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Abstract—So far, transactional memory—although a promising
technique—suffered from the absence of an efficient hardware
implementation. The upcoming Haswell microarchitecture from
Intel introduces hardware transactional memory (HTM) in
mainstream CPUs. HTM allows for efficient concurrent, atomic
operations, which is also highly desirable in the context of
databases. On the other hand HTM has several limitations that,
in general, prevent a one-to-one mapping of database transactions
to HTM transactions.

In this work we devise several building blocks that can be
used to exploit HTM in main-memory databases. We show that
HTM allows to achieve nearly lock-free processing of database
transactions by carefully controlling the data layout and the
access patterns. The HTM component is used for detecting the
(infrequent) conflicts, which allows for an optimistic, and thus
very low-overhead execution of concurrent transactions.

I. INTRODUCTION

The upcoming support for hardware transactional memory

(HTM) in mainstream processors like Intel’s Haswell appears

like a perfect fit for emerging main-memory database sys-

tems like H-Store/VoltDB [1], HyPer [2], SAP HANA [3],

IBM solidDB [4], Microsoft Hekaton [5], etc. Transactional

memory [6] is a very intriguing concept that allows for

automatic atomic and concurrent execution of arbitrary code.

Transactional memory allows for code like this:

transaction { transaction {
a = a− 10; c = c− 20;

b = b+ 10; a = a+ 20;

} }
Transaction 1 Transaction 2

Semantically, this code behaves quite similar to database

transactions. The code sections are executed atomically and

in isolation from each other. In the case of runtime conflicts

(i.e., read/write conflicts or write/write conflicts) a transaction

might get aborted, undoing all changes performed so far. The

transaction model is a very elegant and well understood idea

that is much simpler than the classical alternative, namely fine-

grained locking. Locking is much more difficult to formulate

correctly. Fine-grained locking is error prone and can lead to

deadlocks due to differences in locking order. Coarse-grained

locking is simpler, but greatly reduces concurrency. Transac-

tional memory avoids this problem by keeping track of read

and write sets and thus by detecting conflicts on the memory
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Figure 1. HTM versus 2PL, sequential, partitioned

access level. In the upcoming Haswell architecture this is

supported by hardware, which offers excellent performance.

Figure 1 sketches the benefits of our HTM-based trans-

action manager in comparison to other concurrency control

mechanisms that we investigated. For main-memory database

applications the well-known Two Phase Locking scheme was

proven to be inferior to serial execution [7]! However, serial

execution cannot exploit the parallel compute power of modern

multi-core CPUs. Under serial execution, scaling the through-

put in proportion to the number of cores would require an

optimal partitioning of the database such that transactions do

not cross these boundaries. This allows for “embarrassingly”

parallel execution—one thread within each partition. Unfor-

tunately, this is often not possible in practice; therefore, the

upper throughput curve “opt. manual partitioning” of Figure 1

is only of theoretical nature. HTM, however, comes very close

to an optimal static partitioning scheme as its transaction

processing can be viewed as an adaptive dynamic partitioning

of the database according to the transactional access pattern.

However, transactional memory is no panacea for trans-

action processing. First, database transactions also require

properties like durability, which are beyond the scope of

transactional memory. Second, at least the current hardware

implementations of transactional memory are limited. For the

Haswell microarchitecture the scope of a transaction is limited,

because the read/write set, i.e., every cache line a transaction

accesses, has to fit into the L1 cache with a capacity of 32KB.

Furthermore, HTM transactions may fail due to a number
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Figure 2. Static partitioning (left), Optimistic concurrency control via HTM
resulting in dynamic partitioning (right)

of unexpected circumstances like collisions caused by cache

associativity, hardware interrupts, etc. Therefore, it does not

seem to be viable to map an entire database transaction to a

single monolithic HTM transaction. In addition, one always

needs a “slow path” to handle the pathological cases (e.g.,

associativity collisions).

We therefore propose an architecture where transactional

memory is used as a building block for assembling complex

database transactions. Along the lines of the general philoso-

phy of transactional memory we start executing transactions

optimistically, using (nearly) no synchronization and thus

running at full clock speed. By exploiting HTM we get many

of the required checks for free, without complicating the

database code, and can thus reach a much higher degree of

parallelism than with classical locking or latching. In order to

minimize the number of conflicts in the transactional memory

component, we carefully control the data layout and the access

patterns of the involved operations, which allows us to avoid

explicit synchronization most of the time.

Note that we explicitly do not assume that the database is

partitioned in any way. In some cases, and in particular for the

well-known TPC-C benchmark, the degree of parallelism can

be improved greatly by partitioning the database at the schema

level (using the warehouse attribute in the case of TPC-C).

Such a static partitioning scheme is exemplified on the left-

hand side of Figure 2. VoltDB for example makes use of static

partitioning for parallelism [1]. But such a partitioning is hard

to find in general, and users usually cannot be trusted to find

perfect partitioning schemes [8]. In addition, there can always

be transactions that cross partition boundaries, as shown by

the partition boundary overlapping transactions T1, T2, and

T3 in Figure 2 (left-hand side). These transactions have to

be isolated with a serial (or locking-based) approach as the

static partitioning scheme cannot guarantee their isolation. If

available, we could still exploit partitioning information in our

HTM approach, of course, as then conflicts would be even

more unlikely. But we explicitly do not assume the presence

of such a static partitioning scheme and rely on the implicit

adaptive partitioning of the transactions as sketched on the

right-hand side of Figure 2.

II. BACKGROUND AND MOTIVATION

As databases are expected to offer ACID transactions, they

have to implement a mechanism to synchronize concurrent

transactions. The traditional concurrency control method used

Table I
TRANSACTION RATES FOR VARIOUS SYNCHRONIZATION METHODS

synchronization method 1 thread 4 threads

2PL 50,541 108,756

serial execution 129,937 (129,937)

manually partitioned, serial 119,232 369,549

in most database systems is some variant of two-phase locking

(2PL) [9]. Before accessing a database item (tuple, page,

etc.), the transaction acquires a lock in the appropriate lock

mode (shared, exclusive, etc.). Conflicting operations, i.e.,

conflicting lock requests, implicitly order transactions relative

to each other and thus ensure serializability.

