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Exploiting Hierarhial Domain Struture to Compute Similarity1

Prasanna Ganesan, Hetor Garia-Molina, Jennifer Widom

Stanford University

fprasannag,hetor,widomg�s.stanford.edu

Abstrat

The notion of similarity between objets �nds use in many ontexts, e.g., in searh engines,

ollaborative �ltering, and lustering. Objets being ompared often are modeled as sets, with

their similarity traditionally determined based on set intersetion. Intersetion-based measures

do not aurately apture similarity in ertain domains, suh as when the data is sparse or

when there are known relationships between items within sets. We propose new measures that

exploit a hierarhial domain struture in order to produe more intuitive similarity sores. We

also extend our similarity measures to provide appropriate results in the presene of multisets

(also handled unsatisfatorily by traditional measures), e.g., to orretly ompute the similarity

between ustomers who buy several instanes of the same produt (say milk), or who buy

several produts in the same ategory (say dairy produts). We also provide an experimental

omparison of our measures against traditional similarity measures, and desribe an informal

user study that evaluated how well our measures math human intuition.

1 Introdution

The notion of similarity is used in many ontexts to identify objets having ommon \hara-

teristis." For instane, a searh engine �nds douments that are similar to a query or to other

douments. A lustering algorithm groups together gene sequenes that have similar features. A

ollaborative �ltering system looks for people sharing ommon interests [GNOT92℄.

In many ases, the objets being ompared are treated as sets or bags of elements drawn from

a at domain. Thus, a doument is a bag of words, a ustomer is a bag of purhases, and so

on. The similarity between two objets is often determined by their bag intersetion: the more

elements two ustomers purhase in ommon, the more similar they are onsidered. In other ases,

the objets are treated as vetors in an n-dimensional spae, where n is the ardinality of the

element domain. The osine of the angle between two objets is then used as a measure of their

similarity [MG83℄. We propose enhaning these objet models by adding a hierarhy desribing

1This material is based upon work supported by the National Siene Foundation under Grant No. 0085896.
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Figure 1: Musi CD Hierarhy

the relationships among domain elements. The \semanti knowledge" in the hierarhy helps us

identify objets sharing ommon harateristis, leading to improved measures of similarity.

To illustrate, let us look at a small 3-level hierarhy on the musi CD domain, as shown in

Figure 1. Let us say ustomer A buys Beatles CDs b1 and b2, B buys Beatles CDs b3 and b4, and

C buys Stones CDs s1 and s2. If we were to use a similarity measure based on set intersetions,

we would �nd that the similarity between any two of A, B and C is zero. The Vetor-Spae Model

would represent A, B and C as three mutually perpendiular vetors and, therefore, the osine

similarity between any two of them is again zero.

However, looking at the hierarhy of Figure 1, we see that A and B are rather similar sine both

of them like the Beatles, while A and C are less similar sine both listen to rok musi although

they prefer di�erent bands. The similarity between two CDs is reeted in how far apart they are

in the hierarhy. In this paper, we develop measures that take this hierarhy into aount, leading

to similarity sores that are loser to human intuition than previous measures.

There are several interesting hallenges that arise in using a hierarhy for similarity omputa-

tions. In our CD example, for instane, ustomers may purhase CDs from di�erent portions of the

hierarhy: e.g., ustomer D in Figure 1 purhases both Beatles as well as Mozart CDs. In suh a

ase it is not as obvious how similar D is to A or B or to other ustomers with mixed purhases. As

we will see, there are multiple ways in whih the hierarhy an be used for similarity omputations,

and in this paper we will ontrast di�erent approahes.

Another hallenge is handling multiple ourrenes (multisets) at di�erent levels of the hierarhy.

For example, say we had another user E who buys a lot of Beatles CDs as well as a Mozart CD

m1 (see Figure 1). The question is: Whih of D or E is more similar to A? Customer D bought

Beatles CD b1, just like A. On the other hand, ustomer E did not buy that CD, but did buy a

lot of other Beatles CDs. The traditional osine-similarity measure favors multiple ourrenes of
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an element. That is, if a query word ours a hundred times in a doument, the doument is more

similar to the query than one in whih the query word appears only one. If we use this approah

in our example, we would say that E is more similar to A than D is, beause E buys 14 Beatles

CDs, while D buys just one.

Unfortunately, it is not lear that this onlusion is the orret one. E is probably a serious

Beatles fan, while A and D appear more balaned and similar to eah other, so it would also be

reasonable to onlude that D is more similar to A than E is. Thus, measures like osine-similarity

often do not provide the right semantis for inter-objet similarity. This problem has, in fat,

been observed earlier in the ontext of inter-doument similarity [SGM95℄. In this paper, we study

various semantis for multiple ourrenes, and provide measures that map to these semantis.

There has been a lot of prior work related to similarity in various domains and, naturally, we

rely on some of it for our own work. In Setions 2 and 6 we disuss prior work in detail, but here

we make some brief observations.

In our example we have seen that with traditional measures ustomers A, B and C have zero

similarity to eah other beause their purhases do not interset. When objets or olletions are

sparse, i.e., have few elements relative to the domain, intersetions tend to be empty and traditional

measures have diÆulty identifying similar objets. There have been many attempts to overome

this sparsity problem through tehniques suh as dimension redution [SKKR00℄, �ltering agents

[SKB+98℄, item-based �ltering [SKKR01℄ and the use of personal agents [GSK+99℄. We believe

that using a riher data model (i.e., our hierarhy) addresses this problem in a simple and e�etive

way.

Hierarhies, of ourse, are often used to enode knowledge, and have been used in a variety

of ways for text lassi�ation, for mining assoiation rules, for interative Information Retrieval,

and various other tasks where similarity plays a role [FD95, HF95, SM98, SA95℄. Inspired by suh

prior uses of hierarhies, our goal here is to rigorously study how a domain hierarhy an be used

to ompute similarity, independent of a spei� appliation, and to explore, ompare and evaluate

the various options that are available.

We believe that there are many domains in whih hierarhies exist and an be exploited as we

suggest here. Just to name a few examples, the Open Diretory [Ope℄ is a hierarhy on a subset of

pages on the web. Thus, we an ompute the similarity of web users, for instane, based on a trae

of the web pages they visit. In the musi domain, songs an be organized into a hierarhy by genre,

band, album, and so on. This hierarhy an then be used, say, to �nd Napster [Nap℄ users with
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Figure 2: Evolution of Similarity Measures

similar tastes, and reommend new songs to them. In the doument domain, we an use existing

hierarhies suh as WordNet [MRF+90℄ to ompute doument similarity. In all of these ases, our

general-purpose extended similarity measures an be used to improve funtionality.

In summary, the main ontributions of this paper are the following:

� We introdue similarity measures that an exploit hierarhial domain struture, leading to

similarity sores that are more intuitive than the ones generated by traditional similarity

measures.

� We extend these measures to deal with multiple ourrenes of elements (and of anestors in

the hierarhy), suh as those exhibited in A and E in Figure 1, in a semantially meaningful

fashion.

� We analyze the di�erenes between our various measures, ompare them empirially, and show

that all of them are very di�erent from measures that don't exploit the domain hierarhy.

� We report the �ndings of an informal user study to evaluate the quality of the various measures.

