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Abstract We consider semidefinite programming relaxations of the quadratic
assignment problem, and show how to exploit group symmetry in the problem data.
Thus we are able to compute the best known lower bounds for several instances of
quadratic assignment problems from the problem library: (Burkard et al. in J Global
Optim 10:291–403, 1997).
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1 Introduction

We study the quadratic assignment problem (QAP) in the following form:

min
X∈�n

trace(AX T B X)

where A and B are given symmetric n × n matrices, and �n is the set of n × n
permutation matrices.

It is well-known that the QAP contains the traveling salesman problem as a special
case and is therefore NP-hard in the strong sense. Moreover, experience has shown that
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226 E. de Klerk, R. Sotirov

instances with n = 30 are already very hard to solve in practice. Thus it is typically
necessary to use massive parallel computing to solve even moderately sized QAP
instances; see [2].

For a detailed survey on recent developments surrounding the QAP problem, see
Anstreicher [1], and the references therein.

The successful computational work in [2] employed convex relaxation of the QAP in
a branch and bound setting. One class of convex relaxations that has been suggested for
the QAP is via semidefinite programming (SDP); see [20,28]. These SDP relaxations
turn out to be quite strong in practice, but involve matrix variables of size (n2 + 1) ×
(n2 + 1), and are therefore hard to solve by interior point algorithms.

This has led to the application of bundle methods [20] and augmented Lagrangian
methods [4] to certain SDP relaxations of the QAP. Concerning one SDP relaxation
(that we will consider in this paper), the authors of [20] write that ‘... the relaxation ...
cannot be solved straightforward[ly] by interior point methods for interesting instances
(n ≥ 15).’

This statement is undoubtedly true in general, but we will show that if the QAP
data matrices have sufficiently large automorphism groups, one may solve such SDP
relaxations by interior point methods, sometimes for values as large as n = 128. We
will also show that several instances in the QAP library [6] involve matrices with large
automorphism groups. (This fact has already been exploited in a branch and bound
framework to reduce the size of the branching tree; see [1], Sect. 4, but not in the
context of solving SDP relaxations.)

As a result we are able to compute the best known lower bounds on the optimal
values of real-world instances by Eschermann and Wunderlich [5] from the QAP
library; these instances stem from an application in computer science, namely the
testing of self-testable sequential circuits, where the amount of additional hardware
for the testing should be minimized.

Our work is in the spirit of work by Schrijver [21,22], Gatermann and Parrilo [11],
De Klerk et al. [7], De Klerk, Pasechnik and Schrijver [8], and others, who have shown
how ‘group symmetric’ SDP problems may be reduced in size using representation
theory.

Notation

The space of p × q real matrices is denoted by R
p×q , the space of k × k symmetric

matrices is denoted by Sk , and the space of k × k symmetric positive semidefinite
matrices by S+

k . We will sometimes also use the notation X � 0 instead of X ∈ S+
k ,

if the order of the matrix is clear from the context.
We use In to denote the identity matrix of order n. Similarly, Jn and en denote the

n × n all-ones matrix and all ones n-vector respectively, and 0n×n is the zero matrix
of order n. We will omit the subscript if the order is clear from the context.

The vec operator stacks the columns of a matrix, while the diag operator maps an
n × n matrix to the n-vector given by its diagonal. The i th column of a matrix is
denoted by coli (·).
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Exploiting group symmetry in semidefinite programming relaxations 227

The Kronecker product A ⊗ B of matrices A ∈ R
p×q and B ∈ R

r×s is defined as
the pr × qs matrix composed of pq blocks of size r × s, with block i j given by Ai j B
(i = 1, . . . , p), ( j = 1, . . . , q).

The following properties of the Kronecker product will be used in the paper, see
e.g. [14] (we assume that the dimensions of the matrices appearing in these identities
are such that all expressions are well-defined):

(A ⊗ B)T = AT ⊗ BT , (1)

(A ⊗ B)(C ⊗ D) = AC ⊗ B D, (2)

(A ⊗ B)vec(X) = vec
(

B X AT
)

, (3)

trace(A ⊗ B) = trace(A) trace(B). (4)

2 SDP relaxation of the QAP problem

We associate with a matrix X ∈ �n a matrix YX ∈ S+
n2+1

given by

YX :=
(

1
vec(X)

) (
1

vec(X)

)T

. (5)

Note that YX is a rank-1, component-wise nonnegative block matrix of the form

YX =

⎛
⎜⎜⎜⎜⎝

1
(
y(1)

)T · · · (
y(n)

)T

y(1) Y (11) · · · Y (1n)

...
...

. . .
...

y(n) Y (n1) · · · Y (nn)

⎞
⎟⎟⎟⎟⎠

(6)

where
Y (i j) := coli (X)col j (X)T (i, j = 1, . . . , n), (7)

and y(i) = coli (X) (i = 1, . . . , n). We will denote

y :=
((

y(1)
)T · · ·

(
y(n)

)T
)T

,

and

Y :=
⎛
⎜⎝

Y (11) · · · Y (1n)

...
. . .

...