In the past this model worked very well. Concurrent transac-

tion execution was necessary to hide I/O latency, and the costs

for checking locks was negligible compared to the processing

costs in disk-based systems. However, this has changed in

modern systems, where large parts of the data are kept in

main memory, and where query processing is increasingly

CPU bound. In such a setup, lock-based synchronization con-

stitutes a significant fraction of the total execution time, in

some cases even dominates the processing [7], [10].

This observation has motivated some main-memory based

systems to adopt a serial execution model [7]: Instead of ex-

pensive synchronization, all transactions are executed serially,

eliminating any need for synchronization. And as a main-

memory based system does not have to hide I/O latency, such

a model works very well for short, OLTP-style transactions.

Table I shows TPC-C transaction rates under these two

models. We used our HyPer system [2] as the basis for the

experiments. Clearly, the serial execution mode outperforms

2PL. Due to the inherent overhead of maintaining a synchro-

nized lock manager in 2PL, serial execution achieves 2.6 times

the transaction rate of 2PL. This is a strong argument in favor

of the serial execution mode proposed by [7]. On the other

hand, the figure also shows the weakness of serial execution:

Increasing the degree of parallelism in 2PL increases the

transaction rate. Admittedly the effect is relatively minor in

the TPC-C setting, using 4 threads results in a speedup of only

2, but there still is an effect. Serial execution cannot make use

of additional threads, and thus the transaction rate remains

constant. As the number of cores in modern systems grows

while single-threaded performance stagnates, this becomes

more and more of a problem.

Systems like H-Store/VoltDB [1] or HyPer [2] tried to

solve this problem by partitioning the data. Both systems

would partition the TPC-C workload along the warehouse

attribute, and would then execute all transactions concurrently

that operate on separate warehouses. If transactions access

more than one warehouse, the system falls back to the serial

execution model. In the TPC-C benchmark this occurs for

ca. 11% of the transactions. Nevertheless, this model works

relatively well for TPC-C, as shown in Figure I, where it is

about 3 times faster than serial execution for 4 threads. But it



is not very satisfying to depend on static partitioning.

First of all, it needs human intervention. The database ad-

ministrator has to specify how the data should be partitioned;

HyPer has no automatic mechanism for this, whereas in H-

Store there were attempts to derive such partitioning schemes

automatically, e.g., Schism [11]. But, as mentioned by Larson

et al. [8], a good partitioning scheme is often hard to find, in

particular when workloads may shift over time. For TPC-C the

partitioning schema is obvious—as it was (artificially) speci-

fied as a schema tree—but for other schemata it is not. Second,

the partitioning scheme breaks if transactions frequently cross

their partition boundaries. For TPC-C this is not much of a

problem, as only relatively few transactions cross partition

boundaries and the workload does not change, but in general

it is hard to find partitioning schemes fully coherent with the

transaction’s access patterns. And it is important to note that

partition-crossing does not necessarily imply conflicting! In

the static partitioning execution model two transactions will

be serialized if they access the same partition, even if the data

items they access are completely distinct. This is highlighted in

Figure 2 where all three transactions on the left-hand side are

viewed as potentially conflicting as they (occasionally) cross

their partition boundaries.

As this state of the art is not very satisfying, we will in

the following develop a synchronization mechanism that is as

fine-grained as 2PL and, in terms of overhead, nearly as cheap

as serial execution. With our HTM-supported, dynamically-

partitioned execution model the transactions shown on the

right-hand side of Figure 2 are executed in parallel without

conflicts as their read/write-sets do not overlap.

Note that in this paper we concentrate on relatively short,

non-interactive transactions. The methods we propose are not

designed for transactions that touch millions of tuples or that

wait minutes for user interaction. In HyPer such long-running

transactions are moved into a snapshot with snapshot-isolation

semantics [2], [10]. As these snapshots are maintained auto-

matically by the OS, there is no interaction between these

long-running transactions and the shorter transactions we con-

sider here. In general, any system that adopts our techniques

will benefit from a separate snapshotting mechanism to avoid

the conflicts with long-running transactions, such as OLAP

queries and interactive transactions.

III. TRANSACTIONAL MEMORY

The synchronization mechanisms discussed above are usu-

ally implemented using some form of mutual exclusion (mu-

tex). For 2PL, the DBMS maintains a lock structure that keeps

track of all currently held locks. As this lock structure is

continuously updated by concurrent transactions, the structure

itself is protected by one (or more) mutexes [12]. On top of

this, the locks themselves provide a kind of mutual exclusion

mechanism, and block a transaction if needed.

The serial execution paradigm is even more extreme, there

one lock protects the whole database (or the whole partition

for partitioned execution). The problem with these locks is

that they are difficult to use effectively. In particular, finding

the right lock granularity is difficult. Coarse locks are cheap,

but limit concurrency. Fine-grained locks allow for more

concurrency, but are more expensive and can lead to deadlocks.

For quite some time now, transactional memory is being

proposed as an alternative to fine grained locking [6]. The

key idea behind transactional memory is that a number of

operations can be combined into a transaction, which is

then executed atomically. Consider the following small code

fragment for transferring money from one account to another

account (using GCC 4.7 syntax):

transfer(from,to,amount)

transaction atomic {
account[from]-=amount;

account[to]+=amount;

}

The code inside the atomic block is guaranteed to be exe-

cuted atomically, and in isolation. In practice, the transactional

memory observes the read set and write set of transactions,

and executes transactions concurrently as long as the sets do

not conflict. Thus, transfers can be executed concurrently as

long as they affect different accounts, they are only serialized

if they touch a common account. This behavior is very hard

to emulate using locks. Fine-grained locking would allow for

high concurrency, too, but would deadlock if accounts are

accessed in opposite order. Transactional memory solves this

problem elegantly.

Transactional memory has been around for a while, but has

usually been implemented as Software Transactional Memory

(STM), which emulated this behavior in software. Although

STM does remove the complexity of lock maintenance, it

causes a significant slowdown during execution and thus had

limited practical impact [13].