Figure 2 shows the evolution of the measures that we will disuss, and serves as a roadmap for

the rest of the paper. Setion 2 desribes traditional approahes to omputing similarity. Setion

3 introdues our First Generation measures, whih exploit a hierarhial domain struture and are

obtained as natural generalizations of the traditional measures. Setion 4 introdues the multiple-

ourrene problem, and evolves the measures into our Seond Generation measures. Setion 5 is

devoted to a omparison of these measures and their evaluation. Setion 6 desribes related work.

2 Traditional Similarity Measures

Given two objets, or olletions of elements C1 and C2, our goal is to ompute their similarity

sim(C1; C2), a real number in [0; 1℄. The similarity should tend to 1 as C1 and C2 have more
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and more ommon \harateristis." There is no universal notion of whih \harateristis" ount,

and hene the notion of similarity is neessarily subjetive. Here we will de�ne several notions of

similarity, and disuss how intuitive they are.

2.1 The Set/Bag Model

In many appliations, the simplest approah to modeling an objet is to treat it as a set, or a bag,

of elements, whih we term a olletion. The similarity between two olletions is then omputed

on the basis of their set or bag intersetion. There are many di�erent measures in use, whih di�er

primarily in the way they normalize this intersetion value [van79℄. We desribe two of them here.

Let X and Y be two olletions. Jaard's CoeÆient, whih we denote simJa(X;Y ), is

de�ned to be:

simJa(X;Y ) =
jX \ Y j
jX [ Y j

Thus, in Figure 1, simJa(A;D) = 1
2+2�1 = 1

3 . Die's CoeÆient, whih we denote simDie(X;Y ),

is de�ned to be:

simDie(X;Y ) =
2 � jX \ Y j
jXj+ jY j

One again referring to Figure 1, simDie(A;D) = 2�1
2+2 = 1

2 . Other suh measures inlude the

Inlusion Measure, the Overlap CoeÆient and the Extended Jaard CoeÆient [SGM00, van79℄.

2.2 The Vetor-Spae Model

The Vetor-Spae Model is a popular model in the Information Retrieval domain [MG83℄. In this

model, eah element in the domain is taken to be a dimension in a vetor spae. A olletion

is represented by a vetor, with omponents along exatly those dimensions orresponding to the

elements in the olletion. One advantage of this model is that we an now weight the omponents

of the vetors, by using shemes suh as TF-IDF [SB88℄. The weight we assign to a dimension in a

vetor an be determined both by the number of ourrenes of the element in that olletion (Term

Frequeny TF ), and by the relative importane of that element (Inverse Doument Frequeny IDF ).

The Cosine-Similarity Measure (CSM) de�nes the similarity between two vetors to be the

osine of the angle between them, whih is idential to the normalized inner produt of the two

vetors. This measure has proven to be very popular for query-doument and doument-doument

similarity in text Retrieval [SB88℄. Again referring to Figure 1, and using uniform weights of 1:
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simCos(A;D) =

�!
A � �!D
j�!A jj�!D j =

1� 1p
2
p
2
=

1

2

Collaborative-�ltering systems suh as GroupLens [RIS+94℄ use a similar vetor model, with

eah dimension being a \vote" of the user for a partiular item. However, they use the Pearson

Correlation CoeÆient as a similarity measure, whih is given by the formula:

(X;Y ) =

P
j(xj � x)(yj � y)qP

j (xj � x)2
P

j (yj � y)2

where xj is the value of vetor X in dimension j, x is the average value of X along a dimension,

and the summation is over all dimensions in whih both X and Y are non-zero [RIS+94℄. Inverse

User Frequeny may be used to weight the di�erent omponents of the vetors. There have also

been other enhanements suh as default voting and ase ampli�ation [BHK98℄, whih modify the

values of the vetors along the various dimensions.

There are many other distane and similarity measures whih have been de�ned for a variety of

problems. Two of the most popular are edit distane and Earth-mover's distane. We will explain

why they are inappliable to our spei� problem in Setion 6.

3 The First Generation

We now desribe two new measures we developed, based fairly diretly on the traditional measures,

that exploit a hierarhial domain struture in omputing similarity. We �rst desribe our model

formally, de�ne some assoiated onepts, and then proeed to develop the measures.

3.1 The Model

Let U be a rooted tree, with all nodes arrying a distint label. We do not impose any restritions

on the shape of U : It an be arbitrarily unbalaned, and its leaves an be at di�erent levels.

Let LU be the set of all labels in U . Let LLU be the set of all labels on the leaves of U . LLU

is the element domain, on whih there is a superimposed hierarhy desribed by U . In our musi

example, LLU = fb1; b2; : : : ; s1; s2; : : : ;m1;m2; : : : ; 1; 2:::g. A olletion C is a bag whose elements

are drawn from LLU .

Let W be a funtion from LLU to the set of real numbers. W is an a priori weight funtion on

the leaves of U , whih aptures the relative importane of di�erent elements. There are many ways

6



Beatles (b)

Root

Beatles (b)

Rock (r) Rock (r)

Root

b1 b2 b3 b4

A B

Figure 3: Indued Trees for Colletions A and B

of deriving this weight funtion. It ould be an Inverse User Frequeny suh as the one de�ned in

[BHK98℄. It ould also be orpus-independent, and be determined by attributes of the elements,

suh as their ost (in monetary terms). Of ourse, the weight funtion also an be uniform.

Sine there is a hierarhial struture imposed on LLU , a olletion C indues a tree, a subgraph

of U that onsists of the anestral paths of eah leaf in C. We refer to trees that are indued in

this manner as indued trees. Notie that, sine C is a bag, the indued tree might have more than

one leaf with the same label. Figure 3 shows the indued trees for the olletions A and B from

Figure 1.

As is onventional, the depth of a node in the hierarhy is the number of edges on the path

from the root of U to that node. Given any two leaves l1 and l2 in U , de�ne the Lowest Common

Anestor LCA(l1; l2) to be the node of greatest depth that is an anestor of both l1 and l2. This

LCA is always well-de�ned sine the two leaves have at least one ommon anestor|the root

node|and no two ommon anestors an have the same depth. In Figure 1, LCA(b1; b2) = b, while

LCA(b1; s1) = r.

3.2 The Generalized Vetor-Spae Model

To illustrate how the Vetor-Spae Model an be generalized to take the hierarhy into aount,

onsider Figure 1 again. Let us say that the unit vetor orresponding to a leaf l is represented by
�!
l .

Now, aording to the traditional osine-similarity measure, all leaf unit vetors are perpendiular

to eah other, whih means that the dot produt of any two of them is zero. The dot produt of a

unit vetor with itself is equal to 1.

We have already observed that b1 is, intuitively, somewhat similar to b3 sine they are both

Beatles CDs. Thus, if A buys b1 and B buys b3, we need to make this fat ontribute something

to the similarity of A and B, i.e., we want
�!
b1 � �!b3 to be non-zero. In the vetor spae, we want to

7



assert that
�!
b1 and

�!
b3 are not really perpendiular to eah other, sine they are somewhat similar.

We use the hierarhy to deide exatly what value to assign to this dot produt. For example,

let us deide that
�!
b1 � �!b3 = 2

3 , sine they have a ommon anestor that is two-thirds of the way

down from the root. By a similar reasoning proess, we let
�!
b1 � �!s1 be 1

3 . We let
�!
b1 � �!m1 ontinue to

be 0 sine they are in di�erent setions of the hierarhy and don't really seem to have anything to

do with eah other, exept for the fat that they are both musi CDs.

