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Abstra
t

The notion of similarity between obje
ts �nds use in many 
ontexts, e.g., in sear
h engines,


ollaborative �ltering, and 
lustering. Obje
ts being 
ompared often are modeled as sets, with

their similarity traditionally determined based on set interse
tion. Interse
tion-based measures

do not a

urately 
apture similarity in 
ertain domains, su
h as when the data is sparse or

when there are known relationships between items within sets. We propose new measures that

exploit a hierar
hi
al domain stru
ture in order to produ
e more intuitive similarity s
ores. We

also extend our similarity measures to provide appropriate results in the presen
e of multisets

(also handled unsatisfa
torily by traditional measures), e.g., to 
orre
tly 
ompute the similarity

between 
ustomers who buy several instan
es of the same produ
t (say milk), or who buy

several produ
ts in the same 
ategory (say dairy produ
ts). We also provide an experimental


omparison of our measures against traditional similarity measures, and des
ribe an informal

user study that evaluated how well our measures mat
h human intuition.

1 Introdu
tion

The notion of similarity is used in many 
ontexts to identify obje
ts having 
ommon \
hara
-

teristi
s." For instan
e, a sear
h engine �nds do
uments that are similar to a query or to other

do
uments. A 
lustering algorithm groups together gene sequen
es that have similar features. A


ollaborative �ltering system looks for people sharing 
ommon interests [GNOT92℄.

In many 
ases, the obje
ts being 
ompared are treated as sets or bags of elements drawn from

a 
at domain. Thus, a do
ument is a bag of words, a 
ustomer is a bag of pur
hases, and so

on. The similarity between two obje
ts is often determined by their bag interse
tion: the more

elements two 
ustomers pur
hase in 
ommon, the more similar they are 
onsidered. In other 
ases,

the obje
ts are treated as ve
tors in an n-dimensional spa
e, where n is the 
ardinality of the

element domain. The 
osine of the angle between two obje
ts is then used as a measure of their

similarity [M
G83℄. We propose enhan
ing these obje
t models by adding a hierar
hy des
ribing

1This material is based upon work supported by the National S
ien
e Foundation under Grant No. 0085896.
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Figure 1: Musi
 CD Hierar
hy

the relationships among domain elements. The \semanti
 knowledge" in the hierar
hy helps us

identify obje
ts sharing 
ommon 
hara
teristi
s, leading to improved measures of similarity.

To illustrate, let us look at a small 3-level hierar
hy on the musi
 CD domain, as shown in

Figure 1. Let us say 
ustomer A buys Beatles CDs b1 and b2, B buys Beatles CDs b3 and b4, and

C buys Stones CDs s1 and s2. If we were to use a similarity measure based on set interse
tions,

we would �nd that the similarity between any two of A, B and C is zero. The Ve
tor-Spa
e Model

would represent A, B and C as three mutually perpendi
ular ve
tors and, therefore, the 
osine

similarity between any two of them is again zero.

However, looking at the hierar
hy of Figure 1, we see that A and B are rather similar sin
e both

of them like the Beatles, while A and C are less similar sin
e both listen to ro
k musi
 although

they prefer di�erent bands. The similarity between two CDs is re
e
ted in how far apart they are

in the hierar
hy. In this paper, we develop measures that take this hierar
hy into a

ount, leading

to similarity s
ores that are 
loser to human intuition than previous measures.

There are several interesting 
hallenges that arise in using a hierar
hy for similarity 
omputa-

tions. In our CD example, for instan
e, 
ustomers may pur
hase CDs from di�erent portions of the

hierar
hy: e.g., 
ustomer D in Figure 1 pur
hases both Beatles as well as Mozart CDs. In su
h a


ase it is not as obvious how similar D is to A or B or to other 
ustomers with mixed pur
hases. As

we will see, there are multiple ways in whi
h the hierar
hy 
an be used for similarity 
omputations,

and in this paper we will 
ontrast di�erent approa
hes.

Another 
hallenge is handling multiple o

urren
es (multisets) at di�erent levels of the hierar
hy.