A. Hardware Support for Transactional Memory

This will change with the Haswell microarchitecture from

Intel, which offers Hardware Transactional Memory [14]. Note

that Haswell is not the first CPU with hardware support

for transactional memory, for example IBM’s Blue Gene/Q

supercomputers [15] and System z mainframes [16] offered it

before, but it is the first mainstream CPU to implement HTM.

And in hardware, transactional memory can be implemented

much more efficiently than in software: Haswell uses its highly

optimized cache coherence protocol, which is needed for all

multi-core processors anyway, to track read and write set

collisions [17]. Therefore, Haswell offers HTM nearly for free.

Even though HTM is very efficient, there are also some

restrictions. First of all, the size of a hardware transaction

is limited. For the Haswell architecture it is limited to the

size of the L1 cache, which is 32 KB. This implies that,

in general, it is not possible to simply execute a database

transaction as one monolithic HTM transaction. Even medium-

sized database transactions would be too large. Second, in

the case of conflicts, the transaction fails. In this case the

CPU undoes all changes, and then reports an error that the

application has to handle. And finally, a transaction might fail
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due to spurious implementation details like cache associativity

limits, certain interrupts, etc. So, even though in most cases

HTM will work fine, there is no guarantee that a transaction

will ever succeed (if executed as an HTM transaction).

Therefore, Intel proposes (and explicitly supports by specific

instructions) using transactional memory for lock elision [17].

Conceptually, this results in code like the following:

transfer(from,to,amount)

atomic-elide-lock (lock) {
account[from]-=amount;

account[to]+=amount;

}

Here, we still have a lock, but ideally the lock is not used at

all—it is elided. When the code is executed, the CPU starts an

HTM transaction, but does not acquire the lock as shown on

the left-hand side of Figure 3. Only when there is a conflict the

transaction rolls back, acquires the lock, and is then executed

non-transactionally. The right-hand side of Figure 3 shows

the fallback mechanism to exclusive serial execution, which is

controlled via the (previously elided) lock. This lock elision

mechanism has two effects: 1) ideally, locks are never acquired

and transactions are executed concurrently as much as possible

2) if there is an abort due to a conflict or hardware-limitation,

there is a “slow path” available that is guaranteed to succeed.

B. Caches and Cache Coherency

Even though Intel generally does not publish internal imple-

mentation details, Intel did specify two important facts about

Haswell’s HTM feature [17]:

• The cache coherency protocol is used to detect transac-

tional conflicts.

• The L1 cache serves as a transactional buffer.

Therefore, it is crucial to understand Intel’s cache architecture

and coherency protocol.

Because of the divergence of DRAM and CPU speed, mod-

ern CPUs have multiple caches in order to accelerate memory

accesses. Intel’s cache architecture is shown in Figure 4,

and consists of a local L1 cache (32 KB), a local L2 cache

(256 KB), and a shared L3 cache (2-30 MB). All caches use

Core 0

L1 L2
32KB 256KB

Core 1

L1 L2
32KB 256KB

Core 2

L1 L2
32KB 256KB

Core 3

L1 L2
32KB 256KB

interconnect
(allows snooping and signalling)

copy of
core 0 cache

copy of
core 1 cache

copy of
core 2 cache

copy of
core 3 cache

L3 cachememory controller

Figure 4. Intel cache architecture

64 byte cache blocks (lines) and all caches are transparent,

i.e., programs have the illusion of having only one large main

memory. Because on multi-core CPUs each core generally has

at least one local cache, a cache coherency protocol is required

to maintain this illusion.

Both Intel and AMD use extensions of the well-known

MESI protocol [18]. The name of the protocol derives from the

four states that each cache line can be in (Modified, Exclusive,

Shared, or Invalid). To keep multiple caches coherent, the

caches have means of intercepting (“snooping”) each other’s

load and store requests. For example, if a core writes to a cache

line which is stored in multiple caches (Shared state), the state

must change to Modified in the local cache and all copies in

remote caches must be invalidated (Invalid state). This logic

is implemented in hardware using the cache controller of the

shared L3 cache that acts as a central component where all

coherency traffic and all DRAM requests pass through.

The key insight that allows for an efficient HTM imple-

mentation is that the L1 cache can be used as a local buffer.

All transactionally read or written cache lines are marked and

the propagation of changes to other caches or main memory

is prevented until the transaction commits. Read/write and

write/write conflicts are detected by using the same snooping

logic that is used to keep the caches coherent. And since the

MESI protocol is always active and commits/aborts require

no inter-core coordination, transactional execution on Haswell

CPUs incurs almost no overhead. The drawback is that the

transaction size is limited to the L1 cache. This is fundamen-

tally different from IBM’s Blue Gene/Q architecture, which

allows for up to 20 MB per transaction using a multi-versioned

L2 cache, but has relatively large runtime overhead [15].

Besides the nominal size of the L1 cache, another limiting

factor for the maximum transaction size is cache associativity.

Caches are segmented into sets of cache lines in order to speed

up lookup and to allow for an efficient implementation of

the pseudo-LRU replacement strategy (in hardware). Haswell’s

L1 cache is 8-way associative, i.e., each cache set has 8

entries. This has direct consequences for HTM, because all

transactionally read or written cache lines must be marked and

kept in the L1 cache until commit or abort. Therefore, when

a transaction writes to 9 cache lines that happen to reside in

the same cache set, the transaction is aborted. And since the

mapping from memory address to cache set is deterministic
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Figure 6. Aborts from transaction duration

(bits 7-12 of the address are used), restarting the transaction

does not help, and an alternative fallback path is necessary for

forward progress.

In practice, bits 7-12 of memory addresses are fairly

random, and aborts of very small transactions are unlikely.

Nevertheless, Figure 5 shows that the abort probability quickly

rises when more than 128 random cache lines (only about one

quarter of the L1 cache) are accessed1. This surprising fact

is caused by a statistical phenomenon related to the birthday

paradox: For example with a transaction size of 16 KB, for any

one cache set it is quite unlikely that it contains more than 8

entries. However, at the same time, it is likely that at least

one cache set exceeds this limit. An eviction of a line from

the cache automatically leads to a failure of this transaction

as it would become impossible to detect conflicting writes to

this cache line.

