. Each MPI process can obtain

the coordinates of the router to which its compute node is

attached. Our task-mapping methods then use dilation (Eqn.

1) between routers within the network as an approximation

of communication cost between MPI processes.

Each router in a mesh/torus network is typically connected

to one or more multicore compute nodes. In the Cray XE6,

for example, each router connects two nodes (hosts). The

two Cray platforms we used (DOE’s Cielo and NERSC’s

Hopper) have 16 and 24 cores per node, respectively. Parallel

applications can use from one MPI process per node (with

threading providing parallelism within the node) to one

MPI process per core (with shared-memory message passing

within the node). In the latter case, co-locating interdepen-

dent MPI processes within a node reduces communication

over the network, and, thus, reduces execution time. Our

task-mapping experiments address this case, but since our

methods address the mapping of MPI processes to compute

resources, they can be applied without loss of generality to

the multithreaded case as well.

One practical difference between Cray XE and IBM

BlueGene systems is the way compute nodes are allocated to

jobs. In IBM systems, jobs are given a contiguous “partition”

or block of nodes within the network; each dimension of this

block must be a power of two. In contrast, on Cray systems,

jobs are given non-contiguous node allocations of any size

requested by the user. Available nodes are selected according

to a space-filling curve algorithm in the ALPS scheduler [2].

Thus, while the scheduler attempts to assign nearby nodes to

jobs, no guarantees of locality are provided. As a result, task-

mapping algorithms for Cray systems need to accommodate

non-block, non-contiguous allocations. While our methods

are designed for non-contiguous allocations, they could be

applied to contiguous allocations as well.

Ideally, closer proximity of router coordinates results in

lower communication costs between two nodes. However,

congestion caused by communication patterns within an

application and by other applications on the system can in-

fluence application behavior. For our mapping experiments,

we access the Cray XE6 Gemini tile counters to obtain

information about input and output message stalls, a measure

of congestion within the network [24]. With these counters,

we show how improved task mapping reduces network

congestion for the application and validate our computed

congestion metric (Eqn. 5).

IV. GEOMETRIC TASK MAPPING

Our proposed topology-aware mapping algorithm uses the

router coordinates to represent the network topology of the

machine. The cost of communication between pairs of cores

is approximated by the dilation (Eqn. 1) of their routers’

coordinates. Thus, the machine topology is described only

by the cores’ coordinates, rather than a topology graph in

which bandwidth information between every pair of cores

must be specified. Each of the application’s MPI processes

is also represented by a coordinate, corresponding to either

the center of the process’ application domain or the aver-

age coordinate of its application data. For example, in a

structured grid-based finite difference application, the center

of an MPI process’ subgrid can be used as its coordinate.

Our algorithm uses a geometric partitioning algorithm to

consistently reorder both the MPI processes and the allocated

cores; this reordering is used to construct the mapping. In

this section, we provide details of our mapping algorithm.

We use the term “machine coordinates” to refer to the

router coordinates associated with each core, and “task

coordinates” to refer to the centroid or averaged coordinates

provided by the application’s MPI processes.

A. Multi-Jagged (MJ) Algorithm for Geometric Partitioning

Our proposed task mapping algorithm uses a geometric

partitioning algorithm, the Multi-dimensional Jagged algo-

rithm (MJ) [15] of the Zoltan2 Toolkit [11], to partition

task and machine coordinates. The MJ algorithm partitions

a set of coordinates into a desired number of parts (P) in

a given number of steps called the recursion depth (RD).

During each recursion, one-dimensional partitioning is done

along a dimension; the dimension is alternated at each

recursion. Therefore, MJ is a generalization of the Recursive

Coordinate Bisection (RCB) algorithm [6] in which the

MJ algorithm has ability to do multisections instead of

bisections. Although our implementation of MJ can partition

into any number of parts P , we simplify our explanation

here by assuming P can be written as P =
∏RD

i=1 Pi. In

the first level, MJ partitions the domain into P1 parts using

P1 − 1 cuts in one direction. In the next level, each of

the P1 parts is partitioned separately into P2 parts using

cuts in an orthogonal direction. This recursion continues

in each level. Figure 2 shows two 64-way partitions using

MJ with RD = 3, P = 4 × 4 × 4 (left), and RD = 6,

P = 2× 2× 2× 2× 2× 2 (right). When RD = �log2 P �,
MJ is equivalent to RCB (as in Figure 2(b)).

(a) RD = 3 (b) RD = 6

Figure 2. Partitioning into 64 parts using MJ with different recursion
depths. Cutlines in the same level of recursion share the same color.

MJ’s complexity depends on P , RD, the number of points

n, and the average number of iterations it needed to compute

29

cutline locations. During partitioning on level i, each point

is compared to log2 Pi cut lines (using binary search). Thus,

MJ’s complexity is O(n× it×∑RD
i=1 log2 Pi). When MJ is

used as RCB, its complexity is O(n× it× log2 P).