Y (n1) · · · Y (nn)

⎞
⎟⎠ ,

so that the block form (6) may be written as

YX =
(

1 yT

y Y

)
.
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228 E. de Klerk, R. Sotirov

Letting

T :=
(

−e In ⊗ eT

−e eT ⊗ In

)
,

the condition (satisfied by any X ∈ �n)

Xe = X T e = e

is equivalent to

T

(
1

vec(X)

)
= 0, (8)

since

T

(
1

vec(X)

)
≡

(−e + X T e
−e + Xe

)

where the equality follows from (3). Note that condition (8) may be rewritten as

trace
(

T T T YX

)
= 0. (9)

Moreover, one has

T T T =
(

2n −2eT

−2e I ⊗ J + J ⊗ I

)
. (10)

The matrix YX has the following sparsity pattern:

• The off-diagonal entries of the blocks Y (i i) (i = 1, . . . , n) are zero;
• The diagonal entries of the blocks Y (i j) (i �= j) are zero.

An arbitrary nonnegative matrix Y ≥ 0 has the same sparsity pattern if and only if

trace((I ⊗ (J − I ))Y + ((J − I ) ⊗ I )Y ) = 0. (11)

(This is sometimes called the gangster constraint; see e.g. [28].)
If Y ≥ 0 satisfies (11) then, in view of (10), one has

trace

(
T T T

(
1 yT

y Y

))
≡ trace

((
2n −2eT

−2e I ⊗ J + J ⊗ I

) (
1 yT

y Y

))

= 2n − 4eT y + 2 trace(Y ).

Thus the condition

trace

(
T T T

(
1 yT

y Y

))
= 0 (12)

becomes

trace(Y ) − 2eT y = −n.
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Exploiting group symmetry in semidefinite programming relaxations 229

SDP relaxation of QAP

We obtain an SDP relxation of (QAP) by relaxing the condition YX = vec(X)vec(X)T

(see (5)) to YX ∈ S+
n2+1

:

min trace(A ⊗ B)Y
subject to

trace((I ⊗ (J − I ))Y + ((J − I ) ⊗ I )Y ) = 0
trace(Y ) − 2eT y = −n(

1 yT

y Y

)
� 0, Y ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

To obtain the objective function in (13) from the QAP objective function trace(AX T

B X), we used the fact that

trace(AX T B X) = trace(X T B X A)

= vec(X)T vec(B X A)

= vec(X)T (A ⊗ B)vec(X) (by (3))

= trace
(
(A ⊗ B)vec(X)vec(X)T

)
.

The SDP relaxation (13) is equivalent to the one solved by Rendl and Sotirov
[20] using bundle methods (called (Q APR3) in that paper). It is also the same as the
so-called N+(K )-relaxation of Lovász and Schrijver [17] applied to the QAP, as
studied by Burer and Vandenbussche [4]. The equivalence between the two relaxations
was recently shown by Povh and Rendl [19].

3 Valid inequalities for the SDP relaxation

The following theorem from [28] shows that several valid (in)equalities are implied
by the constraints of the SDP problem (13).

Theorem 3.1 (cf. [28], Lemma 3.1) Assume y ∈ R
n2

and Y ∈ Sn2 are such that

(
1 yT

y Y

)
� 0,

and that the matrix in the last expression has the block form (6) and satisfies (12).
Then one has:
1.

(
y( j)

)T = eT Y (i j) (i, j = 1, . . . , n);

2.
∑n

i=1 Y (i j) = e
(
y( j)

)T
( j = 1, . . . , n);

3.
∑n

i=1 diag
(
Y (i j)

) = y( j) ( j = 1, . . . , n).

The fact that these are valid equalities easily follows from (5) and (7).
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230 E. de Klerk, R. Sotirov

The third condition in the theorem for i = j , together with the gangster constraint,
implies that

diag(Y ) = y.

By the Schur complement theorem, this in turn implies the following.

Corollary 3.1 Assume that y and Y meet the conditions of Theorem 3.1, and that
Y ≥ 0. Then Y � diag(Y ) diag(Y )T .

Triangle inequalities

The fact that YX is generated by {0, 1}-vectors gives rise to the so-called triangle
inequalities:

0 ≤ Yrs ≤ Yrr , (14)

Yrr + Yss − Yrs ≤ 1, (15)

−Ytt − Yrs + Yrt + Yst ≤ 0, (16)

Ytt + Yrr + Yss − Yrs − Yrt − Yst ≤ 1, (17)

which hold for all distinct triples (r, s, t). Note that there are O(n6) triangle inequali-
ties.

A useful observation is the following.

Lemma 3.1 If an optimal solution Y, y of (13) has a constant diagonal, then all the
triangle inequalities (14)–(17) are satisfied.

Proof Since the pair (y, Y ) satisfies trace(Y ) − 2eT y = −n, and diag(Y ) = y is a
multiple of the all-ones vector, one has diag(Y ) = y = 1

n en2 . Thus (15) and (17) are
implied, since Y ≥ 0.

The condition
(
y( j)

)T = eT Y (i j) (i, j = 1, . . . , n) implies that the row sum of
any block Y (i j) equals 1

n eT
n . In particular, all entries in Y (i j) are at most 1/n, since

Y (i j) ≥ 0. Thus (14) is implied.
Finally, we verify that (16) holds. This may be done by showing that:

1

n
= max(Yst + Yrt − Yrs)

subject to

⎛
⎝

1
n Yrs Yrt

Yrs
1
n Yst

Yrt Yst
1
n

⎞
⎠ � 0, Yrs ≥ 0, Yrt ≥ 0, Yst ≥ 0.

Indeed, it is straightforward to verify, using duality theory, that an optimal solution is
given by Yrs = Yrt = Yst = 1/n, which concludes the proof. �	
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Exploiting group symmetry in semidefinite programming relaxations 231

As noted in [20], the size of the SDP problem (13) is too large for its solution by
using interior point methods if n ≥ 15.