The previous experiment was performed with accesses to

memory addresses fully covered by the translation lookaside

buffer (TLB). TLB misses do not immediately cause transac-

tions to abort, because, on x86 CPUs, the page table lookup

is performed by the hardware (and not the operating system).

However, TLB misses do increase the abort probability, as they

cause additional memory accesses during page table walks.

Besides memory accesses, another important reason for

transactional aborts is interrupts. Such events are unavoidable

in practice and limit the maximum duration of transactions.

1The Haswell system is described in Section VI.

Figure 6 shows that transactions that take more than 1 million

CPU cycles (about 0.3 ms) will likely be aborted, even if they

only compute and execute no memory operations. These re-

sults clearly show that Haswell’s HTM implementation cannot

be used for long-running transactions but is designed for short

critical sections.

Despite these limitations we found that Haswell’s HTM

implementation offers excellent scalability as long as trans-

actions are short. Furthermore, one has to keep in mind that

Haswell is Intel’s first HTM implementation. It is therefore not

unlikely that in future CPU generations HTM will further be

improved, e.g., the larger L2 cache may serve as an additional

transactional buffer.

IV. HTM-SUPPORTED TRANSACTION MANAGEMENT

Writing scalable and efficient multithreaded programs is

widely considered a very difficult problem. In particular, it

is very hard to decide at which granularity latching/locking

should be performed: if very fine-grained latching is used, the

additional overhead will annihilate any speedup from paral-

lelism; with coarse-grained latches, parallelism is, limited. For

non-trivial programs, this is a very difficult problem, and the

most efficient choice can often only be decided empirically.

The granularity problem is even more difficult for a database

system because it must efficiently support arbitrary workloads.

With hardware support, transactional memory offers an elegant

solution: As long as conflicts are infrequent, HTM offers the

parallelism of fine-grained latching, but without its overhead;

if hotspots occur frequently, the best method in main-memory

databases is serial execution, which is exactly the fallback

path for HTM conflicts. Therefore, HTM is a highly promising

building block for high performance database systems.

A. Mapping Database Transactions to HTM Transactions

As the maximum size of hardware transactions is lim-

ited, only a database transaction that is small can directly

be mapped to a single hardware transaction. Therefore, we

assemble complex database transactions by using hardware

transactions as building blocks, as shown in Figure 7. The key

idea here is to use a customized variant of timestamp ordering

(TSO) to “glue” together these small hardware transactions.

TSO is a classic concurrency control technique, which was

extensively studied in the context of disk-based and distributed

database systems [19], [20]. For disk-based systems, TSO is

not competitive to locking because most read accesses result

in an update of the read timestamp, and thus a write to

disk. These timestamp updates are obviously much cheaper

in RAM. On the opposite, fine-grained locking is much more

expensive than maintaining timestamps in main memory, as

we will show in Section VI.

Timestamp ordering uses read and write timestamps to

identify read/write and write/write conflicts. Each transaction

is associated with a monotonically increasing timestamp,

and whenever a data item is read or updated its associated

timestamp is updated, too. The read timestamp of a data

item records the youngest reader of this particular item,



HTM transaction

conflict detection: read/write sets in hardware

elided lock: latch

single tuple access

verify/update tuple timestamps

...

...

database transaction

conflict detection: read/write sets via timestamps

elided lock: serial execution

request a new timestamp, record safe timestamp

release timestamp, update safe timestamp

HTM transaction

conflict detection: read/write sets in hardware

elided lock: latch

single tuple access

verify/update tuple timestamps

H
TM

 c
on

fli
ct

H
TM

 c
on

fli
ct

ti
m

es
ta

m
p

 c
o

n
fl

ic
t

Figure 7. Transforming database transactions into HTM transactions

and the write timestamp records the last writer. This way,

a transaction recognizes if its operation collides with an

operation of a “younger” transactions (i.e., a transaction with

a larger timestamp), which would be a violation of transaction

isolation. In particular, an operation fails if a transaction tries

to read data from a younger transaction, or if a transaction

tries to update a data item that has already been read by a

younger transaction. Note that basic TSO [19] has to be refined

to prevent phantoms. Furthermore, some care is needed to

prevent non-recoverable schedules, as by default transactions

are allowed to read data from older, but potentially non-

committed, transactions.

To resolve both issues (phantoms and dirty reads), we

deviate from basic TSO by introducing a “safe timestamp”,

i.e., a point in time where it is known that all older transactions

have already been committed. With classical TSO, when a

transaction tries to read a dirty data item (marked by a dirty

bit) from another transaction, it must wait for that transaction

to finish. In main-memory database systems running at full

clock speed, waiting is very undesirable.

We avoid both waiting and phantom problems with the

safe timestamp concept. The safe timestamp TSsafe is the

youngest timestamp for which holds: All transactions with

an older timestamp TSold with old ≤ safe have already been

committed or aborted. While regular TSO compares transac-

tion timestamps directly, we compare timestamps to the safe

timestamp of each transaction: Everything that is older than the

safe timestamp can be safely read, and everything that has been

read only by transactions up to the safe timestamp can safely

be modified. Note that we could also access or modify some

tuples with newer timestamps, namely those from transactions

that have already committed in between this transaction’s

begin and now. But this would require complex and expensive

checks during tuple access, in particular if one also wants to

prevent phantoms. We therefore use the safe timestamp as a

cheap, though somewhat conservative, mechanism to ensure

serializability. In the scenario

TS1

TS2

TS3

TS4

TS5

the safe timestamp of TS5 would be set to TS2. So transaction

TS5 would validate its read access such that only data items

with a write timestamp TSW ≤ TS2 are allowed. Write

accesses on behalf of TS5 must additionally verify that the

read timestamp of all items to be written satisfies the condition

TSR ≤ TS2. Obviously, a read or write timestamp TS = TS5
is permitted as well—in case a transaction accesses the same

data item multiple times.