Formally, let LLU be the set fl1; l2; l3; : : : ; lng. Let CountA(li) be the number of times li

ours in olletion A. Then, olletion A is represented by the vetor
�!
A =

Pn
i=1 ai

�!
li , where

ai = W (li) � CountA(li) for i = 1::n. This usage of weights is idential to the standard Vetor-

Spae Model's. For any two elements l1 and l2, we de�ne

�!
l1 � �!l2 =

2 � depth(LCAU(l1; l2))

depth(l1) + depth(l2)

This de�nition is onsistent, sine the right side of this equation always lies between 0 and 1. Note

that the dot produt is equal to 1 i� l1 = l2.

We ontinue to measure similarity by the osine-similarity measure, exept that we have now

dropped the assumption that the di�erent \omponents" of the vetor are perpendiular to eah

other. If olletion A is represented by the vetor
�!
A =

P
i ai

�!
li and B by the vetor

�!
B =

P
i bi

�!
li ,

then:

�!
A:
�!
B =

nX
i=1

nX
j=1

aibj
�!
li :
�!
lj

Again, this equation is idential to the standard Vetor-Spae Model, exept that
�!
li :
�!
lj is not equal

to 0 whenever i 6= j. Finally, the osine similarity between A and B is given by the traditional

formula:

sim(A;B) =

�!
A � �!Bp�!

A � �!A
p�!
B � �!B

We all this measure the Generalized Cosine-Similarity Measure (GCSM).

3.3 The Optimisti Genealogy Measure

The Generalized Cosine-Similarity Measure from Setion 3.2 is not the only, or even the most

intuitive, way to exploit a hierarhy for similarity. Next we present a seond, more natural and

intuitive measure, and ontrast it with GCSM. Intuitively, the Optimisti Genealogy Measure2

2The reason for the name beomes lear in the next setion.
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omputes a \similarity ontribution" for eah element in one olletion, and then takes the weighted

average of these ontributions to be the similarity between the two olletions. The ontribution

of an element is determined by how good a \math" it has in the other olletion.

Let C1 and C2 be the olletions to be ompared and let T1 and T2 be their indued trees as

de�ned in Setion 3.1. For any leaf l1 in T1, de�ne LCAT1;T2(l1) to be the anestor of l1 of greatest

depth that is present in T2, i.e., the lowest of the LCAs that l1 shares with the leaves of T2. This

LCA provides an indiation of how good the \best math" for l1 an be. For example, for the trees

in Figure 3, LCAA;B(b1) is Beatles, sine it is present in tree B, and is the lowest anestor of b1

that is present in B. (We abuse notation and let A and B refer both to the two olletions and to

their orresponding indued trees.)

Now de�ne:

mathT1;T2(l1) = fl2 2 C2jLCA(l1; l2) = LCAT1;T2(l1)g

That is, mathT1;T2(l1) is the set of all leaves in T2 that an be the \best math" for l1. In Figure

3, mathA;B(b1) is the set fb3; b4g sine both elements math b1 at its parent Beatles. Next, we

de�ne:

leafsimT1;T2
(l1) =

depth(LCAT1;T2(l1))

depth(l1)

The value leafsimT1;T2
(l1) measures how similar l1 is to its best math in T2. If l1 itself is present

in T2, then LCAT1;T2(l1) = l1, and therefore leafsimT1;T2(l1) = 1. On the other hand, if no an-

estor of l1 exept for the root is present in T2, we have depth(LCAT1;T2(l1)) = 0 and, therefore,

leafsimT1;T2
(l1) = 0. In Figure 3, leafsimA;B(b1) is

2
3 and leafsimA;B(b2) is also

2
3 .

Finally, for any two olletions C1 and C2 with assoiated indued trees T1 and T2 respetively,

we de�ne the Optimisti Genealogy Measure (OGM) as:

sim(C1; C2) =

P
l12C1

leafsimT1;T2
(l1) �W (l1)P

l12C1
W (l1)

(1)

This is just the weighted average of the individual leafsim values of the leaves in T1. Note that

sine C1 is a bag, the summation is over all members of the bag, and is not the set average. In our

example, sim(A;B) is also 2
3 , sine the ontributions from b1 and b2 are idential.

Note that OGM is, in general, asymmetri, i.e., sim(A;B) 6= sim(B;A). If we desire to ompute

a symmetri similarity value between two olletions C1 and C2, we ould de�ne it to be the average,

the minimum, the maximum, or any other funtion of the two values, depending on what we desire.
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sim JC DC CSM GCSM OGM

A,B 0 0 0 0.8 0.67

A,C 0 0 0 0.4 0.33

A,D 0.33 0.5 0.5 0.65 0.67

B,C 0 0 0 0.4 0.33

B,D 0 0 0 0.52 0.5

C,D 0 0 0 0.26 0.25

Table 1: Comparison of the various measures

3.4 Disussion

Table 1 shows the similarity values omputed by various traditional measures disussed in Setion

2, as well as by GCSM and OGM, for the olletions in Figure 1. JC stands for Jaard's CoeÆient

and DC for Die's CoeÆient. The values shown are symmetri similarity values, with the average

of the two asymmetri values being used for OGM. As motivated in Setion 1, we would expet to

�nd that ustomers A and B are more similar to eah other than A and C. C and D should be

even less similar. From Table 1, we see that both of our First Generation measures produe this

result, while the traditional measures do not.

Intuitively, it is not lear whether sim(A;D) should be higher than sim(A;B). There is a ase

for saying that sim(A;B) is higher, sine both A and B are \pure" Beatles persons. One ould

also ontend that A and D have a CD in ommon, while A and B have none, and, therefore, that

sim(A;D) ought to be higher. OGM gives them the same similarity values, while GCSM makes

sim(A;B) higher. The traditional measures laim that sim(A;D) is higher, sine they do not

detet any similarity between A and B. GCSM and OGM an be tuned to adjust the onlusion

in ases suh as these. We disuss how to ahieve this tuning in setion 4.5.1.

3.4.1 Contrasting GCSM with OGM

Having seen how the First Generation measures fare on our simple example when ompared with

the traditional measures, we now examine the di�erenes between GCSM and OGM in a little more

detail.

� GCSM uses many-to-many mathes, while OGM uses many-to-one mathes. In GCSM, the

similarity ontribution of an element in one olletion is gathered from all elements in the other
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olletion that have a non-zero similarity to that element. On the other hand, OGM simply

uses the best similarity sore it an �nd for eah element.

� GCSM is a symmetri measure, whih means that we will not get high similarity sores if one

olletion is a subset of the other [SGM95℄. OGM is an asymmetri measure, and onveys more

information that may help us identify di�erent semanti notions of similarity. For example,

if we wanted to �nd an \expert" for a partiular user A, i.e., someone who is knowledgeable

about the things that A buys, we would look for a user B suh that his purhases are lose

to a superset of A's purhases. Thus, sim(A;B) would be very high, but sim(B;A) might be

fairly low.

� GCSM has worst-ase omplexity quadrati in the number of elements in the two olletions.

OGM has omplexity linear in the number of nodes in the indued trees of the two olletions.

4 Dealing with Multiple Ourrenes { The Seond Generation

The Vetor-Spae Model's approah to multiple ourrenes of elements is a onsequene of its

origins in query-doument similarity. The presumption is that, given a query word, a doument

that has 100 ourrenes of the word is more relevant to the query than a doument that has

one ourrene of it. While this approah is reasonable for query-doument similarity, it is not

ompletely satisfatory for inter-doument similarity, or, more generally, inter-olletion similarity.

