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ABSTRACT

Interactive service providers have strict requirements on high-
percentile (tail) latency to meet user expectations. If providers
meet tail latency targets with less energy, they increase pro�ts,
because energy is a signi�cant operating expense. Unfortunately,
optimizing tail latency and energy are typically con�icting goals.
Our work resolves this con�ict by exploiting servers with per-core
Dynamic Voltage and Frequency Scaling (DVFS) and Asymmetric
Multicore Processors (AMPs). We introduce the Adaptive Slow-to-
Fast scheduling framework, which matches the heterogeneity of
the workload — a mix of short and long requests — to the hetero-
geneity of the hardware — cores running at di�erent speeds. The
scheduler prioritizes long requests to faster cores by exploiting the
insight that long requests reveal themselves. We use control theory
to design threshold-based scheduling policies that use individual
request progress, load, competition, and latency targets to optimize
performance and energy. We con�gure our framework to optimize
Energy E�ciency for a given Tail Latency (EETL) for both DVFS
and AMP. In this framework, each request self-schedules, starting
on a slow core and then migrating itself to faster cores. At high load,
when a desired AMP core speed s is not available for a request but
a faster core is, the longest request on an s core type migrates early
to make room for the other request. Compared to per-core DVFS
systems, EETL for AMPs delivers the same tail latency, reduces
energy by 18% to 50%, and improves capacity (throughput) by 32%
to 82%. We demonstrate that our framework e�ectively exploits dy-
namic DVFS and static AMP heterogeneity to reduce provisioning
and operational costs for interactive services.
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1 INTRODUCTION

Interactive services, such as Web search, �nancial trading, games,
and social networking, require consistently low response times to
attract and retain users [17, 50]. Service providers thus de�ne strict
targets for 95th or higher percentile response times, commonly
called tail latency [9, 10, 20, 25, 61]. Services typically distribute
requests and aggregate responses frommultiple servers. This places
even more stringent tail latency targets on the servers, as each
server in a set of �ve servers must meet a target of

5
√
0.95 ≈ 99th-

percentile to achieve an overall 95th-percentile latency target.
Datacenters for interactive services incur substantial provision-

ing and operating costs. Shehabi et al. estimate the total energy
consumption of U.S. datacenters in 2014 at 73 billion KW hours,
with servers consuming 40%–80% of this energy [52]. With prices
per KW hour of 4 to 21 cents [18], the U.S. datacenter energy bill is
roughly 1 to 6 billion dollars. Many servers run interactive services,
making even a 1% reduction in total energy a signi�cant savings.
Large interactive service providers, such as Amazon, Facebook,
Google, and Microsoft, are all highly motivated to reduce energy
consumption [3, 26, 33, 51].

A key challenge is that improving tail latency and energy e�-
ciency are usually con�icting goals. However, interactive services
provide an opportunity to combine them since most requests are
short, but the computation time of long requests is often 10× longer
than the average, and 100× longer than the median [9, 25, 29].
These computationally intensive (long) requests are a primary fac-
tor in tail latency [9, 25, 29, 32, 38], although queuing delay due to
bursty load, paging, network congestion, and failures sometimes
contribute. Our work thus focuses on these long requests. This va-
riety in request demand makes increasing the energy e�ciency of
short requests and spending more energy on reducing computation
time of long requests appealing.

This paper shows how to optimize tail latency and energy e�-
ciency by matching the workload heterogeneity in the request mix
to heterogeneous multicore hardware. For our heterogeneous hard-
ware, we consider both per-core Dynamic Voltage and Frequency
Scaling (DVFS) andAsymmetricMulticore Processors (AMPs). DVFS

https://doi.org/10.1145/3123939.3123956
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creates dynamic core frequency heterogeneity, whereas AMPs pro-
vide static core heterogeneity by using di�erent microarchitec-
tures [2, 6, 11, 13, 14, 22, 34, 35, 37, 41, 46, 55].

We introduce the Adaptive Slow-to-Fast scheduling framework
for interactive services running on servers with heterogeneous
multicores. The framework addresses three key challenges: (i) the
computational demand of each individual request is hard to predict
and prediction is never free or perfect [23, 25, 32, 39]; (ii) load is
variable and bursty; and (iii) the desired core speed or type may not
be available. If the desired AMP core speed and DVFS core speed
are always available, we show that AMP and DVFS scheduling pose
a similar problem. For AMP, we schedule requests, whereas for
DVFS, we select core speeds. In practice, AMP is more challenging
than DVFS, because it has a limited number of cores of each type
and, at load, requests compete for cores of the same type. With
DVFS, any core can take on any of the hardware-available speeds.
Though AMP is harder to schedule, it o�ers substantially greater
power reductions and capacity bene�ts than DVFS because it uses
static microarchitectural techniques [2, 14, 34, 41].

We con�gure our Adaptive Slow-to-Fast framework to minimize
energy consumption for short requests, while ensuring that long
requests do not exceed tail latency targets.We call this con�guration
Energy E�ciency with Target Tail Latency (EETL). We exploit two
observations. (1) Short requests complete quickly, but long requests
reveal themselves during execution. Request length is the sum of
queuing and computation time. (2) We only need to consider slow-
to-fast policies because given an energy optimal schedule, there
exists an equivalent slow-to-fast schedule, simplifying the online
scheduling problem and minimizing migration [48].

We design threshold-based policies with control theory that
takes as input request progress, core speeds, relative core energy
consumption, workload demand distributions, and load. Building
the controller takes only a few seconds and can be performed online
when workloads change. Con�guration parameters to our frame-
work specify a range of energy and latency tradeo�s, including
policies that minimize energy, minimize tail latency, and the EETL
policy that minimizes energy for a given target tail latency. Because
requests periodically self-schedule based on thresholds and our
controller determines the thresholds in constant time, the system
is e�cient and scalable.

The EETL policy starts all requests at low frequency or on the
slowest cores, where short requests consume the least amount of
energy while still meeting tail latency targets. As long requests
execute, each request self-schedules, increasing its core’s frequency
with DVFS or migrating to a faster core, when available, to meet the
tail latency target. The maximum number of migrations on AMP
is the number of core types n, which is much less than the total
number of cores. When a request r desires a core type s and none
is available, but a faster core f > s is available, the oldest requests
on each type t = s + 1... f detects this load and migrates itself early,
before its threshold expires, to the next faster type making a slower
core available to execute request r . This policy for resolving core
competition prioritizes youngest requests to the slowest cores and
the oldest requests to the fastest cores. EETL thus addresses the two
major challenges of AMP scheduling: (1) when to migrate a request
from a slow to a fast core: use request progress and system load, and
(2) what to do when a core with the desired speed is not available

core core request system
Optimizes hardware scheduling competition progress load

Pegasus [38] DVFS ✔

OctopusMan [45] AMP ✓ ✔

Rubik [31] DVFS ✔ ✔

Adrenaline [23] DVFS ✔ ✓

TimeTrader [57] DVFS ✔

Slow-to-Fast [47, 48] AMP ✔ ✔ ✓

EETL DVFS/AMP ✔ ✔ ✔ ✔

Table 1: Comparing prior work to Energy-E�ciency with

Target Tail Latency (EETL). ✔ denotes a complete solution

and ✓ denotes a partial solution.

but other cores speeds are: prioritize long requests to faster cores,
achieving global adjustment through self-scheduling.