B. Conflict Detection and Resolution

In our scheme, the read and the write timestamps are

stored at each tuple. After looking up a tuple in an index,

its timestamp(s) must be verified and updated. Each single

tuple access, including index traversal and timestamp update,

is executed as a hardware transaction using hardware lock

elision. The small granularity ensures that false aborts due

to hardware limitations are very unlikely, because Haswell’s

hardware transactions can access dozens of cache lines (cf.

Section III).

Nevertheless, two types of conflicts may occur: If HTM

detects a conflict (short blue arrows in Figure 7), the hardware

transaction is restarted, but this time the latch is acquired.

Rolling back a hardware transaction is very cheap, as it only

involves invalidating the transactionally modified cache lines,

and copies of the original content can still be found in the L2

and/or L3 cache.

For timestamp conflicts, which are detected in software

(long red arrows in Figure 7), the system must first roll back

the database transaction. This rollback utilizes the “normal”

logging and recovery infrastructure of the database system,

i.e., the undo-log records of the partial database transaction

are applied in an ARIES-style compensation [21]. Then, the

transaction is executed serially by using a global lock, rolling

the log forward again. This requires logical logging and

non-interactive transactions, as we cannot roll a user action

backward or forward, but, as already mentioned in Section II,

we use snapshots to isolate interactive transactions from the

rest of the system [10]. The fallback to serial execution ensures

forward progress, because in serial execution a transaction will

never fail due to conflicts. Note that it is often beneficial to

optimistically restart the transaction a number of times instead

of resorting to serial execution immediately, as serial execution

is very pessimistic and prevents parallelism.

Figure 8 details the implementation of a database transaction

using hardware lock elision and timestamps. The splitting



beginHLE(account.latch)

tid=uniqueIndexLookup(account, ...)

verifyRead(account, tid)

balance=loadAttribute(account, ..., tid)

endHLE(account.latch)

beginHLE(account.latch) 

tid=uniqueIndexLookup(account, ...)

verifyWrite(account, tid)

logUpdate(account, tid, ...)

updateTuple(account, tid, ...)

endHLE(account.latch)

BEGIN TRANSACTION;

   SELECT balance

   FROM account

   WHERE id=from;

   IF balance>amount

      UPDATE account

      SET balance=balance-amount

      WHERE id=from;

      UPDATE account

      SET balance=balance+amount

      WHERE id=to;

COMMIT TRANSACTION;

Try:  mov tmp, 1

      xacquire lock xchg [latch], tmp

      cmp tmp, 0

      jz Done

Loop: pause

      cmp [latch], 1

      jz Loop      

      jmp Try

Done:

xrelease mov [latch], 0

tuple=getTuple(account, tid)

if ((tuple.writeTS>safeTS and tuple.writeTS!=now) OR

    (tuple.readTS>safeTS and tuple.readTS!=now)) {

   endHLE(accout.latch)

   rollback()

   handleTSConflict()

}

tuple.writeTS=max(tuple.writeTS, now)

primary key index

Figure 8. Implementing database transactions with timestamps and hardware lock elision

of stored procedures into smaller HTM transactions is fully

automatic (done by our compiler) and transparent for the

programmer. As shown the example, queries or updates (within

a database transaction) that access a single tuple through

a unique index are directly translated into a single HTM

transaction. Larger statements like non-unique index lookups

should be split into multiple HTM transactions, e.g., one for

each accessed tuple. The index lookup and timestamp checks

are protected using an elided latch, which avoids latching the

index structures themselves. The latch is implemented as a

lightweight spinlock in x86 assembler. The xacquire and

xrelease special instruction prefixes for Haswell [14] cause

the latch to be elided on the first try, and an HTM transaction

to be started instead. On older processors these prefixes are

ignored and the latch is immediately acquired, making this

code backwards compatible.

C. Optimizations

How the transaction manager handles timestamp conflicts is

very important for performance. If the conflict is only caused

by the conservatism of the safe timestamp (i.e., regular TSO

would have no conflict), it is sometimes possible to avoid

rolling back the transaction. If the conflicting transaction has

a smaller timestamp and has already finished, the apparent

conflict can be ignored. This optimization is possible because

the safe timestamp cannot overtake a currently running trans-

action’s timestamp.

As mentioned before, it is often beneficial to restart an

aborted transaction a number of times, instead of immediately

falling back to serial execution. In order for the restart to suc-

ceed, the safe timestamp must have advanced past the conflict

timestamp. Since this timestamp is available (it triggered the

abort), the transaction can wait, while periodically recomput-

ing the safe timestamp until it has advanced sufficiently. Then

the transaction can be restarted with a new timestamp and safe

timestamp. The disadvantage of this approach is that during

this waiting period no useful work is performed by the thread.

A more effective strategy is to suspend the aborted trans-

action and execute other transactions instead. Once the safe

timestamp has advanced past the conflicting transaction’s

timestamp that transaction can be resumed. This strategy

avoids wasteful waiting. We found rollback and re-execution

to be quite cheap because the accessed data is often in

cache. Therefore, our implementation immediately performs

an abort after a timestamp conflict, as shown in Figure 8, and

executes other transactions instead, until the safe timestamp

has sufficiently advanced. We additionally limit the number

of times a transaction is restarted before falling back to serial

execution—thus ensuring forward progress.

While our description here and also our initial implementa-

tion uses both read and write timestamps, it is possible to avoid

read timestamps. Read timestamps are a bit unfortunate, as

they can cause “false” HTM conflicts due to parallel timestamp

updates, even though the read operations themselves would

not conflict. Semantically the read timestamps are used to

detect if a tuple has already been read by a newer transaction,

which prohibits updates by older transactions (as they would

destroy serializability). However, the read timestamps can be

avoided by keeping track of the write timestamps of all data

items accessed (read or written) by a certain transaction.

Then, at commit time, the transaction re-examines the write

timestamps of all data items and aborts if any one of them has

changed [22], ensuring serializability. We plan to implement

this technique in future work, and expect to get even better

performance in the case of read hotspots.

It is illustrative to compare our scheme to software trans-

actional memory (STM) systems. Indeed, our scheme can

be considered an HTM-supported implementation of STM.