To see the problem, imagine three people X, Y and Z. Let's say that X buys one unit of

some element e, Y buys 2 units of it, and Z buys 100 units of it (and all of them buy a few other,

more-or-less-similar elements). Intuitively, X and Y are more similar than X and Z, sine X and

Y buy about the same number of units of e, while Z is quite di�erent from the two of them. This

onlusion is the exat opposite of that obtained by GCSM. OGM o�ers the same onlusion as

GCSM sine it, too, uses simple many-to-one mathes. While one may not expet people to buy

100 opies of the same CD, there are many domains where suh a situation does arise.

More importantly, the use of a hierarhy exaerbates the problem, sine we no longer insist on

exat mathes. For example, let us look at Figure 1 and ompute the similarity between A and

E. Aording to OGM, sim(A;E) is 0:75, while aording to GCSM it is 0:89. Table 1 shows

that sim(A;D), aording to the two measures, is 0:65 and 0:67 respetively. Thus, both measures

laim that sim(A;E) is higher than sim(A;D). In this example, we don't have multiple opies

of any one element, but we had a mismath in the number of elements under the Beatles branh.
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Figure 4: Illustrating the problems with multiple ourrenes

i OGM GCSM PGM BGM(0:8) RGM

1 0.7 0.7 0.7 0.7 0.7

2 0.717 0.717 0.47 0.667 0.638

3 0.725 0.703 0.35 0.620 0.617

4 0.730 0.690 0.28 0.573 0.606

1 0.75 0.612 0.0 0.0 0.575

Table 2: Similarity between T1(i) and T2

Thus, multiple ourrenes at any level in the hierarhy an prove to be a problem.

In the rest of this setion we will use an abstrat example, shown in Figure 4, to explain the

behaviour of the First Generation measures and the new measures that we propose. In this �gure,

we ompare a family of olletions represented by tree T1(i), for various i, to a olletion represented

by tree T2. The weights of all leaves are taken to be 1. The right branh of T1(1) is idential to the

right branh of T2. As i inreases, we add more and more leaves to the same branh of T1 at node

12. We wish to see how sim(T1(i); T2) hanges as i inreases.

Table 2 shows the (asymmetri) similarity values omputed by the various measures as a funtion

of i. For example, the �rst olumn shows the behaviour of OGM. We see that the similarity value

progressively inreases and onverges to 0:75, whih is what eah additional leaf under node 12

ontributes. Aording to our intuition, the similarity should deline as i inreases, espeially for

large values of i.

The seond olumn shows the behaviour of GCSM. We see that the similarity value goes up

for a short while, and then eventually delines to 0:612. This pattern seems more promising but,

atually, it too is poor. The ruial fat to note is that this value of 0:612 is still ditated solely by

the ontribution of eah additional leaf, whih is 0:75. But now, instead of the similarity simply
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Figure 5: The Balaned Genealogy Measure

being equal to this value (0:75), it is atually proportional to the square root of this value.

Intuitively, the reason for this behaviour is that the magnitude of the olletion orresponding

to T1(i) also inreases as i inreases sine T1(i) now has more \overlap" among its own elements.

This inrease has the e�et of trying to lower the osine similarity, but it is not strong enough to

overome the linear inrease in the numerator of the formula for GCSM. We will provide a more

detailed omparison of the semanti impliations of the various measures at the end of this setion.

The rest of the olumns in the table show the behaviour of the measures we will desribe in the

remainder of this setion.

4.1 The Balaned Genealogy Measure

OGM admits of a simple generalization that solves the multiple ourrenes problem. The general

idea is to be less \optimisti" during similarity omputation, and penalize many-to-one mathes: if

more than one leaf in the �rst tree gets its best math from one leaf in the seond tree, we lower the

similarity values that the dupliate mathes ontribute. Sine we don't want to be too pessimisti

in our similarity omputation either, like the traditional measures are, we all this measure the

Balaned Genealogy Measure (BGM).

BGM has a parameter �, a real number in [0; 1℄, whih ontrols the rate at whih similarity

deays with multipliity of mathes. To illustrate, onsider the two trees T1(3) and T2 in Figure 5.

Eah leaf of T1(3) is annotated with the leafsim value (reall Setion 3.3) that BGM provides it.

To see how these values are obtained, let us start with leaf 13 in T1(3). This leaf sores a value of

1 sine 13 also exists in tree T2. Next, we move on and try to �nd a math for leaf 14. The only

possible math for 14 is, one again, leaf 13. In OGM, we would have given this math a sore of

0:75. But now, we want to penalize leaf 14, sine it mathes with a leaf that has been mathed
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one already. So, we give it a sore 0:75�. For leaf 15, again, the best math available for it in T2

is 13. Sine 13 has been mathed twie already, we give 15 a sore 0:75�2. We then math leaf 6

with leaf 9 in T2, giving it a sore of 0:4. Finally, as usual we take the weighted average of these

sores to arrive at an overall similarity sore, whih is 0.620 for � = 0:8.

The proedure we have outlined above is dependent on the order in whih we examine the leaves

of T1. For example, if we had mathed leaf 14 before leaf 13, leaf 14 would have reeived a sore of

0:75 and 13 would have reeived a sore 1 times �, thus lowering the overall similarity sore. We

de�ne the similarity sore produed by BGM to be the sore generated by \optimal" mathing,

i.e., by the mathing that maximizes the overall similarity sore. We explain how to ompute this

sore in the formal de�nition, next.

4.1.1 Formal De�nition

Say we want to ompute sim(C1; C2), with C1 and C2 induing trees T1 and T2 respetively. BGM

proeeds as follows:

For eah leaf l1 in T1, visited in optimal order (to be de�ned later):

1. Find a math l2 in T2. Reall that l2 is a leaf in T2 that provides the best LCA for l1. If there

is more than one possible math, pik that l2 whih has been mathed the fewest times so far.

2. Inrement l2's math ount. (Initially, all math ounts are zero.)

3. De�ne:

optleafsimT1;T2(l1) =
depth(LCAT1;T2(l1))

depth(l1)

and:

leafsimT1;T2
(l1) = optleafsimT1;T2

(l1)� �math ount(l2)�1

The value sim(C1; C2) is omputed as the weighted average of the individual leafsim values, just

as in OGM.

The optimal order is that order of visits of the leaves that leads to the highest possible similarity

sore omputed aording to this algorithm. If C1 has n elements, the number of possible orderings

of leaves is n!. So, we annot a�ord to investigate every possible order and then pik the best one.

Fortunately, it is possible to ompute the similarity sore aording to the optimal order, with very

little omputational overhead. We �rst illustrate a simple ase where all leaves are at the same

depth and all leaf weights are equal.

The strategy we adopt is to look for mathes in multiple phases. In the �rst phase, we look only
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for exat mathes between leaves. In the seond phase, we look for pairs of leaves with a ommon

parent; in the third phase, pairs of leaves with a ommon grandparent, and so on. This strategy

is guaranteed to produe the optimal sore. To see why this strategy works, observe that we are

looking for mathes in the dereasing order of their optleafsim value ontribution. If we think of

BGM as being exatly idential to OGM, exept that some of the optleafsim values are redued,

we see that the strategy always attempts to redue the smallest possible optleafsim at eah stage.

For example, the math that produes the highest similarity sore never gets redued by �.