Table 1 compares our approach with previous work. It classi�es
approaches for optimizing the tail latency and energy e�ciency
of interactive workloads based on hardware target (DVFS, AMP),
if they schedule requests to cores as AMP requires (scheduling),
if they handle competition for core types (competition), if they
monitor and optimize target latency of individual requests (request
progress), and if they optimize for system load (load). No prior
approach handles all the problems posed by AMP. Ren et al. [47, 48]
show that any optimal AMP schedule is equivalent to a slow-to-
fast schedule, simplifying the solution space, but do not manage
core competition or load. The other approaches con�gure cores:
either they use load to con�gure the entire system, wasting energy
on short requests [38, 45]; they use request progress to con�gure
individual cores [23, 57]; or they use both load and request progress
to con�gure individual cores [31]. Since they lack a scheduler [23,
31, 38, 45, 57], they do not unlock the full potential of AMP. Section 2
describes all prior work in more detail.

Our evaluation uses the popular Apache Lucene enterprise search
engine on Wikipedia pages [1, 19] and an interactive �nance server
[7, 15, 28, 47]. We evaluate our approach in multiple ways. We
report measurements on an 8-core Broadwell processor with per-
core DVFS for multiple systems and show consistency with prior
work [38]. We introduce a methodology for emulating AMP on ho-
mogeneous multiprocessors because (1) AMPs are currently avail-
able only for mobile systems [13, 46], and (2) multicore simulators
are neither complete nor accurate enough to report tail latency. We
emulate AMP and, for comparison, per-core DVFS by con�guring
a 16-core Xeon (Haswell) machine and reducing individual core
performance with duty-cycling threads. We combine performance
results with power models derived from Xeon measurements, Mc-
PAT [36], and the literature [43, 44]. Because emulation is orders-
of-magnitude faster than simulation, we explore many hardware
con�gurations and algorithmic sensitivities.

On Broadwell, EETL meets tail latency targets while substan-
tially reducing energy compared to Pegasus, the state-of-the-art for
DVFS [38]. Whereas Pegasus adjusts the speed of all cores simulta-
neously in response to load, our �ne-grain scheduler accelerates
requests based on individual request progress and load using per-
core DVFS. This �ner-grain control decreases processor energy
consumption by 22% while delivering the same tail latency. Because
processor energy represents about 67% of server energy [3], these
savings mean about 15% total system energy savings over Pegasus.

For the same tail latency and power budget, EETL on AMP re-
duces processor energy an additional 18 to 50% over per-core DVFS
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in emulation. Moreover, EETL meets tail latency targets at higher
loads on AMPs than DVFS, increasing throughput by 32 to 82%.
These results show that our scheduler e�ectively uses AMP to re-
duce both provisioning and operational costs by optimizing energy
e�ciency and tail latency.

In summary, our contributions are: (1) a con�gurable scheduling
framework for optimizing tail latency and energy that exploits
characteristics of interactive services on heterogeneous multicores;
(2) �ne grain, per-request policies that migrate requests from slower
to faster cores as available or adjust core speeds; (3) a practical
evaluation methodology; and (4) showing how to match workload
heterogeneity to hardware heterogeneity to reduce provisioning
and operational energy costs in datacenters.

2 RELATED WORK

The EETL algorithm improves over prior work because (1) it ex-
ploits heterogeneity at a �ner granularity, using request progress
and load to select per-request core speeds, in contrast to prior work
that con�gures all cores based on load [38, 45]; (2) it uses request
progress, in contrast to prediction [23, 31]; and (3) it manages com-
petition for core speeds in AMPs by prioritizing the longest requests
to faster cores, in contrast to prior work that assumes the desired
speeds are always available [38, 45, 48]. Table 1 overviews these dif-
ferences and shows that most approaches do not schedule requests
on cores, which limits their ability to exploit AMP. Our scheduling
framework applies to both per-core DVFS and AMP systems. (We
leave their combination for future work.)

Tail latency with DVFS multicores. Prior work manages tail latency
and energy with DVFS [23, 24, 31, 38, 57]. Pegasus uses a feedback-
based DVFS controller based on total system load that operates
at a �ve second granularity [38]. At low load, it reduces the volt-
age/frequency of all cores, increasing average latency, while main-
taining the same tail latency. Processor-wide DVFS wastes energy
since the speed and power consumption of all cores must be su�-
cient to service the tail. Section 6 shows that by targeting individual
requests, our �ne-grain policies reduce energy consumption while
delivering the same tail latency, since only some cores must be fast
enough to satisfy long requests.

Rubik considers both queue length and request progress to con-
trol the frequency of each core independently [31]. It assumes a
desired core frequency is always available, which in power limited
cores may not be true in the future. It decides frequency of a single
core and it does not adjust the policy based on what’s happening in
other cores. Rubik adapts frequently to transient changes in queue
length. While not desirable, DVFS may switch frequencies often,
but frequent migration degrades AMP performance.

Researchers have used per-core DVFS to accelerate individual
requests by predicting their latency [23] or if request have spent a
long time in the network [57]. Accurate prediction of long requests
is challenging and must be retrained as software evolves [25, 28, 32,
39]. Since prediction is never perfect, it is not a complete solution.
These DVFS approaches do not require schedulers because they
assume the desired core speed is always available.

Tail latency on AMPs. The most closely related work optimizes tail
latency on heterogeneous multicores [45, 47, 48]. Ren et al. [47]

show slow-to-fast (S2F) scheduling can exploit heterogeneity to im-
prove throughput in simulation, but does not optimize energy. Ren
et al. [48] prove that heterogeneous cores o�er signi�cant energy
e�ciency advantages over homogeneous cores when optimizing
multiple objectives (e.g., tail and average latency). Their basic S2F
algorithm computes migration thresholds assuming cores of the
desired speed are always available. Section 3 illustrates experimen-
tally that basic S2F does not satisfy tail latency targets when load
varies or a core of the desired speed is not available; constraints
our algorithm optimizes.