We will therefore focus on a subclass of QAP instances where the data matrices
have suitable algebraic symmetry. In the next section we first review the general theory
of group symmetric SDP problems.

4 Group symmetric SDP problems

In this section we will give only a brief review of group symmetric SDP’s, and we will
state results without proofs. More details may be found in the survey by Parrilo and
Gatermann [11].

Assume that the following semidefinite programming problem is given

p∗ := min
X�0, X≥0

{ trace(A0 X) : trace(Ak X) = bk, k = 1, . . . , m} , (18)

where Ai ∈ Sn (i = 0, . . . , m) are given. We also assume that this problem has an
optimal solution.

Assumption 1 (Group symmetry) We assume that there is a nontrivial, finite, multi-
plicative group of orthogonal matrices G such that

Ak P = P Ak ∀ P ∈ G, k = 0, . . . , m.

The commutant (or centralizer ring) of G is defined as

AG := {X ∈ R
n×n : X P = P X ∀ P ∈ G}.

In other words, in Assumption 1 we assume that the data matrices Ak (k = 0, . . . , m)

lie in the commutant of G.
The commutant is a matrix ∗-algebra over R, i.e. a subspace of R

n×n that is closed
under matrix multiplication and taking transposes.

An alternative, equivalent definition of the commutant is

AG = {X ∈ R
n×n : RG(X) = X},

where

RG(X) := 1

|G|
∑
P∈G

P X PT , X ∈ R
n×n

is called the Reynolds operator (or group average) of G. Thus RG is the orthogonal
projection onto the commutant. Orthonormal eigenvectors of RG corresponding to the
eigenvalue 1 form an orthonormal basis of AG (seen as a vector space).
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232 E. de Klerk, R. Sotirov

This basis, say B1, . . . , Bd , has the following properties:

• Bi ∈ {0, 1}n×n (i = 1, . . . , d);
• ∑d

i=1 Bi = J .
• For any i ∈ {1, . . . , d}, one has BT

i = B j for some j ∈ {1, . . . , d} (possibly
i = j).

A basis of a matrix ∗-algebra with these properties is sometimes called a non-
commutative association scheme; it is called an association scheme if the Bi ’s also
commute.

One may also obtain the basis B1, . . . , Bd by examining the image of the standard
basis of R

n×n under RG . In particular, if e1, . . . , en denotes the standard basis of R
n

then the {0, 1} matrix with the same support as RG(ei eT
j ) is a basis matrix of the

commutant, for any i, j ∈ {1, . . . , n}.
Another way of viewing this is to consider the orbit of the pair of indices (i, j)

(also called 2-orbit) under the action of G. This 2-orbit of (i, j) is defined as

{(Pei , Pe j ) : P ∈ G}.

The corresponding basis matrix has an entry 1 at position (k, l) if (ek, el) belongs to
the 2-orbit, and is zero otherwise.

A well-known, and immediate consequence of Assumption 1 is that we may restrict
the feasible set of the optimization problem to its intersection with the commutant of
G.

Theorem 4.1 Under Assumption 1, problem (18) has an optimal solution in the com-
mutant of G.

Proof If X is an optimal solution of problem (18), then so is RG(X), by Assumption
1. �	

Assume we have a basis B1, . . . , Bd of the commutant AG . One may write X =∑d
i=1 xi Bi . Moreover, the nonnegativity condition X ≥ 0 is equivalent to x ≥ 0, by

the properties of the basis.
Thus the SDP problem (18) reduces to

min∑d
i=1 xi Bi �0

{
d∑

i=1

xi trace(A0 Bi ) :
d∑

i=1

xi trace(Ak Bi ) = bk, k = 1, . . . , m, x ≥ 0

}
.

(19)
Note that the values trace(Ak Bi ) (i = 1, . . . , d), (k = 0, . . . , m) may be computed
beforehand.

The next step in reducing the SDP (19) is to block diagonalize the commutant AG ,
i.e. block diagonalize its basis B1, . . . , Bd . To this end, we review some general theory
on block diagonalization of matrix algebras in the next section.

The motivation for block diagonalization is that interior point solvers (e.g. CSDP
[3] and SeDuMi [24]) can exploit such structure in SDP data matrices, since a block
diagonal matrix is positive semidefinite if and only if each of its diagonal blocks is
positive semidefinite.
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Exploiting group symmetry in semidefinite programming relaxations 233

5 Matrix algebras and their block factorizations

In this section we review the general theory of block diagonalization of matrix
∗-algebras, and introduce a heuristic to compute such a decomposition.

5.1 The canonical decomposition of a matrix ∗-algebra

The following theorem shows that a matrix ∗-algebra over R may be ‘block diag-
onalized’ in a canonical way via an orthogonal transformation. The theorem is due
to Wedderburn [25] in a more general setting; the result as stated here follows from
Theorem 5(ii) in Chap. X of [26].

Before stating the result, recall that a matrix ∗-algebra A is called simple if its only
ideals are {0} and A itself.

Theorem 5.1 (Wedderburn [25]) Assume A ⊂ R
n×n is a matrix *-algebra over R

that contains the identity I . Then there is an orthogonal matrix Q and some integer s
such that

QT AQ =

⎛
⎜⎜⎜⎜⎝

A1 0 · · · 0

0 A2
...

...
. . . 0

0 · · · 0 As

⎞
⎟⎟⎟⎟⎠

,

where each At (t = 1, . . . , s) is a simple matrix ∗-algebra over R. This decomposition
is unique up to a permutation of the blocks.

Simple matrix ∗-algebras over R are completely classified and one can give a more
detailed statement of the above theorem.