The strategy for the general ase, where we have leaves at di�erent depths and di�erent leaf

weights, is a generalization of the strategy outlined above. The key idea is to generate leafsim

values in dereasing order of optleafsim � W , using a generalization of the multi-phase approah

that we outlined above. This order is omputed in a preproessing step, and does not have to be

generated for eah individual similarity omputation.

4.1.2 Computational Complexity

Let l1 and i1 be the number of leaves and internal nodes in T1, l2 and i2 the number of leaves and

internal nodes in T2, h the height of the hierarhy, and b the maximum branhing fator in T2. Let

l = l1 + l2 and i = i1 + i2.

We noted earlier that OGM has omplexity O(l + i). The omputational omplexity for BGM

is higher than for OGM beause, for BGM, we need to maintain state in the leaves of T2 and use

this state while omputing similarity. There is also a slight overhead assoiated with omputing

the optimal order, beause we need to examine l1h nodes in T1 instead of l1 + i1 nodes in the ase

of OGM.

In order to maintain state eÆiently in T2, we use priority queues to order the hildren of all the

internal nodes. It an be shown that, due to the nature of updates to the various priority queues,

the worst-ase omputational omplexity is O(lh(h + log b)).

In pratie, log b would be muh smaller than h whih, itself, tends to be small in most domains.

Also note that this bound is the worst ase, and is realized only when omputing the similarity

between extremely dissimilar olletions. In most appliations, we would not be interested in the

exat similarity value between suh dissimilar olletions, and will be able to prune the omputation,

thus ahieving a muh better omputational omplexity.
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Figure 6: The Reursive Genealogy Measure

4.1.3 Disussion

First, notie that setting � = 1 instantiates BGM to OGM. At the other extreme, setting � = 0

is a pessimisti evaluation of similarity where we insist that no leaf in T2 is mathed more than

one. We all this extreme the Pessimisti Genealogy Measure (PGM). PGM and OGM provide

the lower and upper bounds respetively on the similarity values omputed by BGM.

We now look at the similarity sores omputed by BGM for the example in Figure 4 for two

di�erent � values, 0 (PGM) and 0:8. Table 2 shows these values. We see that similarity delines

to 0 in both ases, but it delines muh faster with � = 0. This behaviour is no surprise, sine �

ontrols the degree of optimism of the measure. The important observation is that the similarity

sore atually does deline as i inreases, whih is what we set out to ahieve.

4.2 The Reursive Genealogy Measure

Let us revisit the multiple ourrenes problem. The problem, as we have seen, is that we tend to

be too \optimisti" in our similarity estimates, whih is unwarranted when we have many leaves

in one tree mathing just one leaf in the other tree. If we revisit the omputation performed by

OGM, shown in Equation 1, we see that there are two ways of solving this problem. The �rst is

the approah adopted by BGM, namely lowering similarity for dupliate mathes. Alternatively,

we ould leave the similarity values alone and, instead, lower the weight that we assign to these

dupliate mathes. This is the approah that we study now, alled the Reursive Genealogy Measure

(RGM). In Setion 4.3, we ompare the semanti underpinnings of these two approahes.

We will, one again, use trees T1(3) and T2, shown in Figure 6, to explain RGM. The similarity
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omputation onsists of two phases. In the �rst phase, we simply ompute leafsim values just as

in OGM. In Figure 6, they are the �rst element of the ordered pairs on the leaves of T1(3). To

ompute the overall similarity value for the two trees, we use a bottom-up omputation on T1(3)

to make the leafsim values ow to the top of the tree. The value that is obtained at the root node

is the similarity between the two trees. The value at an internal node stands for the similarity

between that subtree and the appropriate portion of T2.

In order to perform this omputation, we �rst need to de�ne weights for the nodes in the two

trees. We will take the weights of all the leaves to be 1 in this example. Let us �rst look at T2.

Here, the weight of an internal node is simply the sum of the weights of its hildren. Thus, the root

has a weight of 2, while all others have a weight of 1 (shown in square brakets). The rux of the

measure is in the assignment of weights to the nodes in T1(3). Weights are de�ned in T1(3) just as

in T2, with one exeption. If a node in T1 also happens to be in T2, and its weight is lower in T2,

we use this lower value as its weight in T1.

In the �gure, the weights of the nodes are shown as the seond element of the ordered pairs

enlosed by [ ℄. In the left subtree of T1(3), the weights are all simply 1. But in the right subtree,

the weight of node 12 is not 3. We notie that 12 has a lower weight of just 1 in T2. So, we assign

it a weight 1 in T1(3), too. Notie that this assignment of weights in T1(3) aptures the multiple

ourrenes. The fat that all leaves under 12 an math just a single leaf in T2 is aptured by

assigning a weight of 1 to node 12.

One these weights are assigned, we ompute similarity by a simple bottom-up alulation. The

similarity at any internal node is the weighted average of the similarity at all its hildren. Thus, in

Figure 6, the similarity at node 12 is seen to be 1+0:75+0:75
3 = 0:833 (shown as the �rst element of

the ordered pair). The similarity we see at the root is the atual similarity value between the two

trees, whih is 0:617 in this ase.

4.2.1 Formal De�nition

For any tree T and any node n in T , let CT (n) be the set of all hildren of n in T . Let WT (k) be

the weight of node k in tree T . We will shortly explain how to ompute WT (k), given our original

weight funtion W whih is de�ned only for the leaves of trees.

Let C1 and C2 be the two olletions under omparison, and let T1 and T2 be their assoiated

trees, as usual. We �rst de�ne the weights to be assoiated with all the nodes in tree T2. We then
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de�ne the weights for all the nodes in T1.

WT2(n) = W (n) if n is a leaf of T2

=
X

2CT2 (n)

WT2() if n is an internal node of T2

= 1 otherwise

We have de�ned the weights of nodes not in T2 to be 1 for notational onveniene.

WT1(n) = W (n) if n is a leaf of T1

= min(
X

2CT2 (n)

WT1();WT2(n)) if n is an internal node of T1

= 0 otherwise

For any internal node in T1, its weight is determined both by the sum of the weights of its hildren

in T1, say p, and by the weight of the same node in T2, say q. Although we have hosen to use

min(p; q) as our weight, we ould, in general, use any funtion, although funtions that return a

value between p and q make the most sense. We disuss the e�et of this hoie in Setion 4.3.

Let simT1;T2(n) denote the similarity value \at" a node n in tree T1. The similarity between

the two trees sim(T1; T2) is given by:

sim(T1; T2) = simT1;T2(root(T1))

For all nodes n in T1, we de�ne:

simT1;T2(n) = optleafsimT1;T2
(n) if n is a leaf (de�ned in Setion 4.1.1 )

=

P
2CT1 (n)

WT1() � simT1;T2()P
2CT1 (n)

WT1()
if n is an internal node

4.2.2 Comparison

First, notie that the omputational omplexity of RGM is linear in the total number of nodes in

the indued trees of the olletions under omparison. This omplexity is the same as OGM and

better than BGM.

The last olumn in Table 2 shows the similarity values as omputed by RGM for the trees

in Figure 4. We see that the similarity value delines as i inreases, whih is the e�et that was

desired. We also notie that the similarity value delines slowly and does not eventually onverge to

zero; instead, it onverges to a value 0:575. At �rst sight, this behaviour seems to resemble GCSM,
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whih also delines and onverges to a non-zero value. But there is a big qualitative di�erene

between the values that they onverge to, whih we explain in Setion 4.3. RGM is very di�erent

from GCSM as will also be seen from our experimental results in Setion 5.1.