Petrucci et al.’s OctopusMan system is coarse grain — they allo-
cate either all slow or all fast cores to an entire service, but nevermix
core types [45]. Their controller selects increasingly larger homoge-
neous con�gurations of slow or fast cores until it meets the target
tail latency. They do not describe a scheduler. Section 6.5 compares
OctopusMan with EETL. EETL uses individual request progress
and system load to deliver tighter control over power/performance
tradeo�s and greater energy savings.

Other workloads on AMPs. Prior optimization work for parallel
and multiprogrammed workloads on AMPs does not consider tail
latency [5, 30, 49, 53, 56, 58].

Hardware trends. Per-core DVFS is present in most modern sys-
tems, including those with accelerators. AMPs are already present
in mobile systems and server prototypes [6, 13, 46]. Researchers
have shown that heterogeneous multicores are a promising general
architecture [2, 11, 14, 22, 34, 35, 37, 41, 55]. Datacenter operators
have already deployed heterogeneous systems that use accelerators,
such as FPGAs, ASICs, and GPUs, for speci�c tasks that are care-
fully mapped to them. For these tasks, accelerators o�er substantial
performance and energy e�ciency that is di�cult to match. How-
ever, accelerators require extensive engineering of the software and
hardware, imposing a potentially prohibitive cost, especially for
smaller services. In contrast, we seek to maximize the potential of
general-purpose heterogeneity and thereby bene�t a wide range of
interactive workloads and datacenter operators.

3 SCHEDULING HETEROGENEOUS
MULTICORES

This section describes challenges and opportunities for optimizing
interactive services on heterogeneous multicores, and illustrates the
limitations of prior work for AMP. To explore energy/performance
tradeo�s as a function of workload, we divide Lucene search re-
quests into two halves based on their length and assume a 200-ms
tail latency target for the 99th percentile. Figure 1(a) reports the
tail latency of the two workloads and 1(b) reports their energy
consumption when executed on a representative slow and fast core.
(Section 5 describes our methodology.) The slow core substantially
improves energy e�ciency of all requests by almost a factor of 3.
Both slow and fast cores easily meet the 200-ms tail latency target
for the shortest 50% of requests. Slow cores deliver roughly 83 ms
for short requests, well below the target tail latency. However, only
the fast core meets the target for the longest requests. Thus, by
using fast cores for long requests and energy-e�cient slow cores
for short requests — and most requests are short [9, 19, 25, 29] —
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Figure 1: (a) 99th percentile (tail) latency of shortest and

longest 50% of requests; (b) average energy consumption ex-

ecuting exclusively on a slow or fast core.
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migration threshold for a tail latency target [48]. It only

works at low load, when requests do not compete for cores.

Decreasing the threshold (0.5×S2Fmigrates twice as fast), ex-

ceeds the target and wastes energy at low load, motivating

an adaptive approach.

service providers have a signi�cant opportunity to improve energy
e�ciency without compromising tail latency.

Basic Slow-to-Fast Scheduling for Heterogeneity. Prior work pro-
posed migrating requests to faster cores as long requests reveal
themselves [48]. This basic slow-to-fast (S2F) algorithm computes
a single threshold for each core type. When a request passes each
threshold, S2F migrates it from a slower to a fast core type. S2F has
the following desirable qualities.

Basic S2F bounds migration. A slow-to-fast scheduler limits the
migrations based on the number of di�erent core speeds.

Basic S2F reduces energy consumption. Using slow cores �rst
completes short requests on slow cores and does not use fast
cores at all, reducing energy consumption.

Challenges in Slow-to-Fast Scheduling. Despite this potential, basic
S2F is not e�ective because it does not adapt to load and does manage

competition for core types. Figure 2 illustrates the limitations of the
�xed thresholds in S2F on an AMP with 2 Fast and 13 Slow (2F-
13S) cores. With two core speeds, S2F computes a single migration

threshold based only on the request demand distribution. Since it
does not consider load or core competition, it only satis�es the tail
latency target at very low load (20 RPS in this example). By simply
reducing the threshold, S2F meets the target at higher load, but
wastes energy at low load. This observation motivates an algorithm
that adapts to load and core availability. Our work exploits the
following insights.

Workload demand distributions are known. Service providers
already pro�le demand distributions (i.e., the percentage of
requests of each length) to provision servers and these distri-
butions tend to change slowly over time [19, 39, 47].

Use fast cores just enough. Our scheduler uses fast cores just
enough to satisfy the tail latency target, sacri�cing some aver-
age latency. Since slow cores are more energy-e�cient, this
strategy satis�es the target with less energy.

Adapt to load. To handle load spikes, the policy needs to adapt,
using fast cores more often as load increases.

4 ADAPTIVE SLOW-TO-FAST

This section presents our Adaptive Slow-to-Fast scheduler design.
We assume that the service executes each request independently
and sequentially, and that multiple simultaneous requests execute
concurrently on multiple cores.

Our framework handles the performance and energy heterogene-
ity available from dynamic per-core DVFS and static microarchitec-
ture design in AMP.We treat these forms of heterogeneity similarly:
a core type in AMP is equivalent to a core speed in per-core DVFS.
With respect to the general scheduling problem, AMP migration
and DVFS speed increases are equivalent. Although DVFS has more
potential settings than AMP, this di�erence does not change the
scheduling problem and in practice is constrained by transition
times. However, on AMP a request must migrate across cores to
take advantage of multiple types and other requests could be ex-
ecuting on these cores, whereas with per-core DVFS, the request
can increase its speed since it continues to execute on the same
core. Since scheduling AMP subsumes scheduling per-core DVFS,
we present the framework for AMP without loss of generality. We
assume AMP hardware that consists of N same-ISA core types
with di�erent power and performance characteristics. Slower cores
are more energy-e�cient than faster ones. If slower cores are not
energy e�cient, providers will buy only fast cores.

Our framework includes an o�ine and an online component.
O�ine, we design feedback controllers that compute migration
thresholds based on measured tail latency, target tail latency, and
system load. While we design the controller as an o�ine phase in
our evaluation, it can be done online since it takes few seconds.
Each request schedules itself online starting on a slow core. It
makes a decision to migrate based on load and thresholds that
the controllers compute using request progress and system load.
Feedback control mitigates many transient factors, such as request
interference and workload demand variability, while providing
stable behavior. Because each request self-schedules, the framework
incurs very low overhead and scales with the number of cores.
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relationship on 2F-13S.

4.1 Scheduling Objectives

We mainly consider two popular service provider objectives: (1)
reducing tail latency to improve responsiveness, and (2) reducing
energy for a tail latency target to reduce operating costs. We con-
sider an energy-only objective as a lower bound on energy. The
key challenge is to decide when to migrate a request because this
threshold controls tail latency and energy. A low threshold migrates
requests sooner and uses fast cores more often, reducing tail latency
at the expense of more energy. Higher thresholds use fast cores
less often, consume less energy, and incur higher tail latencies. We
show how to adjust migration thresholds to meet each of the above
mentioned objectives.