However, we get significantly better performance than pure

STM by exploiting DBMS domain knowledge. For example,

index structures are protected from concurrent modifications

by the HTM transaction, but are not tracked with timestamps,

as full transaction isolation would in fact be undesirable there.

This is similar to B-tree latching in disk-based systems—
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Figure 9. Avoiding hotspots by zone segmentation

however, at minimal cost. The indexed tuples themselves

are isolated via timestamps to ensure serializable transaction

behavior. Note further that our interpretation of timestamps

is different from regular TSO [19]: Instead of deciding about

transaction success and failure as in TSO, we use timestamps

to detect intersecting read/write sets, just like the hardware

itself for the HTM part. In the case of conflicts, we do not abort

the transaction or retry with a new timestamp an indefinite

number of times, but fall back to the more restrictive sequential

execution mode that ensures forward progress and guarantees

the eventual success of every transaction.

V. HTM-FRIENDLY DATA STORAGE

Transactional memory synchronizes concurrent accesses by

tracking read and write sets. This avoids the need for fine-

grained locking and greatly improves concurrency as long as

objects at different memory addresses are accessed. However,

because HTM usually tracks accesses at cache line granularity,

false conflicts may occur. For example, if the two data items A

and B happen to be stored in a single cache line, a write to A

causes a conflict with B. This conflict would not have occurred

if each data item had its own dedicated lock. Therefore, HTM

presents additional challenges for database systems that must

be tackled in order to efficiently utilize this feature.

A. Data Storage with Zone Segmentation

With a straightforward contiguous main-memory data lay-

out, which is illustrated on the left-hand side of Figure 9, an

insert into a relation results in appending the tuple to the end

of the relation. It is clear that such a layout does not allow

concurrent insertions, because each insert writes to the end of

the relation. Additionally, all inserts will try to increment some

variable N which counts the number of tuples. The memory

location at the end of the table and the counter N are hotspots

causing concurrent inserts to fail.

In order to allow for concurrent inserts, we use multiple

zones per relation, as shown on the right-hand side of Figure

9. Each relation has a constant number of these zones, e.g.,

two times the number of hardware threads. A random zone

number is assigned to each transaction, and all inserts of that

transaction use this local zone. The same zone number is

also used for inserts into other relations. Therefore, with an

decluster

Tree-based

Index

Tree-based

Index

cache line

collisions

Figure 10. Avoiding hotspots by declustering surrogate key generation

appropriately chosen number of zones, concurrent inserts can

proceed with only a small conflict probability, even if many

relations are affected. Besides the relatively small insert zones,

each relation has a main zone where, for large relations, most

tuples are stored.

The boundary is stored in a counter N . For each zone i, the

base Bi and the next insert position Ni are maintained. When a

zone becomes full (i.e., when Ni reaches Bi+1), it is collapsed

into the neighboring zone, and a new zone at the end of the

table is created. Note that no tuples are copied and the tuple

identifiers do not change, only the sizes of zones need to be

adjusted. As a consequence, collapsing zones does not affect

concurrent access to the tuples. Eventually, the insert zones

are collapsed with the large contiguous main area. For a main-

memory databases this guarantees very fast scan performance

at clock speed during query processing. The counters Ni and

Bi should be stored in separate cache lines for each zone,

as otherwise unnecessary conflicts occur while updating these

values.

B. Index Structures

Besides the logical isolation of transactions using 2PL

or TSO, database systems must isolate concurrent accesses

to index structures. In principle, any data structure can be

synchronized using HTM by simply wrapping each access in

a transaction. In this section we first discuss how scalability

can be improved by avoiding some common types of conflicts,

before showing that HTM has much better performance than

traditional index synchronization via fine-grained latches.

One common problem is that indexes often have a counter

that stores the number of key/value pairs and prevents con-

current modifications. Fortunately, this counter is often not

needed and can be removed. For data structures that allocate

small memory chunks, another source of HTM conflicts is

memory allocation. This problem can be solved by using an

allocator that has a thread-local buffer2.

Surrogate primary keys are usually implemented as ascend-

ing integer sequences. For tree-based index structures, which

maintain their data in sorted order, this causes HTM conflicts

because all concurrent inserts try to access memory locations

in the same vicinity, as illustrated on the left-hand side of

Figure 10. This problem is very similar to the problem of

concurrently inserting values into a table discussed above, and

indeed the solution is similar: If permitted by the application,

the integer sequence is partitioned into multiple constant-sized

chunks and values are handed out from one of the chunks

2One such allocator is the open source library tcmalloc (Thread-Caching
Malloc): http://goog-perftools.sourceforge.net/doc/tcmalloc.html

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
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depending on the transactions’ zone number. This prevents

interference of parallel index tree insertions as they are spread

across different memory locations—as shown on the right of

Figure 10. Once all values from a chunk are exhausted, the

next set of integers is assigned to it. Note that hash tables

are not affected by this problem because the use of a hash

function results in a random access pattern which leads to a

low conflict probability. But of course, as a direct consequence

of this randomization, hash tables do not support range scans.

The Adaptive Radix Tree (ART) [23] is an efficient ordered

indexing structure for main-memory databases. Like B-Trees,

ART can be synchronized with fine-grained latching, holding

at most two short term node latches at any time (“lock-

coupling”). We implemented this approach using efficient

read-write spinlocks. Figure 11 shows the results for an experi-

ment with 100% reads3, i.e., no latch contention. Nevertheless,

latching does not scale. The reason is that latching of tree

structures causes many additional, unnecessary cache misses:

Each time a thread acquires a read latch for a node (by writing

to the node), all copies of that node are invalidated in the

caches of all other cores. Thus, the frequently accessed nodes

high up in the tree, which would normally be cached, are

not in cache when accessed concurrently. HTM, in contrast,

offers excellent performance and is only 10% slower than

unsynchronized access.

VI. EVALUATION

For most experiments we used an Intel i5 4670T Haswell

processor with 4 cores, 6 MB shared L3 cache, and full

HTM support through the Intel Transactional Synchronization

Extensions. The maximum clock rate is 3.3 GHz, but can

only be achieved when only one core is fully utilized. When

utilizing all cores, we measured a sustained clock rate of

2.9 GHz. Therefore, the total clock rate is only 3.5 times higher

with 4 cores, and a speedup of 4 is not realistic. The system

has 16 GB of RAM and runs Linux 3.10.