4.3 Summary and Disussion

The fat that we have proposed more than one measure, eah of whih handles multiple ourrenes

in its own way, is a natural onsequene of the di�erent possible interpretations of the idea of

similarity. Reonsider our original example in Figure 1, partiularly the similarity between A and

E. Reall that A has two Beatles CDs, while E has 14 Beatles CDs and one lassial musi CD.

One way to look at the similarity of A and E would be to observe that a high perentage of E's

purhases are Beatles CDs. Therefore, we ould treat E as a \Beatles person." Sine A is also a

\Beatles person", we give them a very high similarity sore. This interpretation is the one o�ered

by OGM. GCSM uses an interpretation that is almost idential, but with one important di�erene.

It observes that eah of A's purhases is very similar to almost every one of E's purhases. The

high similarity sore resulting from this observation is tempered by the fat that E's purhases are,

themselves, very similar to eah other.

The BGM interpretation is inuened by the di�erene in size between A and E: The fat that

E has 14 Beatles CDs while A has just 2 makes them somewhat dissimilar aording to BGM.

The fourth, and �nal, interpretation di�ers markedly from the �rst three. None of the �rst three

interpretations were inuened muh by the fat that E bought a Mozart CD. All of them were

swayed primarily by the fat that the majority of the CDs bought by E were Beatles CDs. The

RGM interpretation loalizes the e�ets of the Beatles CD purhases, and is inuened by the other

purhases of A and E as well.

It is not lear that one of these interpretations is always the \orret" interpretation. Quite

often, it depends on the nature of the domain, the nature of the olletions, and the exat semanti

need. For example, if we knew that we wanted similarity of queries to douments, and we don't are

too muh about overlap between query terms, we would settle for the �rst interpretation (OGM).

The seond interpretation (GCSM) might be useful for longer queries, where we might take into

aount the fat that two of the query words are desribing related onepts. For example, if we

had both the words \ar" and \biyle" in a query, whih also onsisted of many other words, we

might want to take into aount the relationship between these words.

Choosing between the third (BGM) and fourth (RGM) interpretations is ditated by the relative
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importane of the overage and distribution of elements. For example, in Figure 1 we ould hoose

to ignore the fat that E bought a Mozart CD, as BGM does, as long as we are only about the

distribution of the elements. If overage is important, we do want to fator in E's Mozart CD, and

the RGM interpretation permits us to do so. By suitably hoosing the orret funtion to use in

omputing weights in RGM, we an pik the desired balane between overage and distribution.

4.4 Other Extensions

4.5 Other Extensions

There are other extensions to the model and the metris that we have omitted for ease of desription.

We provide a brief overview of some of them here.

4.5.1 Edge Weights

We an introdue edge weights into our tree model, assigning them a priori. Edge weights helps

apture the relative importane of a `onept leap' from a parent to a hild. For example, the

`distane' between Aerosmith and Hard Rok may be smaller than the `distane' between Hard

Rok and Rok. Modifying the metris to handle these edge weights is a straightforward exerise:

We use distanes from the root instead of node depth, when omputing leaf similarities.

4.5.2 DAGs

Several of these metris an be extended to handleDAGs rather than just trees. We just rede�ne the

onept of the LCA to be that anestor that provides the highest leaf similarity value. Generalizing

RGM to handle DAGs is rather more ompliated, sine it relies on a bottom-up omputation

whih we will have to generalize to DAGs.

4.5.3 Handling Weight Skew

In all our algorithms, we might be mathing a leaf l1 with a high weight with a low-weight leaf, say l2.

When we ompute the overall similarity in BGM by omputing a weighted average, we have simply

used the weight of l1. But, there is a ase for using a lower weight for l1 in the averaging proess,

if the leaf it mathed had a muh lower weight. This problem is, in fat, idential in spirit to the

size skew problem. The simplest way to handle it is to introdue a new fator f(WT1(l1);WT2(l2)),

a value between 0 and 1 that will modify the leafsim value that we assign to l1.
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The Reursive Genealogy metri already handles the weight-skew problem in a orret fashion.

5 Evaluation

We now proeed to evaluate our measures empirially. There are at least three types of questions

one may pose:

1. How di�erent are the measures from eah other and from the traditional measures in pratie?

If all measures give roughly the same rankings, we might as well use the traditional measures.

But if there are di�erenes, an we haraterize when the di�erenes our?

2. How well does eah of them math human intuition? Would a human agree with the similarity

rankings produed by our measures?

3. What measure is best or most appropriate for a given appliation?

In this paper we fous on the �rst two types of questions, sine the third type is learly appliation-

dependent and very hard to answer. However, we believe that if a partiular measure mathes

human intuition (item 2 above), it is likely to perform well in a variety of appliations.

In Setion 5.1, we provide detailed omparisons of the various measures, analyze where and how

muh the measures di�er and, in the proess, show that using a hierarhy produes results very

di�erent from those produed by traditional measures. In order to show that a hierarhy yields

more intuitive similarity results, we rely on a user study, as detailed in Setion 5.2.

In our evaluation, we hoose Jaard's CoeÆient as representative of the traditional measures,

and refer to it as the Naive measure. All of the traditional measures are extremely similar when

ompared against our First and Seond Generation measures, so Jaard's CoeÆient is a good

representative.

5.1 Experimental omparison of the di�erent measures

For the experiments reported in this setion, we used transripts of undergraduate CS majors at

Stanford as our data set. Eah transript is a olletion of (ourse,grade) elements. The objetive

is to ompute how similar two students are, on the basis of the ourses they have taken and the

grades they have obtained in those ourses. There were a total of 403 transripts, with an average

of about 41 (ourse,grade) pairs per transript.

The hierarhy onsists of 6 levels: department, ourse level, ourse subjet, ourse number, and

a two-level grade lassi�ation, in that order. Changing this order leads to di�erent hierarhies
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and, onsequently, di�erent semantis for similarity. For example, plaing the grade levels at the

top of the hierarhy would mean that we want to pay more attention to the grades that students

get, rather than the ourses they take, in determining the similarity between two students. Thus,

the hoie of the hierarhy reets the semanti need of the appliation.

5.1.1 The Distane Measure

Given a similarity measure M and any olletion X, we an generate a ranked list of olletions

LM (X), in dereasing order of similarity to X. In most ases, it is this ranked list that is impor-

tant, rather than the atual similarity values that we ompute. Moreover, most appliations only

are about the top portion of this list, say the Top K, whether it is in order to �nd the nearest

neighbors of a given olletion, or whether it is to return the Top K mathes to the olletion. We

therefore de�ne a distane measure3 to ompare similarity results on the basis of these ranked lists

of olletions.

Let S be the set of all olletions. Let rankM;X(A) be the rank of olletion A in list LM (X).

Further, let LM(X)[i℄ refer to the olletion that has rank i. Our distane measure ompares the

ranked lists generated by two di�erent measures by imagining one of the measures as generating

an \ideal" ranking. We then measure how muh eah olletion is displaed from its ideal ranking

by the seond measure.

To illustrate, let us look at Figure 7. There are two measures, 1 and 2, that produe two di�erent

ranked lists of olletions A;B;C;D and E, given some other olletion X to ompare against. We

now want to quantify the di�erene between these two ranked lists. First, we notie that A has

rank 1 in the �rst list, while it has rank 2 in the seond. Thus, A ontributes a displaement of 1

to the total distane between the lists. Next, we see that B has rank 2 in the �rst list, while it has

rank 1 in the seond. This is an upward displaement and we do not ount it, beause it is already

aptured by the fat that A;B;C and D are all pushed down a step by B's moving up. Similarly,

C ontributes a displaement of 1, while D and E ontribute nothing. Thus, the total distane

between the ranked lists is 2, and the average displaement is 2
5 = 0:4.