We introduce the Energy E�ciency with Target Tail Latency

(EETL) policy to meet a target tail latency as energy-e�ciently
as possible. On one hand, the migration threshold must be short
enough to meet the latency target. On the other hand, it must be
long enough to avoid wasting energy. The threshold depends on the
target tail latency, workload, processor con�guration, and dynamic
system load.

For comparison, we consider the two policies with the extreme
settings for their migration thresholds: Tail Latency (TL) and En-
ergy E�ciency (EE). TL sets the migration threshold to zero, exe-
cuting requests as fast as possible. EE sets the migration threshold
to in�nity, using faster cores only when the slower cores are all
busy.

4.2 Controller Design for Two Core Types

This section describes the design of a Single Input Single Output
(SISO) feedback controller to determine the threshold that achieves
the EETL objective for two core types. Section 4.4 generalizes the
controller for N core types. The controller input is the di�erence
between the current tail latency of the system and the target. The
output is the migration threshold. To determine the e�ect of input
changes on the output, we measure tail latency as a function of
system load and migration thresholds with a representative request
trace (i.e., a good representation of the workload demand distribu-
tion). We consider tail latency targets in the range of measured and
thus achievable tail latencies.

Figure 3 illustrates the tradeo�s with Lucene. Unsurprisingly, the
lower the load and threshold, the lower the potential tail latency.
The highest load this system supports within a target tail latency

Load interval Representative load Kp Ki Kd

< 50 25 0.11 0.49 0.00
50–70 60 0.15 0.25 0.00
> 70 80 0.19 0.17 0.03

Table 2: Gain values for the three PID controllers based on

load (measured in RPS) for Lucene.
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Figure 4: Diagram of the controller and interactive server.

of 200 ms is a little less than 100 RPS, using the lowest threshold.
At low load, the latency and migration threshold relation is linear
and �at. As load increases, slope increases. The relationship is non-
linear for high loads and thresholds. To handle these di�erences,
we use Gain Scheduling [21] and design separate controllers for
di�erent load ranges. We divide the load range into three intervals,
design a controller for each interval, and validate this choice with
sensitivity analysis.

We use Proportional-Integral-Derivative (PID) control with Gain
Scheduling [21], because it is e�ective and thus popular [54]. For
each interval and target tail latency, we determine the open-loop
step response with the load at the mid-point of the interval. We
compute and tune the PID control gains using the MATLAB PID
Tuner [42]. Table 2 shows the generated PID gains and Figure 4
shows the resulting controller block diagram.

The load estimator uses request arrivals to compute the average
arrival rate. The gain scheduler uses it to select one of the three PID
gain parameters. The load estimator does not need to be precise
since the controller will still work without any load estimation or
gain scheduling (albeit with higher overshoot and settling time).
The PID controller’s input is e (t ), the di�erence between the mea-
sured tail latency and the target tail latency. The output of the
controller is u (t ), the migration threshold from a slow to a fast core.
The online scheduler uses these computed thresholds to migrate
requests from slow to fast cores.

4.3 Online Scheduling

At run time, each request self-schedules, periodically executing
Algorithm 1. With no core competition and two core types, a new
request starts running on a slow core (Lines 18–20). When (i) the
request execution time crosses the threshold, (ii) the request is not
already executing on a fast core, and (iii) a fast core is available, the
request migrates to the fast core (Lines 5–9). We track request age
and position using a synchronized priority queue.

When a new request arrives and all slow cores are occupied due
to high load, the new request executes with lower priority (Lines
16–17). We rely on the older requests to move themselves to faster
cores, out of the way of the new request, when faster cores are free.
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Algorithm 1: Adaptive Slow-to-Fast for two core types. Each
request self-schedules independently.

input : F & S, the set of fast & slow cores
input : t the migration threshold
output : core allocation for current request

1 n = total number of active requests
2 a = age of current request
3 i = request position among all requests by decreasing age
4 c = current core // c is None for a new request

5 if (i <= |F | and a >= t ) then // migrate after crossing t
6 if (c < F ) then
7 f = free core from F
8 migrate from c to f
9 end

10 else if (n > |S | and i <= |F | and i <= n − |S |) then
// migrate before crossing t because there are not enough slow cores

11 if (c < F ) then
12 f = free core from F
13 migrate from c to f
14 end

15 else if (c is None) then
16 if (i > |F | + |S | or No free core in S) then // very high load or sync delay
17 start running with low priority
18 else // regular request arrival
19 s = free core from S
20 start executing at s
21 end

22 end

In the case of two core types, the oldest request on a slow core
migrates itself early to an available fast core (Lines 10–14). Because
each request frequently self-schedules, the system reacts quickly.
This logic thus achieves three goals: responsiveness, scalable self-
scheduling, and a global scheduling e�ect in which slower cores are
always executing shorter requests and faster cores are executing
longer requests. For the more general N core types case, we use
a similar algorithm and track request length and competition on
each core type to make early migration decisions.

4.4 Controller Design for N Core Types

This section describes our controller for N > 2 core types/speeds.
Because N core types/speeds can more �nely match core capabil-
ities to workloads, they have more potential to improve energy
e�ciency by striking better power/performance trade-o�s [6, 22,
34, 35, 37]. We use our controller for �ve-speed per-core DVFS
experiments as well as AMPs with 3 core types. Without loss of
generality however, we next describe the controller in AMP terms.

Our controller for N core types speci�es N − 1migration thresh-
olds from core type ci to ci+1 where cores of type i exhibit si
performance (average speedup compared to the slowest core) with
pi power consumption. Without loss of generality, 0 < s1 < s2 <

· · · < sN and 0 < p1 < p2 < · · · < pN . Table 3 de�nes the symbols
we use for controller design for N core types.

Determining these thresholds is a multi-dimensional search prob-
lem, where the search space grows exponentially with the number
of speeds. To simplify it, we introduce a decision variable that con-
verts it into a single-dimension problem and use an SISO controller.
We divide the procedure into two steps. We �rst determine the
thresholds for low loads based on the workload distribution and
relative core speeds. We pose this optimization problem as shown
in Figure 5. We seek to minimize the average energy used by all

Symbol Definition

r ∈ R Request pro�les
slowr Runtime of request r on slowest core
si Avg speedup of requests on core type ci
pi Peak dynamic power on ci
tarдetl Target tail latency
t = {0, t1, t2, ..., tN−1 } ti is the migration threshold to core type ci+1
V = {0,v1,v2, ...,vN−1 } Intermediate representation of t such that vi = (ti −

ti−1 )
er (V ) Energy used by r with schedule V
latencyR (V , β -tail) β th-percentile latency of R with schedule V
L (R,V )[] List of runtimes for all r ∈ R with schedule V in non-

decreasing order

Table 3: De�nitions for computing migration thresholds.