B. Using MJ for Task Mapping

Although MJ is proposed as a parallel (MPI+OpenMP)

algorithm [15], we use it as a sequential algorithm in this

context. The size of the partitioning problem is proportional

to the number of processors. Since current supercomputers

typically have O(100K) processors, the partitioning algo-

rithm would be communication bound if done in parallel;

little or no speedup would be obtained by parallelizing

this process. Instead, each processor calculates the same

mapping independently. A reduceAll operation is performed

at the beginning of task mapping to provide all machine and

task coordinates to every processor. Then every processor

performs the sequential mapping operation and obtains the

exact same mapping. We describe in Section IV-C how we

exploit parallelism to improve the quality of the mapping

with minimal additional cost.

The proposed mapping algorithm is defined as follows:

Given tdim-dimensional coordinates of the tasks (tc), and

pdim-dimensional coordinates of the cores (pc), together

with the number of tasks (tn) and cores (pn), the algorithm

returns a mapping from cores to tasks (p2t) (and/or tasks

to cores t2p). Algorithm 1 gives the description of the task

mapping algorithm.

Algorithm 1 Task Mapping Algorithm using MJ

Require: tc, tdim, tn, pc, pdim, pn,RD
minDim← min(tdim, pdim)
usedNumProcs← numParts← min(tn, pn)
if pn > tn then

procPerm← getClosestSubset(pc, pdim, pn, tn)
else

procPerm← range(0, pn)
end if
taskPerm← range(0, tn)
taskParts←MJ(tc, minDim, tn,

taskPerm, numParts, RD)
procParts←MJ(pc, minDim, usedNumProcs,

procPerm, numParts, RD)
p2t, t2p← getMappingArrays(taskParts, procParts,

taskPerm, procPerm, tn, pn)

MJ’s main purpose in Algorithm 1 is to consistently

number the cores and tasks. Function MJ partitions the

task and cores into usedNumProcs parts, and assigns a

part number to each core and task. Cores and tasks that

share the same part number are then mapped to each other

by GETMAPPINGARRAYS, and the resulting mappings are

stored in p2t and t2p.

Since the tasks and cores are partitioned separately, Algo-

rithm 1 ensures consistent part numbering among both MJ

calls. First, the minimum dimension is chosen between the

tasks and cores. For example, if pdim = 3 while tdim = 2,

one of the cores’ coordinates is ignored to ensure that the

geometric partitioner follows the same order in both of

the partitioning operations. Next, the algorithm can follow

different paths depending on the number of coordinates of

tasks and cores. There are three possibilities at this step:

1) tn = pn: A one-to-one mapping between cores and

tasks exists. For task t assigned to core p, t = p2t[p] and

p = t2p[t].
2) tn > pn: When there are more tasks than cores, a

core is assigned multiple tasks. Both cores and tasks are

partitioned into pn parts, with multiple tasks in the each

part. The mapping results will be t ∈ p2t[p] and p = t2p[t].
3) tn < pn: When there are more cores than tasks,

the algorithm does not split a task among multiple cores.

Instead, during a preprocessing step, it chooses a subset of

tn cores. Then, mapping is performed within this subset

as if tn = pn. Some cores will be idle, as they are not

assigned any tasks. Our implementation uses a modified K-

means clustering algorithm [17] to choose the closest subset

of cores within the allocation; in this paper, however, this

special case is not considered.

The complexity of Algorithm 1 is dominated by the calls

to MJ, since getMappingArrays runs in linear time with

respect to tn and pn. Thus, when MJ is used as RCB and

tn = pn, the overall complexity of the mapping algorithm

is O(tn× it× log2(tn)).

C. Improving the quality of the mapping

The ability of our mapping strategy to reduce communica-

tion costs depends on the results of the MJ partitioner. In this

section, we describe several ways that we can improve the

quality of the mapping by modifying the input to MJ. These

improvements are computed with very little extra expense,

as they are computed in parallel across sets of processors.

Shifting the machine coordinates: The first improvement

involves considering the 3D torus interconnection present

in many supercomputer networks. Torus networks provide

wrap-around communication links in each network dimen-

sion that are not reflected in the machine coordinates. Thus,

since MJ is not aware of connectivity information, MJ

considers nodes at edges of the network coordinates to be

far apart, even though there is a one-hop path between them.

In our proposed task-mapping method, we transform the

coordinates to account for wrap-around in each dimension.