In the example above, we omputed the distane over the whole list. Computing it over the

Top K is done in the same manner, exept that we only onsider the top K olletions of the �rst

measure.

Formally, we de�ne the Top-K Distane between measures M1 and M2, when used to ompute

3not to be onfused with our similarity measures
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Metric 1                                Metric 2
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E

B
A
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Figure 7: The Distane Measure
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Figure 8: Average Top K distane w.r.t. RGM

similarity against olletion X, as follows. (The _� operator yields 0 if the di�erene is negative.)

TopKDistM1;M2;K
(X) =

PK
i=1 rankM2;X(LM1

(X)[i℄) _�i
K

We also de�ne a distane measure over a \window" of the ranked lists. This de�nition is idential

to the previous one, exept that instead of looking at the Top K aording to the �rst measure,

we look at olletions in a spei� window. In this ase, we annot omit downward displaements,

sine omitting them would make windows in the lower segments of the list appear loser. For the

example in Figure 7, the average distane for a window of size 3, starting at position 2, i.e., overing

olletions B;C and D, is given by 1+1+1
3 = 1. Formally,

WindowDistM1;M2;I;K(X) =

PI+K�1
i=I jrankM2;X(LM1

(X)[i℄) � ij
K

This measure helps us analyze how well two measures agree in di�erent segments of the ranked lists

that they produe. Notie that the ranked lists we have seen so far have been generated by piking

an arbitrary olletion X, and arranging all other olletions by their similarity to it. Thus, in

order to be able to ompare two measures, we average the distanes we ompute over all possible

hoies for X.

Figure 8 shows the average rank displaement in the Top K list for various measures with

respet to RGM, as a funtion of K. Notie that the average displaement for the Naive measure,

even for the Top 10, is as muh as 40, whih is about 10% of the size of the entire orpus. This
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Figure 9: WindowDist10 w.r.t. (a) RGM and (b) OGM

result means, informally, that the olletions that RGM onsiders the top 10 would be, on average,

around the 40th or 50th position under the Naive measure, a very signi�ant di�erene! On the

other hand, all the Genealogy measures are bunhed around the bottom of the graph, with even

their peak displaement being well under 20. In fat, for the Top 10 list, the average displaement

between RGM and OGM is just 1:42. This result means that RGM and OGM agree very well on

what the most similar olletions to a target olletion X are. For the BGM family, as the value

of � dereases, the displaement starts getting larger and larger, but it is still muh smaller than

the displaement of GCSM, and that of the Naive measure.

It is important to realize that we an only ompare measures with respet to RGM from this

graph. For example, the displaement between the GCSM and the Naive measure is not given by

the di�erene between the urves orresponding to them on this graph. Also notie that all the

urves have roughly the same shape, rising for a while before dropping o� again. This behaviour is

illustrated better by Figure 9(a), whih shows the average rank displaement, in a sliding window

of size 10, of all measures with respet to RGM.

The shape of the urve tell us that, for all the measures, there is greater agreement at the

beginning and the end of the list than in the middle: there are a few olletions whih are learly

the most similar and there are a few olletions whih are learly the most dissimilar. These
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olletions are more easily identi�ed by all the measures and, therefore, they agree more in the

beginning and the end.

Figure 9(b) plots a similar graph, this time omparing the various measures to OGM. One

again, we notie that the Naive measure produes results that are extremely di�erent from the

results produed by OGM. For BGM, the distane from OGM gets larger as � dereases, whih is

only to be expeted sine OGM has � = 1. But the rankings appear muh less sensitive to � at

the beginning and the end of the ranked lists. We also see that the urve for RGM lies between

the urves for � = 0:6 and � = 0:8. This does not mean that the RGM behaves like the BGM with

� = 0:7. All it means is that RGM is as di�erent from OGM as the BGM with � = 0:7.

These graphs onlusively establish that using a hierarhy makes a big di�erene to the similarity

rankings that are generated. We also onlude that GCSM is rather di�erent from the Genealogy

measures, a fat that we attribute to GCSM's use of many-to-many mathes. BGM is sensitive to

the spei� hoie of �, but the sensitivity is muh lower at the top and the bottom of the lists.

Thus, the hoie of � is not too ritial, if one is trying to identify learly similar or dissimilar

olletions. RGM and OGM are extremely similar at the top of the list, whih is to be expeted in

this domain. Our data set does not have any multipliity at the leaf level (there is multipliity at

higher levels), sine it was rarely the ase that a student repeated a ourse and ended up with the

same grade.

5.2 Mathing Human Intuition

In order to understand how well the various measures math human intuition, we performed an

informal user study. Some of the important issues in the design of the study were:

� The users needed to be familiar with the domain from whih the olletions were drawn. With

this in mind, we hose the supermarket domain, and eah olletion was a bag of groery items.

� It was not reasonable to expet users to ome up with absolute similarity sores between

olletions. Instead we asked users to rank two olletions aording to their similarity to a

given olletion.

� The olletions needed to be reasonably small in order to keep the questions tratable. There-

fore, we used olletions with a small number of distint elements. Fortunately, these olletions

proved suÆient to test the validity of the premises underlying the di�erent measures.

The study was arried out on 33 people, all members of the Stanford Database Group. It

onsisted of 10 multiple-hoie questions suh as the ones shown in Figure 10. The study was
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Whole Wheat Bread,                    
1% milk,
Potato Chips,
Pepsi.

Oranges,
Cracked Wheat Bread,
1% milk,
Spinach.

>
=
<

Apples,Whole Wheat Bread,1% Milk,Carrots

A

B C

Whole Wheat Bread,                    
Cheese Singles,

Carrots,
10 Snickers Candy Bars.

Carrots,
2 Snickers Candy Bars.

Whole Wheat Bread,
Cheese Singles,CB

>
=
<

A

Apples,Ice Cream,Cookies,1 Snickers Candy Bar

(b)

(a)

Figure 10: Two Sample Questions

designed suh that the answer to eah question would be a vote for or against one or more measures.

Figure 10(a) shows a sample question from our user study. It shows three olletions A, B

and C, and the user needs to determine whether sim(A;B) is greater than, equal to, or less than,

sim(A;C). If the user thought that ustomer C was more similar to A (than B was to A), say

beause C and A appear to like health foods, then the user would irle the \<" symbol. In this

example, A and B have two elements in ommon, while A and C have just one element in ommon.

Thus, the traditional measures would report that sim(A;B) is higher. On the other hand, 75% of

the users deided that sim(A;C) is higher, whih agrees with all the First and Seond Generation

measures. We onlude that, in this ase, the First and Seond Generation measures perform better

than the traditional measures.

Figure 10(b) shows another sample question from the survey. In this ase, OGM would predit

that sim(A;C) is higher. BGM predits that sim(A;B) is higher (for most �), while RGM predits

that B and C are equally similar. Of the 33 users, 28 agreed with either BGM or RGM, from whih

we dedue that OGM does not math human intuition. The distribution of responses was not lear

enough for us to hoose between BGM and RGM in this ase.