Min. Objective =

∑
r er (V )

|R | (1)

er (V ) = (2)





slowr × p1 if slowr ≤ v1

(v1 × p1 + (slowr −v1 )×p2
s2

) if v1 < slowr ≤ (v1 + v2)

· · ·

latencyR (V , β -tail) ≤ tarдetl (3)

latencyR (V , β -tail) = L (R,V )[ ⌈β · |R | ⌉] (4)

Figure 5: Threshold determination for low loads. We select

t to minimize the objective function.

the requests while satisfying the tail latency target. This problem
formulation only applies to low load because it assumes no core
contention—each request may execute on a core of type c(i+1) when-
ever it is older than ti . We transform the optimization problem to
an equivalent convex problem. It takes 1-2 seconds with workload
distributions for 4 to 8 K requests on our server using Gurobi [16].

The second step uses the thresholds determined for low load as a
starting point for �nding thresholds at higher loads. Given the solu-
tion of the problem in Figure 5 is of the form t∗ = {0,t∗1 ,t

∗
2 , ...,t

∗
N−1},

we assume the thresholds for all loads take the form t = {0,z ×
t∗1 ,z × t

∗
2 , ...,z × t

∗
N−1}. For low load, z = 1 gives the best thresh-

olds. For high load, z = 0 gives the best thresholds. Intuitively, the
values of thresholds are t∗ at low load and, as the load increases,
the thresholds decrease until they all become zero when all cores
are occupied. The older a request is, the more likely it is execut-
ing on the fastest cores, because oldest requests are promoted �rst
(see Section 4.3). Thus, z = 1 and z = 0 work well for low and
high load, respectively. To select z for intermediate loads at run
time, we design SISO controllers using the methodology from Sec-
tion 4.2, running the request trace on the heterogeneous processor
with di�erent load and input (z) values. This results in a set of
PID controllers from the Gain scheduler for various loads. Since
the controller runtime overhead is not depenedent on core type
or core count, this method is extremely e�cient and scalable. The
resulting schedule may consume unnecessary energy compared to
the optimal at moderate to high loads. In practice, deviations are
small across many demand distributions and core con�gurations.

5 EVALUATION METHODOLOGY

5.1 Workloads

We use the commercial open-source Apache Lucene [1, 19, 60], an
enterprise search engine, and aMonte Carlo �nance server [4, 7, 20].
Both servers use a standard pool of worker threads. Aworker thread



Exploiting Heterogeneity for Tail Latency and Energy E�iciency MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0

150

300

450

600

750

900

1050

0 100 200 300 400

#
 r

e
q

u
e

s
ts

Execution time (ms)

(a) Execution time histogram of 10 K

Lucene queries

0

200

400

600

800

1000

1200

1400

0 200 400 600 800

#
 r

e
q

u
e

s
ts

Execution time (ms)

(b) Execution time histogram of 4 K

�nance requests

Figure 6: Workload demand distribution in 10 ms bins.

dequeues a request from the arrival queue and processes the request
to completion.

We con�gure the Java Lucene search engine with 33+ million
Wikipedia English Web pages [40, 59]. The search index consumes
10GB. We use 10K term search requests from Lucene’s nightly
regression tests to build the workload demand distribution in Figure
6(a). Prior work shows Lucene shares characteristics with Bing
search [19]. We use 8 K requests to design the feedback controller.
For each performance experiment, a client issues a random subset
of the other 2 K requests, following a Poisson process in an open
loop. We vary system load by changing the request per second (RPS)
arrival rate. We add periodic calls (at a con�gurable 1ms frequency)
during request processing from Lucene to our scheduling logic.
Our scheduler uses JNI, statically linking a C module that calls
sched_seta�nity for pinning requests to speci�c cores. We add
online pro�ling that tracks tail latency and load (about 500 lines of
Java). We design our controller using the MATLAB PID tuner.

We also use a Monte Carlo �nance server from prior work that
computes �nancial derivatives for path-dependent Asian options
and is computationally intensive [4, 7, 20]. Banks and fund man-
agers use such derivatives to make interactive trading decisions.
Each request estimates an option price under various economic sce-
narioswith di�erent interest rates, strike prices, dividend yields, and
volatility. Processing time varies widely based on request parame-
ters, for example, sampling more for trades with higher volatility
or total monetary value. Figure 6(b) depicts the service demand dis-
tribution of 4 K synthetic requests. The �nance server is about 150
lines of C++ and we add about 400 lines of C++ code to implement
our scheduler.

5.2 Hardware

We use two hardware platforms and heterogeneity emulation. To
evaluate our framework on multicores that support per-core DVFS,
we use an 8-core 2GHz Broadwell processor and 64GB RAM. To
experiment with larger systems, we use a 16-core 2.3GHz Xeon
(Haswell) and 16GB of RAM. In both cases, we turn o� hyper-
threading to avoid interference among threads sharing a physical
core. Unfortunately, the larger server does not support full per-core
DVFS (only per-socket), so we emulate AMP and per-core DVFS
heterogeneity on it using duty-cycling threads. Emulation is the
best option for our evaluation since (1) AMPs are currently available
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di�erent planned slowdown.

only in mobile systems [13, 46], which cannot handle large memory-
intensive workloads like Lucene, and (2) cycle-accurate multicore
simulators have not achieved the speed or accuracy necessary to
report tail latency.

Our emulator uses a single slowdown parameter to capture the
performance di�erence from DVFS, microarchitectural, and cache
hierarchy behavior. We slowdown cores by alternating between ex-
ecuting request threads and a background thread. The background
thread executes a CPU-bound computation and then sleeps. We
control the slow down factor by a duty-cycle setting. For example,
a background thread executing 50% of the time and sleeping 50% of
the time increases the request processing time by a factor of 2. We
perform duty cycling in 100–500 microsecond periods. Since our
shortest requests are a few milliseconds, this period is su�cient
to a�ect all requests equally, and long enough to avoid excessive
context switching. Figure 7 shows the measured and planned slow-
down in processing time as a function of request length for several
duty-cycling settings for Lucene requests. Although the variance in-
creases with higher slowdown settings, it is low compared to other
sources of non-determinism in the system. The emulator is quite ac-
curate in increasing the execution time of requests, corresponding
to the desired core speed.