Our shifting strategy applies a one-dimensional operation

to each dimension independently. First, we find the shift

position – the largest gap in the node coordinates. Then,

assuming the largest gap is greater than one, we transform

the machine coordinates on one side of the shift position

30

(a) Task coordinates (b) Node coordinates (c) Shifted node coordinates

Figure 3. An example showing the benefit of shifting node coordinates in torus networks. The numbers of nodes and tasks are equal. Tasks and nodes
sharing the same number are mapped to each other (3(a)). Assuming nearest-neighbor communication, the unshifted mapping (3(b)) has average hop count
of 3.66 and 3 in the x and y directions, respectively; note that messages between n1 and n2 and between n5 and n6 require six hops due to wrap-around
links. With the node partition obtained after shifting around the wrap-around links (3(c)), the mapping has average hop count of 2 and 3 in x and y.

by adding to them the maximum machine coordinate in that

dimension. Ties in the largest gaps are broken using the

number of nodes that are on either side of the shift positions.

Even though the list of machine coordinates is not sorted for

any dimension, gap detection can still be performed in O(pn)

time by using a counting sort algorithm.

Figure 3 shows an example of mapping eight tasks onto

eight nodes in a 17x8 2D torus topology. In Figure 3(b),

the maximum gap along the x dimension is found between

n1 (x = 3) and n2 (x = 14) (also between n5 and n6).

The heuristic shifts the coordinates of all nodes that have

x ≤ 3 by adding the maximum x coordinate (17) to the x
coordinates of these nodes. Figure 3(c) shows the updated

machine coordinates after this shift operation. Assuming

nearest neighbor communication for the tasks in Figure 3(a),

the mapping in Figure 3(b) results in average hop counts of

3.66 and 3 in the x and y dimensions, respectively. After

shifting, the mapping in Figure 3(c) achieves average hop

counts of 2 and 3.

Rotating the machine and task coordinates: The quality

of the mapping also depends on the order of the dimensions

to which the partitioning is applied (e.g., first partition in

x, then y, then z). For example, Figure 4 shows how the

quality of the mapping can change by choosing a different

order of dimensions in partitioning.

It is difficult to predict which dimension ordering for

partitioning will provide the best mapping quality. One could

choose a permutation of the dimensions based on the aspect

ratios of the machine and task coordinates. The permutation

that makes the aspect ratios along dimensions closest can be

chosen as the best permutation. However, as our experiments

will show, this greedy method fails to find the best permu-

tation in most of the mappings. To overcome this issue, we

use a speculative method. Recall that, in Section IV-B, we

described sequential task mapping in which every process

computed the same mapping. Since there are pn processes,

we instead calculate different mappings with different rota-

tions in each process. Then, given the communication pattern

of the tasks, each mapping’s hop count is computed, and the

one with the lowest hop count is chosen. This comparison

requires one extra reduceAll and broadcast operation. If the

dimensions of the tasks and the machine are tdim and pdim,

there are rp = (tdim)!× (pdim)! different rotations. For a

3D torus with 3D task coordinates, rp = 3! × 3! = 36.

We group processes into sets of size 36, in which each

process calculates a mapping using a different rotation. Each

process calculates the quality of its own mapping. Then

within each group, the best quality mapping is determined,

and is broadcast to the group. When the number of processes

is not divisible by rp, the remaining processes are distributed

among groups so that as many rotations as possible are

calculated within each group.

Similarly, reflections of the node or task coordinates

along coordinate axes could be done. The total number

of different reflections is 2maxDim, where maxDim =
max(tdim, pdim). Again, the processes can be grouped

such that each group has 2maxDim processes that each

calculate a different mapping. Combined with the rotation

operation, the total number of different solutions becomes

2maxDim × tdim!× pdim!, which is 288 for the usual case

of a 3D torus with 3D task coordinates. Our implementation

includes the rotations described above, but does not yet

include reflections.

V. EXPERIMENTS

We tested our geometric mapping methods in two proxy

applications: MiniGhost [5] and MiniMD [18]. For each

application, we ran weak scaling experiments to evaluate

the effect of mapping on communication and execution time.

We compared our geometric method with the applications’

default task layout and with the graph-based task mapping

library LibTopoMap [19]. For MiniGhost, we also compare

with an application-specific grouping of tasks for multicore

nodes. These mapping methods are described below and

summarized in Table I.

• None: The application’s default mapping of tasks to

ranks: task i is performed by rank i.
• Multicore Grouping (Group): Tasks reordered into

16-task blocks, with 2x2x4 tasks per block. A block is then

assigned to cores within the same node, so that frequently

31

(a) Task coordinates (b) Node coordinates (c) Rotated node coordinates

Figure 4. An example showing the benefit of rotating the node orientation. Assuming communication is required between only tasks 0 and 2, the unrotated
mapping (4(b)) has average hop count of 1 and 1 in the x and y directions, respectively. In the rotated node-partition (4(c)), partitioning is performed in
the y dimension first, and then in the x dimension. The mapping obtained after rotation has average hop count of 1 and 0 in x and y.