For example, say we had another user E who buys a lot of Beatles CDs as well as a Mozart CD

m1 (see Figure 1). The question is: Whi
h of D or E is more similar to A? Customer D bought

Beatles CD b1, just like A. On the other hand, 
ustomer E did not buy that CD, but did buy a

lot of other Beatles CDs. The traditional 
osine-similarity measure favors multiple o

urren
es of
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an element. That is, if a query word o

urs a hundred times in a do
ument, the do
ument is more

similar to the query than one in whi
h the query word appears only on
e. If we use this approa
h

in our example, we would say that E is more similar to A than D is, be
ause E buys 14 Beatles

CDs, while D buys just one.

Unfortunately, it is not 
lear that this 
on
lusion is the 
orre
t one. E is probably a serious

Beatles fan, while A and D appear more balan
ed and similar to ea
h other, so it would also be

reasonable to 
on
lude that D is more similar to A than E is. Thus, measures like 
osine-similarity

often do not provide the right semanti
s for inter-obje
t similarity. This problem has, in fa
t,

been observed earlier in the 
ontext of inter-do
ument similarity [SGM95℄. In this paper, we study

various semanti
s for multiple o

urren
es, and provide measures that map to these semanti
s.

There has been a lot of prior work related to similarity in various domains and, naturally, we

rely on some of it for our own work. In Se
tions 2 and 6 we dis
uss prior work in detail, but here

we make some brief observations.

In our example we have seen that with traditional measures 
ustomers A, B and C have zero

similarity to ea
h other be
ause their pur
hases do not interse
t. When obje
ts or 
olle
tions are

sparse, i.e., have few elements relative to the domain, interse
tions tend to be empty and traditional

measures have diÆ
ulty identifying similar obje
ts. There have been many attempts to over
ome

this sparsity problem through te
hniques su
h as dimension redu
tion [SKKR00℄, �ltering agents

[SKB+98℄, item-based �ltering [SKKR01℄ and the use of personal agents [GSK+99℄. We believe

that using a ri
her data model (i.e., our hierar
hy) addresses this problem in a simple and e�e
tive

way.

Hierar
hies, of 
ourse, are often used to en
ode knowledge, and have been used in a variety

of ways for text 
lassi�
ation, for mining asso
iation rules, for intera
tive Information Retrieval,

and various other tasks where similarity plays a role [FD95, HF95, SM98, SA95℄. Inspired by su
h

prior uses of hierar
hies, our goal here is to rigorously study how a domain hierar
hy 
an be used

to 
ompute similarity, independent of a spe
i�
 appli
ation, and to explore, 
ompare and evaluate

the various options that are available.

We believe that there are many domains in whi
h hierar
hies exist and 
an be exploited as we

suggest here. Just to name a few examples, the Open Dire
tory [Ope℄ is a hierar
hy on a subset of

pages on the web. Thus, we 
an 
ompute the similarity of web users, for instan
e, based on a tra
e

of the web pages they visit. In the musi
 domain, songs 
an be organized into a hierar
hy by genre,

band, album, and so on. This hierar
hy 
an then be used, say, to �nd Napster [Nap℄ users with
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Figure 2: Evolution of Similarity Measures

similar tastes, and re
ommend new songs to them. In the do
ument domain, we 
an use existing

hierar
hies su
h as WordNet [MRF+90℄ to 
ompute do
ument similarity. In all of these 
ases, our

general-purpose extended similarity measures 
an be used to improve fun
tionality.

In summary, the main 
ontributions of this paper are the following:

� We introdu
e similarity measures that 
an exploit hierar
hi
al domain stru
ture, leading to

similarity s
ores that are more intuitive than the ones generated by traditional similarity

measures.

� We extend these measures to deal with multiple o

urren
es of elements (and of an
estors in

the hierar
hy), su
h as those exhibited in A and E in Figure 1, in a semanti
ally meaningful

fashion.

� We analyze the di�eren
es between our various measures, 
ompare them empiri
ally, and show

that all of them are very di�erent from measures that don't exploit the domain hierar
hy.

� We report the �ndings of an informal user study to evaluate the quality of the various measures.