However, we will not need these details in the current paper, and will only illustrate
the theorem with an example that we will need for some of the QAP instances to be
considered later (see the esc instances in Sect. 8). The example concerns the so-called
Bose–Mesner algebra of the Hamming scheme, and was first used in the context of
SDP by Schrijver [21]. A more detailed exposition than given here may be found in
the thesis of Gijswijt [12]; see Sects. 3.1 and 4.1 there.

Example 5.1 Consider the matrix A with 2n rows indexed by all elements of {0, 1}n ,
and Ai j given by the Hamming distance between i ∈ {0, 1}n and j ∈ {0, 1}n .

The automorphism group of A arises as follows. Any permutation π of the index set
{1, . . . , n} induces an isomorphism of A that maps row (resp. column) i of A to row
(resp. column) π(i) for all i . There are n! such permutations. Moreover, there are an
additional 2n permutations that act on {0, 1}n by either ‘flipping’ a given component
from zero to one (and vice versa), or not.

Thus aut(A) has order n!2n . The centralizer ring of aut(A) is a commutative matrix
∗-algebra over R and is known as the Bose-Mesner algebra of the Hamming scheme.
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234 E. de Klerk, R. Sotirov

A basis for the centralizer ring may be derived from the 2-orbits of aut(A) and are
given by

B(k)
i j =

{
1 if Hamming(i, j) = k;
0 else

(k = 0, . . . , n),

where Hamming(i, j) is the Hamming distance between i and j . The basis matrices
B(k) are simultaneously diagonalized by the orthogonal matrix Q defined by

Qi j = 2− n
2 (−1)i T j i, j ∈ {0, 1}n .

The distinct elements of the matrix QT B(k)Q equal K j (k) ( j = 0, . . . , n) where

K j (x) :=
j∑

k=0

(−1)k
(

x

k

)(
n − x

j − k

)
, j = 0, . . . , n,

are called Krawtchouk polynomials. Thus a linear matrix inequality of the form

n∑
k=0

xk B(k) � 0

is equivalent to the system of linear inequalities

n∑
k=0

xk K j (k) ≥ 0 ( j = 0, . . . , n),

since

n∑
k=0

xk B(k) � 0 ⇐⇒
n∑

k=0

xk QT B(k)Q � 0.

5.2 A heuristic for computing a block diagonalization

Let G be a multiplicative group of orthogonal matrices with commutant AG . Assume
that B1, . . . , Bd span AG .

Our goal is to block-diagonalize the basis B1, . . . , Bd . The proof of Theorem 5.1
is constructive, and can in principle be used to compute the canonical block diagonal-
ization of AG . Alternatively, group representation theory may be used for the same
goal.

However, we will employ a simple heuristic that may in general compute a coarser
block diagonalization of AG than described in Theorem 5.1). This coarser factorization
is sufficient for our (computational) purposes.
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Exploiting group symmetry in semidefinite programming relaxations 235

Block diagonalization heuristic

1. Choose a random symmetric element, say Z , from span{P : P ∈ G};
2. Compute the spectral decomposition of Z , and let Q be an orthogonal matrix with

columns given by a set of orthonormal eigenvectors of Z .
3. Block diagonalize the basis B1, . . . , Bd by computing QT B1 Q, . . . , QT Bd Q.

The heuristic is motivated by the following (well-known) observation.

Theorem 5.2 Let q be an eigenvector of some Z ∈ span{P : P ∈ G} and let λ ∈ R

be the associated eigenvalue. Then Xq is an eigenvector of Z with eigenvalue λ for
each X ∈ AG .

Proof Note that

Z(Xq) = X Zq = λXq,

by the definition of the commutant. �	
Thus if we form a matrix Q = [q1 · · · qn] where the qi ’s form an orthogonal set

of eigenvectors of Z , then QT Bi Q is a block diagonal matrix for all i . Note that the
sizes of the blocks are given by the multiplicities of the eigenvalues of Z .

6 Tensor products of groups and their commutants

The following theorem shows that, if one has two multiplicative groups of orthogonal
matrices, then one may obtain a third group using Kronecker products. In representa-
tion theory this construction is known as the tensor product of the groups.

Theorem 6.1 (cf. Serre [23], Sect. 1.5) Let Gp and Gs be two multiplicative groups
of orthogonal matrices given by pi (i = 1, . . . , |Gp|) and s j ( j = 1, . . . , |Gs |),
respectively.

Then the matrices

Pi j := pi ⊗ s j i = 1, . . . , |Gp|, j = 1, . . . , |Gs |

form a multiplicative group of orthogonal matrices. This group is denoted by Gp ⊗Gs .

Proof Let G := Gp ⊗ Gs and let indices i, i ′, î, j, j ′, ĵ ∈ {1, . . . , |G|} be given such
that pi pi ′ = pî and s j s j ′ = s ĵ . Note that

Pi j Pi ′ j ′ = (pi ⊗ s j )(pi ′ ⊗ s j ′)

= (pi pi ′) ⊗ (s j s j ′)

= pî ⊗ s ĵ ≡ Pî ĵ .

Moreover, note that the matrices Pi j are orthogonal, since the pi and s j ’s are. �	
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236 E. de Klerk, R. Sotirov

In the next theorem we show how to construct a basis for the commutant of the
tensor product of groups. We note that this result is also well-known, but we again
supply a proof for completeness.