5.3 Core Performance and Power

We use relative heterogeneous core performance characteristics
from the ARM big.LITTLE speci�cation [13]. ARM big (Cortex-A15)
cores delivers roughly 2x performance over little (Cortex-A7) cores.
For DVFS experiments, we use �ve DVFS settings with the lowest
frequency being roughly half of the highest frequency. Our default
con�guration for AMP is 2F-13S which has two core types: 2 fast
(big) and 13 emulated slow (little) cores. We also study medium
cores with varying performances between slow and fast cores. In all
of our experiments, we reserve one full core to issue client requests.

We report real measured processor power on the Broadwell with
per-core DVFS. We use the ACPI userspace power governor and
modify the “cpufreq/scaling_ setspeed” �le to change the frequency.
For Haswell, we report energy based on measured performance
and a model of static and dynamic power. Because it implements
per-socket DVFS, not per-core DVFS, we measure power using
RAPL and model per-core DVFS. Measured processor power at the
lowest speed is roughly one-fourth that of the highest.
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We use McPAT [36] to model AMP power consumption of slow
cores, fast cores, and the last-level cache using architectural details
from the literature [44]. The slow cores are single-issue in-order,
and the fast cores are out-of-order with a 48-entry instruction
window, a 168-entry re-order bu�er, and 2 load/store ports. Each
core has 32KB L1 instruction and data caches, private 256KB L2
cache and shared 2MB LLC. We assume 22nm technology to com-
pute dynamic power and static power (with power gating enabled).
To study medium cores, we develop an analytic model (Power ∝
per f ormanceα ) similar to [43]. Using the numbers from McPAT for
slow and fast cores as base cases, α is 2.73 for dynamic power and
1 for static power. Table 4 shows the performance and peak power
consumption of the cores normalized to slow cores.

Performance (si ) Normalized peak

Core type Core name Relative Frequency power (pi )

S Slow 1 1.7 GHz 1
M Medium– 1.44 2.7

Medium 1.59 3.5
Medium+ 1.71 4.5

F Fast 2 3.4 GHz 6.8

DVFS Slow 1 1.7 GHz 1.7
Medium– 1.3 2.2 GHz 2.7
Medium 1.6 2.7 GHz 3.8
Medium+ 1.9 3.3 GHz 5.3
Fast 2 3.4 GHz 6.8

Table 4: Performance and normalized peak power for emu-

lated DVFS and AMP. The peak power consumption of our

default AMP con�guration (2F-13S) is comparable to that of

4 Fast DVFS cores.

With our default power model and con�guration, slow cores are
∼3x more energy-e�cient than fast cores, which is consistent with
prior measurements (3.3x [27], 2.7x [12], 3.5x [13]), and simulation
(3.01x [41]). Using our power model for DVFS, Pegasus improves
energy consumption by up to 40% compared to the baseline. This
result is consistent with their reported measurements [38]. We
focus on processor energy because it dominates, consuming 67%
of the server power [3]. Section 6.8 explores the sensitivity of our
results to our model. Even with much more conservative models,
our improvements are substantial.

5.4 Overheads and Performance Measurements

Each worker thread executes an algorithm like Algorithm 1 that
is of constant complexity. Online overhead of the PID controller
is also constant, regardless of the total number of cores. DVFS
frequency changing of a core takes around 50–90 µs and does not
impose any extra overhead. We also measure and perform request
migration from emulated slow to fast AMP cores. To account for
migration energy, we pessimistically assume requests consume full
power as soon as the request determines it needs to migrate. All
results include migration time (<500 µs) and energy. Each request
migrates at most N − 1 times for N core types. Migration time and
energy are negligible for our 100–200 ms tail latency targets.

We report tail and average latency, which include queuing delay
and execution time. We use NanoTime in Lucene and clock_gettime

in the �nance server to track the time. Since tail latency is an order

statistic, we measure it over a moving window of the last 2000
requests and report the 99th percentile. Since the controllers take
the tail latency as input, we set their control epoch to 500 requests.
At high load, epochs are consequently shorter than at low load.

5.5 Scheduling Policies

Tail Latency (TL). This policy minimizes tail latency by running
requests at the highest possible speed. TL for DVFS (TL-DVFS) uses
all cores at the highest Voltage/Frequency (V/F) level. TL for AMPs
(TL-AMP) starts executing requests on the fastest available core.
When a fast core ci becomes available, the oldest request executing
on ci − 1migrates to ci . This con�guration reduces tail and average
latency.

Energy E�ciency with Target Tail Latency (EETL). This policy uses
thresholds from the feedback controllers for a speci�ed target la-
tency. EETL for per-core DVFS (EETL-DVFS) uses controllers to
set the V/F of each core independently. EETL for AMP (EETL-AMP)
migrates a request to a faster core once request execution time
exceeds the appropriate threshold at the current load or if a newer
request is waiting a slow core.

Energy E�cient (EE). This policy con�gures Adaptive Slow-to-Fast
with the maximum (in�nite) threshold. Each request executes on
the slowest available core and only migrates to a faster core when it
is the oldest request and the slower cores are insu�cient to serve the
load. This policy consumes the least energy but usually misses the
tail latency target. It illustrates a lower bound on dynamic energy.

Pegasus. We implement the state-of-the-art DVFS policy [38]. Pe-
gasus selects a single power setting for all cores at �ve second
intervals using RAPL [8] and a feedback controller. It adjusts power
to meet a tail latency target as a function of system load, using
more power at higher loads. Since Lo et al. do not present their
controller design, we implement an ideal version. For each load, we
determine the best power setting by sweeping through all possible
settings and constructing a look-up table. Our experiments index
this table by load to determine the best power level. A feedback
controller can only do worse.

Octopus-Man. We implement Octopus-Man, which selects core con-
�gurations (core type and count) based on system load [45]. How-
ever, it only selects all small or all big cores; it never chooses a
mix of core types. It assumes a strict ordering of core con�gura-
tions by compute performance. For N slow cores andM fast cores,
the usable con�gurations are {{S1}, {S1,S2}, . . . , {S1,S2, · · · ,SN },
{F1,F2, · · · ,FL }, . . . , {F1,F2, · · · ,FM }}, where L fast cores provide
equal or higher performance than N slow cores. For 13 slow and 2
fast cores (slow core = 0.5× fast core), there are only two possible or-
derings: {{S1}, {S1,S2}, {F1}, {F1,F2}} and {{S1}, {S1,S2}, {S1,S2,S3},
{F1,F2}}. We use the �rst ordering since it matches exactly with
the original paper. We constrain our approach to 2 slow and 2 fast
cores to compare to Octopus-Man.