Figure 2 shows the evolution of the measures that we will dis
uss, and serves as a roadmap for

the rest of the paper. Se
tion 2 des
ribes traditional approa
hes to 
omputing similarity. Se
tion

3 introdu
es our First Generation measures, whi
h exploit a hierar
hi
al domain stru
ture and are

obtained as natural generalizations of the traditional measures. Se
tion 4 introdu
es the multiple-

o

urren
e problem, and evolves the measures into our Se
ond Generation measures. Se
tion 5 is

devoted to a 
omparison of these measures and their evaluation. Se
tion 6 des
ribes related work.

2 Traditional Similarity Measures

Given two obje
ts, or 
olle
tions of elements C1 and C2, our goal is to 
ompute their similarity

sim(C1; C2), a real number in [0; 1℄. The similarity should tend to 1 as C1 and C2 have more
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and more 
ommon \
hara
teristi
s." There is no universal notion of whi
h \
hara
teristi
s" 
ount,

and hen
e the notion of similarity is ne
essarily subje
tive. Here we will de�ne several notions of

similarity, and dis
uss how intuitive they are.

2.1 The Set/Bag Model

In many appli
ations, the simplest approa
h to modeling an obje
t is to treat it as a set, or a bag,

of elements, whi
h we term a 
olle
tion. The similarity between two 
olle
tions is then 
omputed

on the basis of their set or bag interse
tion. There are many di�erent measures in use, whi
h di�er

primarily in the way they normalize this interse
tion value [van79℄. We des
ribe two of them here.

Let X and Y be two 
olle
tions. Ja

ard's CoeÆ
ient, whi
h we denote simJa

(X;Y ), is

de�ned to be:

simJa

(X;Y ) =
jX \ Y j
jX [ Y j

Thus, in Figure 1, simJa

(A;D) = 1
2+2�1 = 1

3 . Di
e's CoeÆ
ient, whi
h we denote simDi
e(X;Y ),

is de�ned to be:

simDi
e(X;Y ) =
2 � jX \ Y j
jXj+ jY j

On
e again referring to Figure 1, simDi
e(A;D) = 2�1
2+2 = 1

2 . Other su
h measures in
lude the

In
lusion Measure, the Overlap CoeÆ
ient and the Extended Ja

ard CoeÆ
ient [SGM00, van79℄.

2.2 The Ve
tor-Spa
e Model

The Ve
tor-Spa
e Model is a popular model in the Information Retrieval domain [M
G83℄. In this

model, ea
h element in the domain is taken to be a dimension in a ve
tor spa
e. A 
olle
tion

is represented by a ve
tor, with 
omponents along exa
tly those dimensions 
orresponding to the

elements in the 
olle
tion. One advantage of this model is that we 
an now weight the 
omponents

of the ve
tors, by using s
hemes su
h as TF-IDF [SB88℄. The weight we assign to a dimension in a

ve
tor 
an be determined both by the number of o

urren
es of the element in that 
olle
tion (Term

Frequen
y TF ), and by the relative importan
e of that element (Inverse Do
ument Frequen
y IDF ).

The Cosine-Similarity Measure (CSM) de�nes the similarity between two ve
tors to be the


osine of the angle between them, whi
h is identi
al to the normalized inner produ
t of the two

ve
tors. This measure has proven to be very popular for query-do
ument and do
ument-do
ument

similarity in text Retrieval [SB88℄. Again referring to Figure 1, and using uniform weights of 1:

5



simCos(A;D) =

�!
A � �!D
j�!A jj�!D j =

1� 1p
2
p
2
=

1

2

Collaborative-�ltering systems su
h as GroupLens [RIS+94℄ use a similar ve
tor model, with

ea
h dimension being a \vote" of the user for a parti
ular item. However, they use the Pearson

Correlation CoeÆ
ient as a similarity measure, whi
h is given by the formula:


(X;Y ) =

P
j(xj � x)(yj � y)qP

j (xj � x)2
P

j (yj � y)2

where xj is the value of ve
tor X in dimension j, x is the average value of X along a dimension,

and the summation is over all dimensions in whi
h both X and Y are non-zero [RIS+94℄. Inverse

User Frequen
y may be used to weight the di�erent 
omponents of the ve
tors. There have also

been other enhan
ements su
h as default voting and 
ase ampli�
ation [BHK98℄, whi
h modify the

values of the ve
tors along the various dimensions.