Theorem 6.2 Let G1 and G2 be two multiplicative groups of n×n orthogonal matrices
with respective commutants A1 and A2. Let B1

i (i = 1, . . . , n1) be a basis for A1

and B2
j ( j = 1, . . . , n2) a basis for A2. Then a basis for the commutant of G1 ⊗ G2 is

given by

{
B1

i ⊗ B2
j : i = 1, . . . , n1, j = 1, . . . , n2

}
.

Proof Letting ei (i = 1, . . . , n) denote the standard unit vectors in R
n , a basis for

R
n2×n2

is given by

ei e
T
j ⊗ ekeT

l (i, j, k, l = 1, . . . , n).

A basis for the commutant of G := G1 ⊗ G2 is obtained by taking the image of this
basis under the Reynolds operator RG of G. Note that

RG(ei e
T
j ⊗ ekeT

l ) := 1

|G|
∑

P1∈G1,P2∈G2

P1 ⊗ P2(ei e
T
j ⊗ ekeT

l )PT
1 ⊗ PT

2

= 1

|G1||G2|
∑

P1∈G1,P2∈G2

P1ei e
T
j PT

1 ⊗ P2ekeT
l PT

2

= 1

|G1|
∑

P1∈G1

P1ei e
T
j PT

1 ⊗ 1

|G2|
∑

P2∈G2

P2ekeT
l PT

2

≡ RG1(ei e
T
j ) ⊗ RG2(ekeT

l ),

where we have used the properties (1) and (2) of the Kronecker product. The required
result follows. �	

7 The symmetry of the SDP relaxation of the QAP

We now apply the theory described in the last sections to the SDP relaxation (13) of
the QAP.

7.1 Symmetry reduction of (13)

Let A and B be the data matrices that define an instance of the QAP. We define the
automorphism group of a matrix Z ∈ R

n×n as

aut(Z) = {P ∈ �n : P Z PT = Z}.
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Exploiting group symmetry in semidefinite programming relaxations 237

Theorem 7.1 Define the multiplicative matrix group

GQ AP :=
{(

1 0T

0 PA ⊗ PB

)
: PA ∈ aut(A), PB ∈ aut(B)

}
, (20)

Then the SDP problem (13) satisfies Assumption 1 with respect to the GQ AP .

Proof If we view problem (13) as an SDP problem in the form (18), then the data
matrices are given by:

A0 :=
(

0 0T

0 A ⊗ B

)
, A1 :=

(
0 0T

0 I ⊗ (J − I ) + (J − I ) ⊗ I

)
,

A2 :=
(

0 −eT

−e I

)
, and A3 :=

(
1 0T

0 0n2×n2

)
.

Let PA ∈ aut(A) and PB ∈ aut(B). We have to verify that

(
1 0T

0 PA ⊗ PB

)T

Ai

(
1 0T

0 PA ⊗ PB

)
= Ai , (i = 0, . . . , 3),

and this may easily be done using only the definitions of the Ai ’s and the properties
of the Kronecker product. For example,

(
1 0T

0 PA ⊗ PB

)T

A0

(
1 0T

0 PA ⊗ PB

)
=

(
0 0T

0 (PT
A ⊗ PT

B )(A ⊗ B)(PA ⊗ PB)

)

=
(

0 0T

0 PT
A APA ⊗ PT

B B PB

)

=
(

0 0T

0 A ⊗ B

)
≡ A0.

�	
We may construct a basis for the commutant of GQ AP from the bases of the com-

mutants of aut(A) and aut(B) respectively, as is shown in the following theorem.

Theorem 7.2 The commutant of GQ AP is spanned by all matrices of the form

(
1 0T

0 0n2×n2

)
,

(
0 0T

0 B A
i ⊗ B B

j

)
,

(
0 diag(B A

i ⊗ B B
j )T

0 0n2×n2

)
,

(
0 0T

diag(B A
i ⊗ B B

j ) 0n2×n2

)

where B A
i (resp. B B

j ) is an element of the basis of the commutant of aut(A) (resp.
aut(B)).
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Proof Let

(
a bT

c Z

)

denote a matrix from the commutant of GQ AP , where a ∈ R, b, c ∈ R
n2

and Z ∈
R

n2×n2
. For any PA ∈ aut(A) and PB ∈ aut(B) one therefore has

(
a bT

c Z

) (
1 0T

0 PA ⊗ PB

)
=

(
1 0T

0 PA ⊗ PB

) (
a bT

c Z

)

by the definition of the commutant. This implies that

Z(PA ⊗ PB) = (PA ⊗ PB)Z , (PA ⊗ PB)b = b, (PA ⊗ PB)c = c, (21)

for all PA ∈ aut(A) and PB ∈ aut(B).
This implies that Z lies in the commutant of aut(A) ⊗ aut(B). Thus we may write

Z ∈ spani, j {B A
i ⊗ B B

j }

if the B A
i ’s and B B

j ’s form bases for the commutants of aut(A) and aut(B), respectively,
by Theorem 6.2.