Method Abbreviation Description
No mapping None Task i performed by core i.
Multicore Group 16-task blocks;
Grouping 2x2x4 tasks per block.
Geometric Geom Geometric with one rotation

w.r.t. aspect ratio
Geometric + Geom+R Geometric with 36 rotations
Rotations
Geometric + Geom+R+S Geometric with 36 rotations
Rotations + and torus-aware shifting
Coordinate Shift
LibTopoMap TopoMap Graph-based mapping [19]

Table I
MAPPING METHODS USED IN EXPERIMENTS

communicating tasks are within the same node. However,

this reordering does not account for inter-node communica-

tion, since it does not use any information about the position

of the nodes in the network. Group exploits application-

specific knowledge about the finite-difference grid; thus it

is available only in MiniGhost.

• Geometric (Geom): Geometric mapping [23] with re-

cursion depth RD = �log2 P � (i.e., performing bisection at

each level). A single rotation is determined at the beginning

of the algorithm by using the aspect ratios of the task

and machine coordinates. Ties among coordinates along a

dimension are broken arbitrarily; if several x coordinates lie

along a cut, the choice of coordinates that go to the left of

the cut or to the right is arbitrary.

• Geometric with Rotations (Geom+R): Geometric

(MJ) mapping with recursion depth RD = �log2 P �; it

calculates 36 different solutions according to 36 different

rotations, and chooses the one with the lowest hop count

metric. Ties among machine coordinates are broken first by

coordinates in other dimensions, and then by MPI ranks so

that coordinates with lower MPI ranks go to one side and

those with higher ranks to the other.

• Geometric with Rotations and Coordinate Shift
(Geom+R+S): Geom+R mapping with coordinate shifting

done as preprocessing to account for torus networks.

• LibTopoMap (TopoMap): Graph-based mapping

strategies available in the open-source library

LibTopoMap [19]. For each experiment, we use the

result with the lowest application execution time among

LibTopoMap methods Greedy, Recursive Bisection, and

Reverse Cuthill-McKee. If LibTopoMap does not find a

mapping that is better than the input mapping, it returns

the input mapping.

We ran all experiments on the DOE Cielo Cray XE6 at

Los Alamos National Laboratory, and the Hopper Cray XE6

at NERSC. On both platforms, we used gcc 4.7.2 compilers

and Cray’s MPICH2 implementation. Our geometric map-

ping techniques are implemented in the Zoltan2 library [11].

A. Mapping in a finite difference application

We compared the effect of our mapping method in

MiniGhost [5], a finite-difference proxy application that

implements a finite difference stencil and explicit time-

stepping scheme across a three-dimensional uniform grid.

Using a seven-point stencil, each task communicates with

two neighbors along each dimension; tasks along geometry

boundaries communicate with only their neighbors interior

to the boundary (i.e., boundary conditions are non-periodic).

Each task is assigned a subgrid of the 3D grid based on

its task number. The numbers of tasks in each dimension

pnx, pny, pnz (with pnx × pny × pnz = pn) are specified

by the user. Subgrids of the 3D grid are assigned to tasks by

sweeping first in the x direction, then the y direction, then

the z direction. Thus, task i shares subgrid boundaries (and,

thus, requires communication) with tasks i+ 1 and i− 1 to

its east and west, respectively; with tasks i+pnx and i−pnx

to its north and south; and with tasks i + (pnx)(pny) and

i−(pnx)(pny) to its front and back. In the default MiniGhost

configuration, task i is performed by rank i.
As shown in [4], the execution time of MiniGhost with its

default mapping does not scale well in weak scaling tests.

Our goal is to improve scalability by mapping tasks onto

processors so that tasks that share boundaries are placed

32

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

4K 8K 16K 32K 64K

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Number of Processors

None
Group
Geom
Geom+R
Geom+R+S
TopoMap

Figure 5. Maximum communication time in weak scaling experiments
with MiniGhost

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4K 8K 16K 32K 64K

A
ve

ra
ge

 H
op

s

Number of Processors

None
Group
Geom
Geom+R
Geom+R+S
TopoMap

(a) Average Hop Count

 0

 200

 400

 600

 800

 1,000

 1,200

4K 8K 16K 32K 64K

C
on

ge
st

io
n

(M
ax

. M
es

sa
ge

s
on

 a
 L

in
k)

Number of Processors

None
Group
Geom
Geom+R
Geom+R+S
TopoMap

(b) Maximum Congestion

Figure 6. Average Hop Count (a) and Maximum Congestion (b) for weak
scaling experiments with MiniGhost

“near” each other in the allocation. We ran weak-scaling

experiments with 4096–65,536 processors (256–4096 nodes)

of Cielo. Each task owned a 60×60×60-cell subgrid; we ran

the simulation for 20 timesteps with 40 variables per grid

point. For each experiment, we obtained a node allocation

of the requested size, and ran all mapping methods within

that allocation. We repeated each experiment five times with

different allocations, and averaged the results across the five

instances; error bars in figures show the standard deviation

from the averages.