By default, HyPer uses serial execution similar to VoltDB

[1]; multiple threads are only used if the schema has been

3In this experiment each lookup key depends on the previous lookup, which
hides out-of-order execution effects.
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Figure 12. Scalability with TPC-C on desktop system

partitioned by human intervention. In the following we will

call these execution modes serial and partitioned. Note that

the partitioned mode used by HyPer (as in other systems)

is somewhat cheating, since the partitioning scheme has to

be explicitly provided by a human, and a good partitioning

scheme is hard to find in general. In addition to these execution

modes we included a 2PL implementation, described in [10],

as baseline for comparisons to standard database systems,

and the hardware transactional memory approach (HTM) pro-

posed here. We also include TSO with coarse-grained latches

(optimistic) instead of HTM to show that TSO alone is not

sufficient for good performance.

For most experiments, we used the well-known TPC-C

benchmark as basis (without “think times”, the only deviation

from the official benchmark rules). We set the number of

warehouses to 32, and for the partitioning experiments the

strategy was to partition both the data and the transactions by

the main warehouse. We used the Adaptive Radix Tree [23]

as index structure, although the scalability is similar with hash

tables and red-black trees. In the following, we first look at

scalability results for TPC-C and then study the interaction

with HTM in microbenchmarks.

A. TPC-C Results

In a first experiment, we ran TPC-C and varied the number

of threads up to the number of available cores. The results are

shown in Figure 12 and reveal the following: First, classical

2PL is clearly inferior to all other approaches. Its overhead is

too high, and it is even dominated by single-threaded serial

execution. The latching-based optimistic approach has less

overhead than 2PL, but does not scale because the coarse-

grained (relation-level) latches severely limit concurrency.

Both the partitioned scheme and HTM scale very well, with

partitioning being slightly faster. But note that this is a com-

parison of a human-assisted approach with a fully automatic

approach. Furthermore, the partitioning approach works so

well only because TPC-C is “embarrassingly partitionable” in

this low MPL setup, as we will see in the next experiment.

The reason that partitioning copes well with TPC-C is that

most transactions stay within a single partition. By default,

about 11% of all transactions cross partition boundaries (and
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Figure 14. Scalability with TPC-C on 4-socket, 32-core server system

therefore require serial execution to prevent collisions in a

lock-free system). The performance depends crucially on the

ability of transactions to stay within one partition. As shown

in Figure 13, varying the percentage of partition-crossing

transactions has a very deteriorating effect on the partitioning

approach, while the other transaction managers are largely un-

affected because, in the case of TPC-C, partition-crossing does

not mean conflicting. Therefore, picking the right partitioning

scheme would be absolutely crucial; however, it is often hard

to do—in particular if transactions are added to the workload

dynamically.

So far, our experiments have been performed on a desktop

system with 4 cores because larger systems with more cores

and support for multiple sockets were not available at the

time of writing. We expect such large multi-socket systems

to benefit even more from HTM, because the cache coherency

protocol can be used to efficiently implement HTM, whereas

conventional, lock-based synchronization is even more ex-

pensive on such systems. Figure 14 shows the simulated

performance of our HTM-based transaction manager on a

32 core system. The simulation uses read/write sets from

binary instrumentation of the transaction code to decide which

transactions can be executed in parallel and which have to

be run serially. Figure 14 also shows that on large systems

the performance of 2PL and the optimistic (latching-based)

approach is even worse than on the desktop system. This

is caused by the fact that lock acquisition results in many

cache coherency misses, which are much more expensive

on multi-socket systems because no cache is shared by all

cores. The static partitioning approach performs better, as

it avoids expensive synchronization, but does not scale to a

large number of cores for another reason: partition-crossing

transactions, which require serial execution, are the scalability

bottleneck. By Amdahl’s law, 11% serial transactions (as in

TPC-C) result in a maximum speedup of 9.1.

B. Microbenchmarks

Our transaction manager was designed to be lightweight.

Nevertheless, there is some overhead in comparison with an

unsynchronized, purely single-threaded implementation. We

determined the overhead by running the TPC-C benchmark

using only one thread and enabling each feature separately:

The HTM-friendly memory layout, including zone segmen-

tation (with 8 zones), added 5% overhead, mostly because

of reduced cache locality. The HLE spinlocks, which are

acquired for each tuple access, added 7% overhead. Checking

and updating the timestamps, slowed down execution by 10%.

Finally, transaction management, e.g., determining the safe

timestamp, the transaction ID, etc. caused 7% overhead. In

total, these changes amounted to a slowdown of 29%. HyPer

compiles transactions to very efficient machine code, so any

additional work will have noticeable impact. However, this

is much lower than the overhead of the 2PL implementation,

which is 61%! And of course the overhead is completely paid

off by the much superior scalability of the HTM approach.

One interesting question is if it would be possible to

simply execute a database transaction as one large HTM

transaction. To analyze this, we used binary instrumentation of

the generated transaction code to record the read and write sets

of all TPC-C transactions. We found that only the delivery and

order-status transactions have a cacheline footprint of less than

7 KB and could be executed as HTM transactions. The other

transactions access between 18 KB and 61 KB, and would

usually exhaust the transactional buffer. Therefore, executing

TPC-C transactions as monolithic HTM transactions is not

possible. And other workloads will have transactions that are

much larger than the relatively simple TPC-C transactions.

Therefore, a mechanism like our timestamp scheme is required

to cope with large transactions.

As we discussed in Section IV, there are two types of

conflicts: timestamp conflicts and HTM conflicts. Timestamp

conflicts must be handled by the transaction manager and

usually result in a rollback of the transaction. We measured

that 12% of all TPC-C transactions were aborted due to

a timestamp conflict, but only 0.5% required more than 2

restarts. Most aborts occur at the warehouse relation, which

has only 32 tuples but is updated frequently.