Request Clairvoyant (RC). The RC policy has perfect knowledge of
request demand and load. It executes the longest x requests on fast
cores (or highest V/F) that satis�es the target tail latency. When a
long request arrives and no fast core is available, it executes on a
slow core until a fast core becomes available. All other requests run
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Figure 8: Lucene (200 ms target) on seven per-core DVFS Broadwell cores with TL-DVFS (as fast as possible), Pegasus-DVFS

(all cores at the same DVFS settings) and EETL-DVFS (per-core DVFS). EETL delivers the same tail latency as Pegasus with

substantially less energy.
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Figure 9: Lucene (200 ms target) on emulated AMP. EETL-AMPmeets the tail latency target better than all other hardware and

scheduling options at lower energy.
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Figure 10: Finance (100 ms target) on emulated AMP. EETL-AMP meets the tail latency target at lower energy better than all

other hardware and scheduling options.

exclusively on slow cores. We experimentally select the best value
of x for minimum energy at the target tail latency for every load.

6 RESULTS

We start by evaluating our system on seven per-core DVFS-enabled
cores on the Broadwell server. We then focus on both DVFS and
AMP via emulation; comparing four DVFS cores and AMP with
two fast and thirteen slow (2F-13S) cores, which have similar peak
power. A core at the highest (lowest) DVFS setting has the same
computation capacity as a fast (slow) core at the AMP setting, but

the AMP small cores are more energy e�cient. We use a target tail
latency at the 99th-percentile of 200 ms for Lucene and 100 ms for
Finance unless otherwise noted. We use a 200 ms target because
Lucene supports it on our hardware and the literature establishes
it as a good value for human interactivity [50]. We also perform
a sensitivity analysis for di�erent tail latency targets. We then
explore workload and hardware sensitivity, and AMPs with three
core types.
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6.1 Measured Results on Broadwell with
Per-Core DVFS

Figure 8 plots 99th-percentile latency (left), average latency (mid-
dle), and normalized average energy per request (right), as a func-
tion of load in Requests Per Second (RPS) for Lucene running on
the Broadwell server reported by the energy performance counters.
We plot energy consumption per request normalized to the setting
with the minimum energy to meet the target (EETL at 10 RPS).

Comparing the policies, we observe that exploiting DVFS can
save energy. Pegasus-AV saves up to 17% energy compared to TL-
DVFS, which runs at top voltage-frequency. This result is lower than
the measurements in [38], but the next section shows the numbers
are consistent with a more comparable hardware platform.

More interestingly, per-core DVFS reduces energy consumption

at the same tail latency. Until the load requires all policies to set
all cores to their highest V/F, EETL-DVFS consumes less energy
than Pegasus-DVFS: 11% at 10 RPS and 6% at 70 RPS. EETL-DVFS
con�gures each core as needed, and trades average latency for
energy savings while achieving the same tail latency target. Since
Pegasus uses the same speed for all requests, it wastes energy on
short requests without improving tail latency.

6.2 Heterogeneity for Tail Latency And Energy

Figures 9 and 10 plot 99th percentile latency, average latency, and
normalized average energy on emulated AMP and DVFS per re-
quest for Lucene and the �nance server, respectively. Since both
workloads exhibit similar behavior, we focus on Lucene.

Pegasus-DVFS saves signi�cant energy, up to 40%, compared to
TL-DVFS. This result is consistent with [38]. The bene�ts of Pega-
sus di�er slightly because more recent processors (e.g., Broadwell)
have a higher fraction of static power compared to the earlier hard-
ware (e.g., Haswell) in their study. This result further motivates the
importance and e�ectiveness of AMP over DVFS, since AMP can
reduce static power via simpler microarchitectures for slow cores.
In this hardware, EETL-DVFS also performs better and consumes
less energy than Pegasus-DVFS: 22% at 10 RPS and 10% at 50 RPS.

AMPs deliver signi�cant energy savings and improved through-

put over DVFS at the same tail latency. Since slow AMP cores are
signi�cantly more energy-e�cient than homogeneous cores using
DVFS, chip designers may add more cores to the chip for the same
thermal design power. Both EETL and TL exploit this additional
capacity. EETL-DVFS consumes 18% more energy at 10 RPS and
2x more energy at 50 RPS than EETL-AMP. EETL-AMP sustains
almost twice as much load as EETL-DVFS (and Pegasus) under the
200-ms tail latency target. AMPs have an advantage even when
only optimizing for tail latency: TL-AMP sustains twice as much
load and consumes half the power than TL-DVFS.

Optimizing latencywithout considering energy consumptionwastes

a lot of energy. Comparing EETL-DVFS to TL-DVFS or EETL-AMP
to TL-AMP reveals this insight. Figure 9(c) shows that TL-AMP con-
sumes 2.45x more energy at 10 RPS and 1.5x at 66 RPS than EETL-
AMP. EETL-AMP uses more energy as the load increases. EETL
makes good use of this energy—it meets tail latency as the load
increases by shortening the migration threshold until the threshold
reaches 0. At this point, it behaves exactly the same as TL-AMP,
with the two policies attaining the same tail latency and consuming
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Figure 11: Lucene (200 ms target): E�ect of microarchitec-

tural e�ciency on EETL.

the same amount of energy at 100 RPS and beyond. Figure 9(b)
shows why TL-AMP consumes the most energy at low and mod-
erate loads: it substantially reduces average latency, but reducing
average latency has a relatively small in�uence on tail latency. TL-
AMP wastes energy by processing short requests on a fast core
without bene�ting tail latency.

EETL e�ectively trades average latency for improvements in energy

e�ciency while meeting the target tail latency. Because EETL uses
thresholds, it waits to migrate long requests to the fast core such
that the request just meets the speci�c target. For short requests, this
policy increases average latency, but reduces energy consumption,
since short requests never execute on a fast core. Long requests
are slightly more energy e�cient as well because they execute on
multiple core types. EETL is thus much more energy e�cient than
TL at low and moderate loads.

6.3 Sensitivity to DVFS and AMP Power
Di�erentials

We now explore the relative energy e�ciency of slow cores in
AMP. The slowest DVFS setting consumes 4x less power than the
fastest one. Since AMP provides better e�ciency through microar-
chitectural di�erences, we use AMP con�gurations where slow
cores consume 4x, 5x, and 6.5x less power than fast cores. With
less e�cient slow cores, we must reduce their number to hold peak
power constant. We hold the two AMP fast cores constant. Figure 11
compares EETL on 3 AMP con�gurations and per-core DVFS. EETL-
AMP-6.5x is the default 2F-13S (EETL-AMP in Figure 9). It achieves
the best energy and throughput results. EETL-AMP-5x (2F-10S)
satis�es the tail latency target up to 77 RPS, consuming 14% more
energy at low load than EETL-AMP-6.5x. EETL-AMP-4x (2F-8S)
sustains higher load (66 RPS) than EETL-DVFS (50 RPS) using per-
core DVFS, even though each core in EETL-DVFS has �ve potential
settings and EETL-AMP-4x has only two and an extremely conser-
vative power model. These results strengthen the conclusion that
AMPs o�er signi�cantly better energy e�ciency and throughput
than DVFS for same tail latency target.