Figure 5 shows the maximum communication time (across

processors) for weak scaling experiments with MiniGhost.

With MiniGhost’s default mapping (None), communication

time increases dramatically as the number of processors is

increased. MiniGhost’s Group method controls the growth in

communication costs, but consistent with results in [4], costs

increase at the highest processor counts. Geometric methods

Geom+R and Geom+R+S provide the lowest communication

costs, and, as desired for weak scaling, the communication

costs remain nearly constant as the number of processors

increases. Above 16K processors, denser node allocations

(> 20% of the total machine) help the geometric methods

further reduce average hop count and congestion. TopoMap

also reduced communication relative to MiniGhost’s default

mapping, but was unable to reduce communication as much

as Group, Geom+R and Geom+R+S. Table II shows the

total execution time and the percentage of total execution

time that was spent in communication. These results show

the importance of topology-aware mapping in general, as

all mapping strategies maintained scalable communication

better than the default layout. Geom+R and Geom+R+S

provided the most consistent performance, maintaining com-

munication as 13–14% of total execution time.

Figure 6 shows the calculated quality metrics: average

x+ y+ z hops (Eqn. 3) and maximum congestion (Eqn. 5).

As the number of processors increases, the average hop

count, congestion and communication cost all follow the

same upward trend for the default MiniGhost mapping.

Since Group does not account for inter-node communication,

its average hop count increases with the number of nodes.

TopoMap’s average hop count and max congestion also

increase as we scale to larger number of processors. Average

hop count for the geometric mappings Geom, Geom+R

and Geom+R+S, however, remains nearly unchanged as we

use more processors, suggesting greater scalability using

the geometric mappings. Congestion is also low for the

geometric mappings, resulting in lower communication cost.

Among the geometric methods, Geom+R and Geom+R+S

provided the best mappings. The benefit of coordinate

shifting in Geom+R+S is small for these experiments.

Geom+R+S usually produces hop counts no greater than

Geom+R, and when the allocation allows, can reduce the

hop count relative to Geom+R. Thus, the averaged values

are very similar. Geom+R+S has slightly greater variation

in hop counts for individual experiments, since for some

allocations, it can further reduce the hop count via shifting.

The effect of communication between two nodes con-

nected by the same Gemini router is not accounted for in

the average hop metric, since both nodes in this case have

the same machine coordinate. But this communication can

impact overall communication costs. In Figure 7, we show

the percentage of messages that go between the two nodes in

a Gemini router (i.e., the percentage of communication that

is intra-Gemini communication) for each method. Arbitrarily

breaking ties among machine coordinates in Geom leads

to high intra-Gemini communication; tasks with the same

33

None Group Geom Geom+R Geom+R+S TopoMap
Total % Comm Total % Comm Total % Comm Total % Comm Total % Comm Total % Comm

4K 6.07 16.2% 5.70 13.9% 5.76 15.4% 5.75 13.6% 5.77 13.9% 5.74 14.2%
8K 6.40 18.3% 5.91 14.3% 6.05 15.7% 5.80 13.8% 5.78 13.8% 5.97 14.5%

16K 7.16 16.9% 6.14 14.2% 6.36 15.4% 6.22 14.2% 6.23 14.2% 6.15 14.6%
32K 7.60 19.0% 6.94 13.0% 7.29 13.8% 6.41 12.9% 6.38 13.0% 6.82 14.1%
64K 9.57 24.4% 8.31 12.2% 7.53 13.2% 6.29 13.4% 6.29 13.4% 8.26 13.8%

Table II
TOTAL EXECUTION TIME AND PERCENTAGE OF THAT TIME SPENT IN COMMUNICATION IN WEAK SCALING EXPERIMENTS WITH MINIGHOST.

machine coordinates are placed in either node without regard

to their positions. Since intra-Gemini communication is

more expensive than intra-node communication, reducing

the amount of intra-Gemini communication (through group-

ing as in Group or better tie breaking as in Geom+R

and Geom+R+S) can reduce overall communication costs.

Interestingly, the very low intra-Gemini communication for

the default mapping (“None”) on 64K processors is due to

the experiment’s 32×64×32-task configuration. By default,

tasks are ordered by first sweeping in the x direction. Thus,

with 32 tasks in the x direction, the first 16 tasks are given

to one node attached to a Gemini, and the next 16 are given

to its other node. Thus, only two tasks share an intra-Gemini

boundary (the two in the middle of each x sweep), keeping

intra-Gemini communication very low. Other configurations

(e.g., 16×64×64 tasks) would not have this happy benefit.

These results show the importance of minimizing both intra-

Gemini communication and hop count.