We do not have spae to report all our results, but briey, the following onlusions were drawn

from the survey:

� Using the hierarhy is de�nitely an improvement over a naive approah, and more intuitive

similarity results are obtained.
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� GCSM does not perform as well as the Genealogy measures in this domain, and annot be

reommended as a general-purpose measure.

� There was a lot of support for both BGM and RGM, and the variane of the results ruled out

our being able to deide whether one was better than the other. In pratie, one would need

appliation-spei� experiments to determine whih measure better mathes the appliation

semantis.

� For BGM, it was established that � values of 0 and 1 are both unsatisfatory. Again, appliation

semantis would determine the exat value of � although the reasonably low sensitivity to �

in our experiments in Setion 5.1 suggests that a � value around 0:5 is reasonable.

While the user study was fairly limited in its sope, we believe that its onlusions are nonethe-

less useful and generally aeptable in most domains. We provide more details on the user study

in the appendix.

6 Related Work

There have been attempts to improve traditional osine similarity, as well as address data spar-

sity, using dimensionality-redution tehniques suh as Latent Semanti Indexing [DDF+90℄. This

tehnique atually shows some improvement in the quality of the similarity sores, sine it tries to

infer latent relationships between dimensions. Suh tehniques have also been tried in ollaborative

�ltering [SKKR00℄ but it appears somewhat unlear as to whether it atually improves reommen-

dation quality. Notie that using a domain hierarhy is atually an impliit form of dimension

redution, sine the hierarhy implies that all elements are not orthogonal to eah other. On the

other hand, our tehniques expliitly de�ne the relationship between the di�erent dimensions, while

LSI infers the relationships from the orpus.

There have been quite a few attempts to use word hierarhies suh as WordNet [MRF+90℄ in

Information Retrieval. Rada et al. [RMBB89℄ de�ned the semanti similarity between two words as

the weight of the path between the words, whih bears a lot of resemblane to our de�nition of the

LCA of two leaves. Lee et al. and Kim et al. [LK93, KK90℄ have also used this \oneptual distane"

measure for Information Retrieval. There are also other, information-based measures based on the

same hierarhy [Res95℄ whih an be used for word similarity. Rihardson et al. [RS95℄ ompare the

eÆay of di�erent word-similarity measures in omputing query-doument similarity. All these

works are foussed on query-doument similarity and do not generalize to inter-olletion similarity.
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Rihardson et al. [RS95℄ also disuss the issue of generating edge weights for the onept graphs,

whih ould �nd use in our work in generating edge weights for our hierarhy.

Sott et al. [SM98℄ have studied the use of a hypernym density representation instead of a bag-

of-words representation in text lassi�ation and report improvements for orpora with a reasonable

amount of diversity. Rodriguez et al. [dBRGHDA97℄ also report improvements in text lassi�ation

when using WordNet to enhane neural-network learning algorithms. But neither of these works

use a diret similarity measure based on the hierarhy. Conept hierarhies have frequently been

used in data mining. They have been used to mine multi-level assoiation rules [HF95, SA95℄, and

to improve knowledge disovery in textual databases [FD95℄. Neither of these two appliations is

diretly related to omputing similarity using hierarhies.

There are also other lasses of methods used to ompute similarity between olletions whih

exploit the struture between olletions. For example, [BLG98℄ uses the link struture of researh

papers to ompute similarity between them. Suh methods are not diretly related to our work,

exept they may perhaps be used to solve the same overall problem.

Besides the similarity measures that we have desribed in Setion 2, there have been a variety of

distane measures de�ned in various ontexts. One suh lass of measures is edit distane, wherein

the distane between two strutures is measured by the ost of the edit operations needed to

transform one struture to the other. Algorithms for �nding the optimal edit sript exist for various

types of strutures, and for various sets of edit operations. Computing the optimal edit distane

between unordered trees, even with simple edit operations, is NP-omplete [SZ97℄. In addition,

edit distane does not give us the freedom to deal with nuanes of inter-olletion similarity, suh

as handling multiple ourrenes.

Another distane measure, popular in a variety of domains, is Earth-mover's distane [RTG98℄,

whih measures the distane between two olletions of points in spae by alulating the work to

be done in moving mounds of earth, loated at points in the �rst olletion, to �ll holes, loated at

the points in the seond olletion. One again, this model is not a good �t for the problem at hand

beause it fores many-to-many math semantis and, again, does not handle multiple ourrenes

well.
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7 Conlusions

We have proposed exploiting hierarhial domain struture to ompute similarity between olle-

tions. We de�ned measures that use this hierarhy, shown why both these and traditional measures

often have unsatisfatory semantis, and suggested re�nements that provide good semantis for

inter-olletion similarity. We have performed empirial omparisons of our measures with tra-

ditional similarity measures, and shown that using the hierarhy makes a large di�erene, both

in terms of the values that are produed, and in terms of ranked lists of olletions similar to a

given olletion. We have reported the �ndings of an informal user study to justify our belief that

our measures generate results that are loser to human intuition than the traditional similarity

measures.

We are urrently in the proess of building reommender systems using these measures, and us-

ing the hierarhy in other portions of the reommender system. Preliminary results are enouraging,

and seem to provide higher-quality reommendations than the simple Pearson-orrelation-based,

nearest-neighbor approahes.
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Appendix A The User Study

The user study that we undertook is shown below. Nearly all the questions had more than 70% of

the users seleting one of the three hoies. If this happened, the answer was onsidered to be the

\orret" answer. The questions were designed in suh a fashion as to make the di�erent similarity

measures provide di�erent answers. Thus, identifying the \orret" answer to a question would

help us deide that some similarity measures are better than others.

The only questions for whih we ould not determine a \orret" answer were designed to hoose

between BGM and RGM. Here, user votes were split between � and one of > or <. For example,

Question 5 had votes split between � (whih is the answer suggested by RGM) and > (whih

is suggested by BGM). We would have needed a more preise haraterization of the similarities

involved, perhaps in terms of exat numerial values, in order to be able to draw onlusions on

the relative quality of RGM and BGM in these ases.

1. f Diapers, Fat-free Milk, Gerber Squash and Corn g
Baby Bee Apriot Baby Oil > Fat-free Milk

Gerber Green Beans � Diet Pepsi 6Pk.

1% Milk < Equal low alorie Sweetener

Miller Lite 6Pk.

2. fApples, Ie Cream, Cookies, 1 Snikers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

1 Snikers Candy Bar 2 Snikers Candy Bars

3. fApples, Ie Cream, Cookies, 1 Snikers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

2 Snikers Candy Bars 10 Snikers Candy Bars

4. f 1 gallon 1% milk g
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1 gallon 1% milk > 1 gallon 1% milk

1 gallon 2% milk � 1 gallon Orange Juie

<

5. f Apples, Ie Cream, Cookies, 1 Snikers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

20 Snikers Candy Bars 40 Snikers Candy Bars

6. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

1 Snikers Candy Bar < 2 Snikers Candy Bars

7. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

2 Snikers Candy Bars < 10 Snikers Candy Bars

8. f Apples, Whole Wheat Bread, 1% Milk, Carrots g
Whole Wheat Bread > Oranges

1% milk � Craked Wheat Bread

Potato Chips < 1% milk

Pepsi Spinah

9. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

10 Snikers Candy Bars < 20 Snikers Candy Bars

10. f 2 gallons 1% Milk g
1 gallon 1% Milk > 1 gallon 1% Milk

1 gallon 2% Milk � 1 gallon Orange Juie

<
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