Moreover, (21) implies that b and c are linear combinations of incidence vectors
of orbits of aut(A) ⊗ aut(B). These incidence vectors are obtained by taking the
Kronecker products of incidence vectors of orbits of aut(A) and aut(B). We may also
obtain these incidence vectors as the diagonal vectors of the basis of the commutant of
aut(A)⊗ aut(B), i.e. from the vectors diag(B A

i ⊗ B B
j ). This completes the proof. �	

We may now simplify the SDP relaxation (13) using the basis of the commutant of
GA ⊗ GB . In particular, we may assume that

Y =
∑
i, j

yi j B A
i ⊗ B B

j ,

where yi j ≥ 0.
This implies, with reference to the SDP (13), that

trace(I ⊗ (J − I )Y ) =
∑
i, j

yi j trace(I ⊗ (J − I )B A
i ⊗ B B

j )

=
∑
i, j

yi j trace(B A
i ⊗ (J − I )B B

j )

=
∑
i, j

yi j trace B A
i trace(J − I )B B

j ,
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where we have used the identities (2) and (4) of the Kronecker product. Notice that
trace B A

i is simply the length of an orbit of aut(A) (indexed by i). Similarly, trace(J −
I )B B

j equals the length of a 2-orbit of aut(B). Note that we consider 2-orbits to be
orbits of pairs of nonidentical indices, i.e. we view the orbit of (1, 1) as a (one) orbit
and not as a 2-orbit.

Thus it is convenient to introduce notation for sets of orbits and 2-orbits: O1
A will

denote the set of orbits of aut(A), O2
A the set of 2-orbits, etc. The length (i.e. cardinality)

of an orbit will be denoted by �(·).
Using this notation we may rewrite the constraint:

trace((I ⊗ (J − I ))Y + ((J − I ) ⊗ I )Y ) = 0

as
∑

i∈O1
A, j∈O2

B

yi j�(i)�( j) +
∑

i∈O2
A, j∈O1

B

yi j�(i)�( j) = 0.

Together with yi j ≥ 0, this implies that we may set all variables yi j (i ∈ O1
A, j ∈ O2

B)
and yi j (i ∈ O2

A, j ∈ O1
B) to zero.

Moreover, we can use the fact that the first row and column (without the upper left
corner) equals the diagonal, to reduce the constraint

trace(Y ) − 2eT y = −n

to trace(Y ) = n by using diag(Y ) = y, which in turn becomes

∑

i∈O1
A, j∈O1

B

yi j�(i)�( j) = n.

Proceeding in this vein, we obtain the SDP reformulation:

min
∑

i∈O2
A, j∈O2

B

yi j trace(AB A
i ) trace(B B B

j ) +
∑

i∈O1
A, j∈O1

B

yi j trace(AB A
i ) trace(B B B

j )

subject to

∑

i∈O1
A, j∈O1

B

yi j�(i)�( j) = n

(
1 0T

0 0n2×n2

)
+

∑

i∈O1
A, j∈O1

B

yi j

(
0 diag(B A

i ⊗ B B
j )T

diag(B A
i ⊗ B B

j ) B A
i ⊗ B B

j

)

+
∑

i∈O2
A j∈O2

B

yi j

(
0 0T

0 B A
i ⊗ B B

j

)
� 0 (22)

yi j ≥ 0 ∀i, j.
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As mentioned before, the numbers trace(AB A
i ) and trace(B B B

j ) in the objective
function may be computed beforehand. Note that the number of scalar variables yi j is

|O1
A||O1

B | + |O2
A||O2

B |,

that may be much smaller than the
(n2+2

2

)
independent entries in a symmetric (n2 +

1)× (n2 +1) matrix, depending on the symmetry groups. This number may be further
reduced, since the matrices appearing in the linear matrix inequality (22) should be
symmetric. Recall that for every i (resp. j) there is an i∗ (resp. j∗) such that (B A

i )T =
B A

i∗ (resp. (B B
j )T = B B

j∗).

Thus one has yi j = yi∗ j∗ ∀ i, j . Letting O2,sym
A (resp. O2,sym

B ) denote the symmetric
2-orbits of aut(A) (resp. aut(B)), the final number of scalar variables becomes

|O1
A||O1

B | + 1

2

(
|O2

A||O2
B | + |O2,sym

A ||O2,sym
B |

)
.

7.2 Block diagonalization

The size of the SDP can be further reduced by block diagonalizing the data matrices
in (22) via block diagonalization of the matrices B A

i and B B
j .

Assume, to this end, that we know real, orthogonal matrices Q A and Q B that give
some block-diagonalization of the commutants of aut(A) and aut(B) respectively.
Defining the orthogonal matrix

Q :=
(

1 0T

0 Q A ⊗ Q B

)
,

one has, with reference to the LMI (22):

QT

(
0 0T

0 B A
i ⊗ B B

j

)
Q =

(
0 0T

0 QT
A B A

i Q A ⊗ QT
B B B

j Q B

)
,

and

QT

(
0 diag(B A

i ⊗ B B
j )T

diag(B A
i ⊗ B B

j ) B A
i ⊗ B B

j

)
Q

=
(

0 (QT
A diag(B A

i ) ⊗ QT
B diag(B B

j ))T

QT
A diag(B A

i ) ⊗ QT
B diag(B B

j ) QT
A B A

i Q A ⊗ QT
B B B

j Q B

)
.

These matrices all have a chordal sparsity pattern, so that the LMI (22) involving
these matrices may be simplified by using the following theorem.

Theorem 7.3 (see e.g. [15]) Assume matrices A0, . . . , Am ∈ Sn are given and define
the graph G = (V, E) with V = {1, . . . , n} and {i, j} ∈ E if (Ak)i j �= 0 for some
k ∈ {0, . . . , m}.
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If the graph G is chordal1 and its maximal cliques are denoted by K1, . . . , Kd,
then the following two statements are equivalent for a given vector y ∈ R

m:

1.

A0 −
m∑

i=1

yi Ai � 0,

2.

(A0)Ki ,Ki −
m∑

j=1

yi (A j )Ki ,Ki � 0, ∀ i = 1, . . . , d,

where (A j )Ki ,Ki denotes the principal submatrix of A j formed by the rows and
columns corresponding to Ki .