 0

 0.2

 0.4

 0.6

 0.8

 1

4K 8K 16K 32K 64K

In
tr

a−
G

em
in

i F
ra

ct
io

n
of

 C
om

m
un

ic
at

io
n

Number of Processors

None
Group
Geom
Geom+R
Geom+R+S
TopoMap

Figure 7. Intra-Gemini communication: the fraction of total communi-
cation between processors in different nodes sharing the same machine
coordinate. This communication is not reflected in the hop count metric.

As a final step, we leveraged the Cray Gemini’s per-

formance counters to measure network congestion empir-

ically [24]. Our model calculates network congestion as-

suming that all messages are transferred simultaneously. In

reality, the message traffic is spread over time and messages

interleave with one another. We measured this real-time

behavior using the Gemini’s per-link stall cycle counters,

which increment whenever a message can not move towards

its destination due to network congestion. For each Gemini

Modeled Modeled Max Measured
Avg Hop Count Congestion Max Stalls

Max Comm Time .835 .915 .936
Total Time .760 .872 .886

Table III
CORRELATION COEFFICIENTS COMPARING MEASURED RUN TIMES WITH

COMPUTED METRICS AND NETWORK COUNTER DATA. A COEFFICIENT

OF ONE INDICATES PERFECT LINEAR CORRELATION.

being used by an experiment, we captured the stall counters

for each of the Gemini’s seven network links (XYZ links

plus host link). We then calculated summary statistics such

as minimum/maximum/average number of stalls encountered

over all links, over only host links, over only X links, etc. We

omit a full analysis due to space, but in general the empirical

measurements closely match the predictions of our model.

Table III lists the Pearson correlation coefficients comparing

modeled and measured values over all 605 experiments

performed for this work. The column labeled “Measured

Max Stalls” corresponds to the link with the highest network

stall count for each experiment (i.e., the link with the most

congestion). This metric is found to have the best correlation

to maximum communication time, and correlates well with

our model’s calculated maximum congestion metric. The

modeled maximum congestion metric correlates slightly less

well to the measured run times, possibly due to interference

from other jobs running in the system and the heterogeneous

link speeds in the network, which we do not account

for. Finally, the average hop count metric is slightly less

correlated to the measured run times than the congestion

metrics. The empirical data suggest that our congestion

metrics are accurate for MiniGhost and that the maximum

congestion metric should be preferred over the average hop

count metric.

Overall, our geometric mapping methods reduced the total

execution time by 5-34% relative to the default MiniGhost

mapping, and 0-17% relative to the application-specific

Group mapping available in MiniGhost. The largest reduc-

tions were seen at the highest processor counts, reflecting the

importance of mapping as the number of cores in parallel

computers increases.

34

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

384 768 1K 3K 6K

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Number of Processors

None
Geom+R
Geom+R+S
TopoMap

Figure 8. Maximum communication time in weak scaling experiments
with MiniMD

B. Mapping in a molecular dynamics application

MiniMD, part of Mantevo [18], is an application proxy

for parallel molecular dynamics (MD) simulations. It im-

plements several algorithms that are typical in MD codes

and emulates the key performance characteristics of larger

molecular dynamics codes like LAMMPS [26]. MiniMD

essentially solves Newton’s equation on N particles. In

our experiments, we used the MiniMD algorithm that uses

the Lennard-Jones potential for force calculation. MiniMD

assigns each processor a fixed spatial dimension in 3D by

splitting the spatial dimension into small boxes. At each

timestep, each processor computes forces and updates the

positions of atoms within its box. The processor commu-

nicates with its nearest neighbors in order to compute the

forces of the atoms in its box. As atoms move they are

reassigned to different processors. Compared to MiniGhost,

an important difference in MiniMD’s communication pattern

is that, based on the cutoff distance used to calculate the

force, a processor might need to communicate to more than

one processor in a direction when the box sizes are smaller

than the cut-off. However, no processor communicates to

its corner neighbors or to its neighbors that are more than

one hop away. Instead it communicates to its six nearest

neighbors multiple times to achieve the same purpose.

MiniMD reorders the MPI ranks into 3D processor grid

and assigns the boxes to the ranks based on the rank’s posi-

tion in the logical processor grid. It uses the Cartesian topol-

ogy interfaces in MPI (MPI Cart Create, MPI Cart Shift

and MPI Cart get) to do the reordering. While theoretically

MPI can reorder the ranks based on the topology, optimizing

for nearest-neighbor communication, we do not observe that

in practice. The MPI implementation usually returns the

ordering we call “None.” We replace the mapping of the

tasks to the processor grid by using two of our best algo-

rithms (Geom+R, Geom+R+S) and TopoMap. Our scaling

studies for MiniMD were run on Hopper, the Cray XE6

at NERSC. We do a weak scaling study from 384 cores

up to 6144 cores. The number of atoms increases from

415K to 6.7M. We use three repetitions for our experiments.