There are many other distan
e and similarity measures whi
h have been de�ned for a variety of

problems. Two of the most popular are edit distan
e and Earth-mover's distan
e. We will explain

why they are inappli
able to our spe
i�
 problem in Se
tion 6.

3 The First Generation

We now des
ribe two new measures we developed, based fairly dire
tly on the traditional measures,

that exploit a hierar
hi
al domain stru
ture in 
omputing similarity. We �rst des
ribe our model

formally, de�ne some asso
iated 
on
epts, and then pro
eed to develop the measures.

3.1 The Model

Let U be a rooted tree, with all nodes 
arrying a distin
t label. We do not impose any restri
tions

on the shape of U : It 
an be arbitrarily unbalan
ed, and its leaves 
an be at di�erent levels.

Let LU be the set of all labels in U . Let LLU be the set of all labels on the leaves of U . LLU

is the element domain, on whi
h there is a superimposed hierar
hy des
ribed by U . In our musi


example, LLU = fb1; b2; : : : ; s1; s2; : : : ;m1;m2; : : : ; 
1; 
2:::g. A 
olle
tion C is a bag whose elements

are drawn from LLU .

Let W be a fun
tion from LLU to the set of real numbers. W is an a priori weight fun
tion on

the leaves of U , whi
h 
aptures the relative importan
e of di�erent elements. There are many ways

6
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A B

Figure 3: Indu
ed Trees for Colle
tions A and B

of deriving this weight fun
tion. It 
ould be an Inverse User Frequen
y su
h as the one de�ned in

[BHK98℄. It 
ould also be 
orpus-independent, and be determined by attributes of the elements,

su
h as their 
ost (in monetary terms). Of 
ourse, the weight fun
tion also 
an be uniform.

Sin
e there is a hierar
hi
al stru
ture imposed on LLU , a 
olle
tion C indu
es a tree, a subgraph

of U that 
onsists of the an
estral paths of ea
h leaf in C. We refer to trees that are indu
ed in

this manner as indu
ed trees. Noti
e that, sin
e C is a bag, the indu
ed tree might have more than

one leaf with the same label. Figure 3 shows the indu
ed trees for the 
olle
tions A and B from

Figure 1.

As is 
onventional, the depth of a node in the hierar
hy is the number of edges on the path

from the root of U to that node. Given any two leaves l1 and l2 in U , de�ne the Lowest Common

An
estor LCA(l1; l2) to be the node of greatest depth that is an an
estor of both l1 and l2. This

LCA is always well-de�ned sin
e the two leaves have at least one 
ommon an
estor|the root

node|and no two 
ommon an
estors 
an have the same depth. In Figure 1, LCA(b1; b2) = b, while

LCA(b1; s1) = r.

3.2 The Generalized Ve
tor-Spa
e Model

To illustrate how the Ve
tor-Spa
e Model 
an be generalized to take the hierar
hy into a

ount,


onsider Figure 1 again. Let us say that the unit ve
tor 
orresponding to a leaf l is represented by
�!
l .

Now, a

ording to the traditional 
osine-similarity measure, all leaf unit ve
tors are perpendi
ular

to ea
h other, whi
h means that the dot produ
t of any two of them is zero. The dot produ
t of a

unit ve
tor with itself is equal to 1.

We have already observed that b1 is, intuitively, somewhat similar to b3 sin
e they are both

Beatles CDs. Thus, if A buys b1 and B buys b3, we need to make this fa
t 
ontribute something

to the similarity of A and B, i.e., we want
�!
b1 � �!b3 to be non-zero. In the ve
tor spa
e, we want to

7



assert that
�!
b1 and

�!
b3 are not really perpendi
ular to ea
h other, sin
e they are somewhat similar.

We use the hierar
hy to de
ide exa
tly what value to assign to this dot produ
t. For example,

let us de
ide that
�!
b1 � �!b3 = 2

3 , sin
e they have a 
ommon an
estor that is two-thirds of the way

down from the root. By a similar reasoning pro
ess, we let
�!
b1 � �!s1 be 1

3 . We let
�!
b1 � �!m1 
ontinue to

be 0 sin
e they are in di�erent se
tions of the hierar
hy and don't really seem to have anything to

do with ea
h other, ex
ept for the fa
t that they are both musi
 CDs.