6.4 Sensitivity to More Core Types in AMPs

Figure 12 explores AMP con�gurations with three core types (2F-
2M-7S) and the two-type default (2F-13S) with EETL, TL, Energy
E�ciency (EE) only, and Request Clairvoyant (RC). Optimizing only
energy with EE-2F-13S does not meet the target latency, whereas
EETL-2F-13S is only 20% above the minimum energy. More sur-
prising is that the oracular RC-2F-13S policy meets the latency
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Figure 12: Lucene with two core types (2F-13S) and three core types (2F-2M-7S) for 200 ms target with EETL, TL, EE, and RC.

More core types deliver more energy savings.

constraint with only 10% less energy than EETL con�gurations, but
it is not possible to implement.

More core types o�er the potential of more e�ciency with �ner

grain control under low and moderate load. Comparing EETL-2F-13S
to EETL-2F-2M-7S reveals that more core types are more energy
e�cient at low to moderate load. At the highest loads, AMPs with
more core types degrade tail latency due to insu�cient numbers
of fast cores. In addition, they consume more energy, as all cores
must be active to process requests.

6.5 Comparing to Octopus-Man on AMPs

We now compare EETL to Octopus-Man [45]. Octopus-Man con-
siders one core type at a time and orders con�gurations according
to their computing capacity. We study Octopus-Man with 2 slow
and 2 fast cores, allocating more powerful con�gurations as load
increases, that is, transitioning from 1 slow to 2 slow to 1 fast to 2
fast as a function of load. Octopus-man does not use slow and fast
cores at the same time. Figure 13 shows that Octopus-Man starts
using both fast cores at 20 RPS, at which point the tail latency drops
dramatically and energy consumption increases to 3x. However,
there are numerous short requests that can run on slow cores with-
out a�ecting tail latency. Octopus-Man misses this opportunity. On
the other hand, EETL uses a mix of slow and fast cores to satisfy
the tail latency target with lower energy consumption. Note that a
lower tail latency target (e.g., 200 ms) would not help Octopus-Man;
it would use fast cores for all requests, while EETL would reduce
energy by using slow cores for short requests.
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Figure 13: Lucene (300 ms target): EETL-2F-2S judiciously

uses slow and fast cores at the same time to optimize energy.

Octopus-Man-2F-2S uses 1 slow, 2 slow, 1 fast, or 2 fast cores.
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Figure 14: Lucene (200 ms target): EETL-2F-13S adapts to

widely varying load while delivering the target tail latency.

6.6 Adapting to Load Spikes

Figure 14 shows that even when load varies signi�cantly, EETL’s
feedback controllers dynamically adapt to meet the target tail la-
tency. We subject EETL to extreme variations between low (10 RPS)
and high (90 RPS) loads. Each point is the 99th-percentile latency
of the last 2000 requests. EETL dynamically and quickly (in 500
request epochs) adjusts thresholds to meet the tail latency target
consistently. The epoch size depends on the workload characteris-
tics and latency accounting period. Smaller epochs respond faster to
load changes and longer ones are more stable. The service provider
should empirically select a suitable epoch size.

6.7 EETL AMP Energy Proportionality

We use our models to explore core con�gurations giving mini-
mum energy as a function of tail latency target and load, demon-
strating that our approach produces energy proportionality and
helps choose good AMP con�gurations. Figure 15 plots the nor-
malized (to energy consumption of a slow core) minimum average
energy across six di�erent core con�gurations with the same peak
power: 2F, 1F-8S, 1F-1M(-)-5S, 1F-1M-4S, 1F-1M(+)-3S, 15S. The �g-
ure shows that EETL on AMP produces energy proportional results
when it can select cores based on load and tail latency target. With
less stringent tail latency targets and lower load, the system con-
sumes proportionally less energy. Furthermore, service providers
can achieve energy scaling and better adapt the computing capacity,
if they employ e�cient small cores �rst, and then the faster cores.
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Figure 15: Lucene: EETL-AMP normalized minimum aver-

age energy (top) and core con�gurations (bottom).

6.8 Algorithmic Sensitivities

This section summarizes AMP (2F-13S) results that explore the
e�ects of our static power model, tail latency constraint, workload
characteristics, and policy con�gurations.

E�ect Of Non-CPU Power. Wemodel both static and dynamic proces-
sor power. Prior work shows that memory and other components
(we call them non-CPU for short) consume at most 33% of total
server power today [3, 52]. Not surprisingly, Figure 16 shows that,
when non-CPU power becomes a larger fraction, the energy sav-
ings of EETL decreases. Nevertheless, even when non-CPU power
is 50% and 67% of the peak dynamic power, TL consumes 42% and
24% more energy, respectively, than EETL at low load.

E�ect of Modi�ed Workload and Tail Latency Targets. We create four
di�erent workloads with Lucene by varying the search index size
and consequently the achievable average and tail latency. We select
the EETL tail latency target to 67% of the tail latency measured
on a slow core. Figure 17 shows EETL performance for these four
variants of Lucene, each with an applicable tail latency target. EETL
satis�es this wide spectrum of tail latency targets generated by the
four workload variants. The e�ectiveness of EETL is bounded by
the overhead of migration. The faster the requests can migrate, the
lower tail latency target EETL can support.

E�ect of Workload Distribution. Previous work shows that di�er-
entiating between short and long requests is more e�ective as the
gap increases between the mean and the tail service demand. The
more uniform the request distribution, the less room for DVFS and
AMP with EETL to improve energy or throughput. Our results for
a modi�ed Lucene workload with a mean of 30 ms and 99th per-
centile service demand of 180ms (a larger gap) are consistent with
previous �ndings. EETL conserves more energy compared to TL
by executing even fewer short requests on the fast core.

E�ect of Gain Scheduling. The EETL controller uses three load in-
tervals for gain scheduling. We obtain similar results when using
six load intervals, but using only one load interval (i.e., without
gain scheduling) overshoots at high loads (>70 RPS).
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Figure 17: Lucene: EETL-2F-13S with di�erent index sizes

and tail latency targets on 2 fast and 13 slow cores.

7 CONCLUSION

This paper introduced Adaptive Slow-to-Fast, a general and e�-
cient scheduling framework for executing interactive services on
heterogeneous multicore servers. We con�gure it to judiciously
leverage static and dynamic heterogeneity to manage tail latency
and energy consumption. The resulting EETL algorithm meets tail
latency targets and improves energy e�ciency and throughput
quite signi�cantly compared to prior work on real and emulated
hardware, especially for AMP.
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