Figure 8 shows the maximum communication time of the

MiniMD runs in our weak-scaling study. Our geometric

algorithms reduce the communication time when compared

with the mapping provided by the MPI implementation on

all processor counts. Compared to the default MPI mapping,

Geom+R+S algorithm reduced the communication time of

MiniMD by 6% to 27%. Unlike in MiniGhost, in MiniMD,

Geom+R+S does better than Geom+R in larger core counts.

At 384 cores, TopoMap ties Geom+R+S in terms of the av-

erage communication time. However, Geom+R+S mapping

results in reduction in communication time over mappings

from TopoMap at all core counts beyond 384. For MiniMD

the reduction in communication time by using Geom+R+S

over TopoMap range from 1% (384 cores) to 23% (6K

cores). More notably, Geom+R+S mappings do better than

TopoMap as the core counts increase. We do not present

the metrics for the MiniMD runs here due to lack of space.

However, as one would expect, we observed reductions in

average hop count over no mapping.

VI. CONCLUSION

We have proposed a new topology-aware task mapping

method that uses multijagged geometric partitioning (MJ)

to reorder the given task and processor coordinates in a way

that assigns communicating tasks to “nearby” processors.

This method is designed to be effective on mesh and torus-

based networks with non-contiguous node allocations, such

as the Cray XE6, but extends naturally to block allocations

as in IBM BlueGene systems. We also have proposed several

improvements (e.g., multiple rotations, coordinate shifting)

that improve geometric mappings relative to a baseline

geometric method. We compared our method with the ap-

plications’ default mapping, as well as application-specific

mappings and graph-based mappings from LibTopoMap.

to improve the quality of the mapping. We showed that

our geometric mappings reduced application execution time

up to 34% on 64K cores relative to the default mapping

for the MiniGhost finite difference proxy application, and

up to 23% on 6K cores for the MiniMD molecular dy-

namics proxy application. We correlated communication

time in MiniGhost with computed metrics (average hops,

congestion) and validated these metrics with congestion

information obtained from the Gemini routers’ counters.

As future work, our mapping methods will be extended

to accommodate non-uniform bandwidths in the dimensions

of the torus networks. We will also investigate the effect

of geometric mapping on unstructured applications. And we

will experiment with the processor-subset selection via k-

means clustering mentioned in Section IV to provide effec-

tive mappings when there are fewer tasks than processors.

Our test application will be a multigrid-based linear algebra

algorithm, in which coarse matrices may be too small to

efficiently utilize all cores needed for the fine matrices; in

35

such cases, we will use our modified k-means clustering

algorithm to select a subset of cores to use.

ACKNOWLEDGMENT

We thank Richard Barrett, Erik Boman, Jim Brandt, Ann

Gentile, Torsten Hoefler, Steve Plimpton, Christian Trott,

and Courtenay Vaughan for helpful discussions. This work

used resources of the National Energy Research Scientific

Computing Center, which is supported by the Office of

Science of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231. Sandia is a multi-program lab-

oratory managed and operated by Sandia Corporation, a

wholly owned subsidiary of Lockheed Martin Corporation,

for the U.S. Department of Energy’s National Nuclear Secu-

rity Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P.
Vary, “Topology-aware mappings for large-scale eigenvalue
problems,” in Euro-Par 2012 Parallel Processing. Springer,
2012, pp. 830–842.

[2] C. Albing, N. Troullier, S. Whalen, R. Olson, and J. Glensk,
“Topology, bandwidth and performance: A new approach in
linear orderings for application placement in a 3D torus,” in
Proc Cray User Group (CUG), 2011.

[3] G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta,
A. Henning, J. Moreira, and B. Walkup, “Unlocking the
performance of the BlueGene/L supercomputer,” in Proc 2004
ACM/IEEE Conf Supercomputing, 2004, p. 57.

[4] R. Barrett, C. Vaughan, S. Hammond, and D. Roweth, “Re-
ducing the Bulk of the Bulk Synchronous Parallel Model,”
Parallel Process Lett, vol. 23, no. 4, 2013.

[5] R. F. Barrett, C. T. Vaughan, and M. A. Heroux, “MiniGhost:
a miniapp for exploring boundary exchange strategies us-
ing stencil computations in scientific parallel computing,”
Sandia National Laboratories, Albuquerque, NM, Tech. Rep.
SAND2012-10431, 2012.

[6] M. Berger and S. Bokhari, “A partitioning strategy for nonuni-
form problems on multiprocessors,” IEEE Trans Comput, vol.
C36, no. 5, pp. 570–580, 1987.

[7] A. Bhatele, G. Gupta, L. Kale, and I.-H. Chung, “Automated
mapping of regular communication graphs on mesh inter-
connects,” in Proc Intl Conf High Performance Computing
(HiPC), 2010.