We may apply the theorem to the LMI (22), after performing the orthogonal trans-
formation QT (·)Q. The size of the resulting system of LMI’s is determined by the
sizes and number of blocks of the commutants of aut(A) and aut(B) respectively.

7.3 Triangle inequalities

The number of triangle inequalities (14)–(17) may also be reduced in number in an
obvious way by exploiting the algebraic symmetry. We omit the details, and only state
one result, by way of example.

Theorem 7.4 If both aut(A) and aut(B) are transitive, then all triangle inequalities
(14)–(17) are implied in the final SDP relaxation.

Proof If both aut(A) and aut(B) are transitive, then every matrix in the commutant of
GQ AP [see (20)] has a constant diagonal, since GQ AP only has one orbit. The required
result now follows from Lemma 3.1. �	

8 Numerical results

In Table 1 we give the numbers of orbits and 2-orbits of aut(A) and aut(B) for several
instances from the QAPLIB library [6]. (The value of n for each instance is clear from
the name of the instance, e.g. for esc16a, n = 16.)

We also give the number of scalar variables in our final SDP relaxation (see Sect.
7.1).

The automorphism groups of the matrices A and B were computed using the com-
putational algebra software GAP [10]. The same package was used to compute the
2-orbits of these groups.

1 A graph is called chordal, if it does not contain a cycle of length four or more as an induced subgraph.
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Table 1 Symmetry information on selected QAPLIB instances

Instance |O1
A|, |O1

B | |O2
A|, |O2

B | |O2,sym
A |, |O2,sym

B | # yi j ’s

esc16a 6, 1 42, 4 6, 4 102

esc16b 7, 1 45, 4 3, 4 103

esc16c 12, 1 135, 4 3, 4 288

esc16d 12, 1 135, 4 3, 4 288

esc16e 6, 1 37, 4 5, 4 90

esc16f 1, 1 1, 4 1, 4 5

esc16g 9, 1 73, 4 1, 4 157

esc16h 5, 1 23, 4 3, 4 57

esc16i 10, 1 91, 4 1, 4 194

esc16j 7, 1 44, 4 2, 4 99

esc32a 26, 1 651, 5 1, 5 1,656

esc32b 2, 1 18, 5 10, 5 72

esc32c 10, 1 96, 5 6, 5 265

esc32d 9, 1 86, 5 10, 5 249

esc32g 7, 1 44, 5 2, 5 122

esc32h 14, 1 188, 5 6, 5 499

esc64a 13, 1 163, 6 5, 6 517

esc128 16, 1 253, 7 9, 7 933

nug20 6, 20 98, 380 14, 0 18,740

nug21 8, 21 117, 420 13, 0 24,738

nug22 6, 22 116, 462 16, 0 26,928

nug24 6, 24 138, 552 18, 0 38,232

nug25 6, 25 85, 600 13, 0 25,650

nug30 9, 30 225, 870 21, 0 98,145

scr20 20, 6 380, 98 0, 14 18,740

sko42 12, 42 438, 1,722 30, 0 377,622

sko49 10, 49 315, 2,352 27, 0 370,930

ste36a 35, 10 1191, 318 1, 26 189,732

ste36b 10, 35 318, 1,191 26, 1 189,732

ste36c 10, 35 318, 1,191 26, 1 189,732

tho30 10, 30 240, 870 20, 0 104,700

tho40 12, 40 404, 1,560 28, 0 315,600

wil50 15, 50 635, 2,450 35, 0 778,625

wil100 15, 100 1,260, 9,900 60, 0 6,238,500

Note that the ‘esc’ instances [5] are particularly suited to our approach.2 Here the
automorphism group of B is the automorphism group of the Hamming graph described

2 We do not present results for the QAPLIB instances esc32e and esc32f in this paper, since these instances
have identical data on the QAPLIB website, and moreover the bounds we obtain are not consistent with the
reported optimal values for these instances. We have contacted the QAPLIB moderator concerning this, but
it remains unclear what the correct data is.
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Table 2 Block sizes after
(heuristic) block diagonalization
of the centralizer ring of aut(A)

for selected esc instances. For
the esc instances the centralizer
ring of aut(B) could be
diagonalized

Instance Block sizes of Largest block
commutant of aut(A) in final SDP

esc32a 1, 3, 28 29

esc32b 5, 7, 8, 12 13

esc32c 1, 2, 29 30

esc32d 1, 2, 4, 25 26

esc32g 1, 31 32

esc32h 1, 31 32

esc64a 1, 63 64

esc128 1 (82 times), 2 (14 times), 18 19

Table 3 Block sizes after
(heuristic) block diagonalization
of the commutant of aut(A) or
aut(B) for selected QAPLIB
instances. For these instances
either A or B had a nontrivial
automorphism group, but not
both

Instance Matrix Block sizes of Largest block
commutant of aut(Matrix) in final SDP

nug20 A 2,4, 6, 6 121

nug21 A 3, 4, 6, 8 169

nug22 A 5, 5, 6, 6 133

nug24 A 6, 6, 6, 6 145

nug25 A 1, 3, 3, 6, 6, 6 151

nug30 A 6, 6, 9, 9 271

scr20 B 4, 4, 6, 6 121

sko42 A 9, 9, 12, 12 505

sko49 A 3, 6, 6, 10, 12, 12 589

ste36a B 8, 8, 10, 10 361

ste36b A 8, 8, 10, 10 361

ste36c A 8, 8, 10, 10 361

tho30 A 5, 5, 10, 10 301

tho40 A 8, 8, 12, 12 481

wil50 A 10, 10, 15, 15 751

wil100 A 10, 10, 15, 15, 25, 25 2, 501

in Example 5.1. Consequently the commutant of aut(B) may be diagonalized, and its
dimension is small.