While HTM conflicts do not result in a rollback of the

entire transaction, they result in the acquisition of relation-

level latches—greatly reducing concurrency. Using hardware

counters, we measured the HLE abort rate of TPC-C, and
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found that 6% of all HLE transactions were aborted. This rate

can be reduced by manually restarting transactions after abort

by using Restricted Transaction Memory (RTM) instructions

instead of HLE. As Figure 15 shows, the abort rate can be

reduced greatly by restarting aborted transaction, i.e., most

aborts are transient. With 4 threads, restarting has only a small

positive effect on the overall transaction rate (1.5%), because a

6% abort rate is still “small enough” for 4 threads. On systems

with more threads, restarting to avoid falling back to latch

acquisition too often may become crucial.

These low abort rates are the outcome of our HTM-friendly

storage layout from Section V. With only one zone, the HLE

abort rate rises from 6% to 14%, and the clashes often do

not vanish after restarts. Therefore, a careful data layout is

absolutely mandatory to benefit from HTM. Note though that

we did not decluster surrogate key generation, which makes

conflicts even more unlikely, but would have required changes

to the benchmark.

C. Lightweight Locking

2PL has been developed with disk-based databases in mind.

We also implemented the pessimistic locking protocol “Very

Lightweight Locking” (VLL) [24] which was designed for

main-memory database systems. VLL avoids the bottleneck

of a single lock manager structure, and instead adds counters

to each tuple that indicate how many threads want to access

the tuple. We evaluated the performance with the same mi-

crobenchmark, which updates 10 tuples per transaction (as in

the original paper) and used 4 threads. For VLL we used lock-

coupling or HTM for index synchronization:

method low contention high contention

VLL, lock-coupling 345,375 296,162

VLL, HTM 826,119 435,210

HTM (TSO) 1,181,964 661,700

We found that (i) VLL indeed has much smaller overhead

than 2PL, (ii) when lock-coupling is used for index synchro-

nization, the overall performance is dominated by the latching

overhead, and (iii) the scalability is limited by the critical

section in which all locks are acquired.

D. Software Transactional Memory

Although the availability of HTM is a very recent devel-

opment, there has been considerable research on software

transactional memory. We used the state-of-the-art STM sys-

tem tinySTM (version 1.0.3) [25]. However, we obtained

only 30% of the single-threaded, unsynchronized performance

when executing TPC-C directly using STM transactions. The

results were disappointing although we used the TM-friendly

data layout and were able to significantly reduce the number

of memory accesses managed by STM using knowledge about

thread-local data structures. The overhead of general purpose

STM systems seems too high for main-memory databases.

VII. RELATED WORK

Optimizing the transaction processing for modern multi-

core and in-memory database systems is a vibrant topic within

the database community. In the context of H-Store/ VoltDB [7],

[26] several approaches for automatically deriving a database

partitioning scheme from the pre-defined workload were de-

vised [11], [27] and methods of optimizing partition-crossing

transactions were investigated [28]. The partitioning research

focused on distributed databases, but is also applicable to

shared memory systems. Partitioning the database allows for

scalable serial transaction execution as long as the transactions

do not cross partition boundaries, which in general is hard

to achieve. In [29] a data-oriented transaction processing

architecture is devised, where transactions move from one

processing queue to another instead of being assigned to a

single thread. The locking-based synchronization is optimized

via speculative lock inheritance [30]. Ren et al. [24] found that

the lock manager is a critical performance bottleneck for main

memory database systems. They propose a more lightweight

scheme, where, instead of locks in a global lock manager data

structure, each tuple has two counters that indicate how many

transactions requested read or write access.

In the Crescando project [31] a multi-transaction/query

processing model is used that executes all transactions of one

epoch within one cyclical scan of the database table. This

approach is highly scalable and has predictable response times

– however it is geared towards simple one tuple update trans-

actions; multi-step transactions are not supported. Hyder [32],

OctopusDB [33], and LogBase [34] are scale-out in-memory

database developments that utilize a log-file structure in which

successful transactional modifications are accumulated. The

client’s view of the database state is constructed from this

shared, distributed log file.

In an earlier evaluation we showed that timestamp-based

concurrency control has become a promising alternative to

traditional locking [35]. Lomet et al. [36] and Larson et al. [8]

recently devised multi-version concurrency control schemes

that, like our approach, use a timestamp-based version control

to determine conflicting operations. Unlike our proposal, their

concurrency control is fully software-implemented, therefore

it bears some similarity to software transactional memory [37].

Herlihy and Moss [6] proposed HTM for lock-free con-

current data structures. Shavit and Touitou [38] are credited



for the first STM proposal. A comprehensive account on

transactional memory is given in the book by Larus and

Rajwar [39]. Due to the entirely software-controlled validation

overhead, STM found little resonance in the database systems

community – while, fueled by the emergence of the now

common many-core processors, it was a vibrant research

activity in the parallel computing community [40]. Now, that

hardware vendors, such as Intel [14], [41] and IBM [15], [16],

realize transactional memory support in hardware, it is time

for the database community to exploit this development.

VIII. SUMMARY

There are two developments—one from the hardware ven-

dors, and one from the database software developers—that

appear like a perfect match: the emergence of hardware

transactional memory (HTM) in upcoming processors like

Haswell, and main-memory database systems. The data access

times of these systems are so short that the concurrency con-

trol overhead, in particular for locking/latching, is substantial

and can be optimized by carefully designing HTM-supported

transaction management. Even though transactions in main-

memory databases are often of short duration, the limitations

of HTM’s read/write set management precludes a one-to-one

mapping of DBMS transactions to HTM transactions.

We therefore devised and evaluated a transaction manage-

ment scheme that transforms a (larger) database transaction

into a sequence of more elementary, single tuple access/update

HTM transactions. Our approach relies on the well-known

timestamp ordering technique to “glue” the sequence of HTM

transactions into an atomic and isolated database transaction.

Our quantitative evaluation on a mainstream Haswell processor

showed that our approach has low overhead and excellent

scalability.
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[8] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling, “High-performance concurrency control mechanisms for
main-memory databases,” PVLDB, vol. 5, no. 4, 2011.

[9] G. Weikum and G. Vossen, Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.
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