[8] A. Bhatele, L. V. Kale, and S. Kumar, “Dynamic topology
aware load balancing algorithms for molecular dynamics
applications,” in Proc 23rd Intl Conf Supercomputing. ACM,
2009, pp. 110–116.

[9] S. H. Bokhari, “On the mapping problem,” IEEE Trans
Comput, vol. 100, no. 3, pp. 207–214, 1981.

[10] S. W. Bollinger and S. F. Midkiff, “Heuristic technique
for processor and link assignment in multicomputers,” IEEE
Trans Comput, vol. 40, no. 3, pp. 325–333, 1991.

[11] E. G. Boman, K. D. Devine, V. J. Leung, S. Rajamanickam,
L. A. Riesen, M. Deveci, and U. Catalyurek, “Zoltan2: Next-
generation combinatorial toolkit.” Sandia National Laborato-
ries, Tech. Rep. SAND2012-9373C, 2012.

[12] W. M. Brown, T. D. Nguyen, M. Fuentes-Cabrera, J. D.
Fowlkes, P. D. Rack, M. Berger, and A. S. Bland, “An
evaluation of molecular dynamics performance on the hybrid
Cray XK6 supercomputer,” in Proc Intl Conf Computational
Science (ICCS), 2012.

[13] T. Chockalingam and S. Arunkumar, “Genetic algorithm
based heuristics for the mapping problem,” Computers and
Operations Research, vol. 22, no. 1, pp. 55–64, 1995.

[14] I.-H. Chung, C.-R. Lee, J. Zhou, and Y.-C. Chung, “Hier-
archical mapping for HPC applications,” in Proc Workshop
Large-Scale Parallel Processing, 2011, pp. 1810–1818.

[15] M. Deveci, U. V. Catalyurek, S. Rajamanickam, and K. D.
Devine, “Multi-Jagged: A scalable multi-section based spatial
partitioning algorithm.” Sandia National Laboratories, Tech.
Rep. SAND2012-10318C, 2012.

[16] F. Gygi, E. W. Draeger, M. Schulz, B. de Supinski, J. Gunnels,
V. Austel, J. Sexton, F. Franchetti, S. Kral, C. Ueberhuber,
and J. Lorenz, “Large-scale electronic structure calculations
of high-Z metals on the BlueGene/L platform,” in Proc 2006
ACM/IEEE Conf Supercomputing, 2006.

[17] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-
means clustering algorithm,” J Roy Stat Soc C Appl Stat,
vol. 28, no. 1, pp. 100–108, 1979.

[18] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratories,
Albuquerque, NM, Tech. Rep. SAND2009-5574, 2009.

[19] T. Hoefler and M. Snir, “Generic topology mapping strategies
for large-scale parallel architectures,” in Proc 25th Intl Conf
Supercomputing. ACM, 2011, pp. 75–84.

[20] G. Karypis and V. Kumar, “ParMETIS: Parallel graph parti-
tioning and sparse matrix ordering library,” Dept. Computer
Science, University of Minnesota, Tech. Rep. 97-060, 1997.

[21] H. Kikuchi, B. Karki, and S. Saini, “Topology-aware parallel
molecular dynamics simulation algorithm,” in Proc Intl Conf
Parallel & Distributed Proc Tech & Applications, 2006.

[22] S.-Y. Lee and J. Aggarwal, “A mapping strategy for parallel
processing,” IEEE Trans Comput, vol. 100, no. 4, pp. 433–
442, 1987.

[23] V. J. Leung, D. Bunde, J. Ebbers, S. Feer, N. Price, Z. Rhodes,
and M. Swank, “Task mapping stencil computations for non-
contiguous allocations,” in Proc 19th Symp Principals &
Practice of Parallel Prog (PPoPP). ACM SIGPLAN, 2014.

[24] K. Pedretti, C. Vaughan, R. Barrett, K. Devine, and K. S.
Hemmert, “Using the Cray Gemini performance counters,”
in Proc Cray User Group (CUG), 2013.

[25] F. Pellegrini and J. Roman, “Scotch: A software package for
static mapping by dual recursive bipartitioning of process and
architecture graphs,” in High-Performance Computing and
Networking. Springer, 1996, pp. 493–498.

[26] S. Plimpton, “Fast parallel algorithms for short-range molec-
ular dynamics,” J Comput Phys, vol. 117, no. 1, pp. 1–19,
1995.

[27] C. Walshaw and M. Cross, “Multilevel mesh partitioning for
heterogeneous communication networks,” Future Generation
Comp Syst, vol. 17, no. 5, pp. 601–623, 2001.

[28] H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for
Blue Gene/L supercomputer,” in Proc 2006 ACM/IEEE Conf
Supercomputing, 2006.

36