The other block sizes of the commutants of aut(A) and aut(B) that were computed
using the heuristic of Sect. 5.2 are shown in Tables 2 and 3 for selected QAPLIB
instances. The size of the largest block appearing in the final SDP formulation for
each instance is also shown.

Note that the QAPLIP instances other than the esc instances are still too large to
solve by interior point methods. The reason is that a linear system of the same size as
the number of scalar variables has to be solved at each iteration of the interior point
method. Thus the practical limit for the number of scalar variables is of the order of a
few thousand. Note however, that a significant reduction in size is obtained for many
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Table 4 Optimal values and
solution times for the esc16
instances

Instance SDP l.b. (13) Opt. Time(s)

esc16a 64 ≡ �63.2756� 68 0.75

esc16b 290 ≡ �289.8817� 292 1.04

esc16c 154 ≡ �153.8242� 160 1.78

esc16d 13 ≡ �13.0000� 16 0.89

esc16e 27 ≡ �26.3368� 28 0.51

esc16f 0 0 0.14

esc16g 25 ≡ �24.7403� 26 0.51

esc16h 977 ≡ �976.2244� 996 0.79

esc16i 12 ≡ �11.3749� 14 0.73

esc16j 8 ≡ �7.7942� 8 0.42

Table 5 Optimal values and solution times for the larger esc instances

Instance Previous l.b. SDP l.b. (13) Best known u.b. Time (s)

esc32a 103 ([4]) 104 ≡ �103.3194� 130 (best known) 114.8750

esc32b 132 ([4]) 132 ≡ �131.8718� 168 (best known) 5.5780

esc32c 616 ([4]) 616 ≡ �615.1400� 642 (best known) 3.7030

esc32d 191 ([4]) 191 ≡ �190.2266� 200 (best known) 2.0940

esc32g 6 (opt.) 6 ≡ �5.8330� 6 (opt.) 1.7970

esc32h 424 ([4]) 425 ≡ �424.3382� 438 (best known) 7.1560

esc64a 47 98 ≡ �97.7499� 116 (best known) 12.9850

esc128 2 54 ≡ �53.0844� 64 (best known) 140.3590

instances. Thus, for example, the final SDP relaxation of nug25 involves ‘only’ 25,650
scalar variables, and the largest blocks appearing in the LMI’s have size 151 × 151.

The final SDP problems were solved by the interior point software SeDuMi [24]
using the Yalmip interface [27] and Matlab 6.5, running on a PC with Pentium IV 3.4
GHz dual-core processor and 3GB of memory.

In Tables 4 and 5 we give computational results for the esc16 and esc32 (as well as
esc64a and esc128) instances respectively.

The optimal solutions are known for the ecs16 instances but most of the esc32
instances as well as esc64a and esc128 remain unsolved.

In [4] the optimal value of the SDP relaxation (13) was approximately computed
for several instances of the QAPLIB library using an augmented Lagragian method.
These values, rounded up, are given in the column ‘previous l.b.’ in Table 5 for the esc
instances, except for esc64a and esc128 which were too large even for the augmented
Lagragian approach. The lower bounds for esc64a and esc128 given in Table 5 are
taken from the QAPLIB web page, and are given by the Gilmore-Lawler [13,16]
bound.

Note that values from [4] do not always give the same bound as we obtained, and
we can improve their lower bound by 1 for esc32a and esc32h. The reason for the

123



Exploiting group symmetry in semidefinite programming relaxations 245

difference is that the augmented Lagrangian method does not always solve the SDP
relaxation (13) to optimality. Moreover, as one would expect, the interior point method
is about three to four orders of magnitude faster than the the augmented Lagrangian
method, as is clear from comparison with computational times reported in [4]. In
particular, in [4], Table 6 the authors report solution times of order 103 s for the esc16
instances, and order 105 s for the esc32 instances; this computation was done on a 2.4
GHz Pentium IV processor, which is less than a factor two slower than the processor
that we used.

For the instances esc64a and esc128 we obtained a significant improvement over
the best known lower bounds, namely from 47 to 98 for esc64a (upper bound 116),
and from 2 to 54 for esc128 (upper bound 64).

We observed that, for all the esc instances, the optimal solution of the SDP relaxation
had a constant diagonal. By Lemma 3.1, this means that none of the triangle inequalities
was violated by the optimal solution, i.e. we could not improve the lower bounds in
Tables 4 and 5 by adding triangle inequalities.

9 Concluding remarks

We may conclude from our computational results that the SDP relaxation from [28]
is solvable by interior point methods for QAP instances where the distance matrix
is from an association scheme and n is up to 128. This was the case with the esc
instances [5] (where the distance matrices were Hamming distance matrices). Another
example of QAP instances where the distance matrix is a Hamming distance matrix
was recently given by Peng et al. [18], for a problem arising from channel coding in
communications.

One more example is the QAP reformulation of the symmetric traveling salesman
problem (TSP), where one of the QAP data matrices is a symmetric circulant matrix.
In a subsequent work to this paper, De Klerk et al. [9] worked out the details of the
reduced SDP relaxation of the QAP formulation of TSP. The result is an interesting
new SDP relaxation of TSP.

These observations show that the approach presented here has both computational
and theoretical implications.
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