Formally, let LLU be the set fl1; l2; l3; : : : ; lng. Let CountA(li) be the number of times li

o

urs in 
olle
tion A. Then, 
olle
tion A is represented by the ve
tor
�!
A =

Pn
i=1 ai

�!
li , where

ai = W (li) � CountA(li) for i = 1::n. This usage of weights is identi
al to the standard Ve
tor-

Spa
e Model's. For any two elements l1 and l2, we de�ne

�!
l1 � �!l2 =

2 � depth(LCAU(l1; l2))

depth(l1) + depth(l2)

This de�nition is 
onsistent, sin
e the right side of this equation always lies between 0 and 1. Note

that the dot produ
t is equal to 1 i� l1 = l2.

We 
ontinue to measure similarity by the 
osine-similarity measure, ex
ept that we have now

dropped the assumption that the di�erent \
omponents" of the ve
tor are perpendi
ular to ea
h

other. If 
olle
tion A is represented by the ve
tor
�!
A =

P
i ai

�!
li and B by the ve
tor

�!
B =

P
i bi

�!
li ,

then:

�!
A:
�!
B =

nX
i=1

nX
j=1

aibj
�!
li :
�!
lj

Again, this equation is identi
al to the standard Ve
tor-Spa
e Model, ex
ept that
�!
li :
�!
lj is not equal

to 0 whenever i 6= j. Finally, the 
osine similarity between A and B is given by the traditional

formula:

sim(A;B) =

�!
A � �!Bp�!

A � �!A
p�!
B � �!B

We 
all this measure the Generalized Cosine-Similarity Measure (GCSM).

3.3 The Optimisti
 Genealogy Measure

The Generalized Cosine-Similarity Measure from Se
tion 3.2 is not the only, or even the most

intuitive, way to exploit a hierar
hy for similarity. Next we present a se
ond, more natural and

intuitive measure, and 
ontrast it with GCSM. Intuitively, the Optimisti
 Genealogy Measure2

2The reason for the name be
omes 
lear in the next se
tion.
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omputes a \similarity 
ontribution" for ea
h element in one 
olle
tion, and then takes the weighted

average of these 
ontributions to be the similarity between the two 
olle
tions. The 
ontribution

of an element is determined by how good a \mat
h" it has in the other 
olle
tion.

Let C1 and C2 be the 
olle
tions to be 
ompared and let T1 and T2 be their indu
ed trees as

de�ned in Se
tion 3.1. For any leaf l1 in T1, de�ne LCAT1;T2(l1) to be the an
estor of l1 of greatest

depth that is present in T2, i.e., the lowest of the LCAs that l1 shares with the leaves of T2. This

LCA provides an indi
ation of how good the \best mat
h" for l1 
an be. For example, for the trees

in Figure 3, LCAA;B(b1) is Beatles, sin
e it is present in tree B, and is the lowest an
estor of b1

that is present in B. (We abuse notation and let A and B refer both to the two 
olle
tions and to

their 
orresponding indu
ed trees.)

Now de�ne:

mat
hT1;T2(l1) = fl2 2 C2jLCA(l1; l2) = LCAT1;T2(l1)g

That is, mat
hT1;T2(l1) is the set of all leaves in T2 that 
an be the \best mat
h" for l1. In Figure

3, mat
hA;B(b1) is the set fb3; b4g sin
e both elements mat
h b1 at its parent Beatles. Next, we

de�ne:

leafsimT1;T2
(l1) =

depth(LCAT1;T2(l1))

depth(l1)

The value leafsimT1;T2
(l1) measures how similar l1 is to its best mat
h in T2. If l1 itself is present

in T2, then LCAT1;T2(l1) = l1, and therefore leafsimT1;T2(l1) = 1. On the other hand, if no an-


estor of l1 ex
ept for the root is present in T2, we have depth(LCAT1;T2(l1)) = 0 and, therefore,

leafsimT1;T2
(l1) = 0. In Figure 3, leafsimA;B(b1) is

2
3 and leafsimA;B(b2) is also

2
3 .

Finally, for any two 
olle
tions C1 and C2 with asso
iated indu
ed trees T1 and T2 respe
tively,

we de�ne the Optimisti
 Genealogy Measure (OGM) as:

sim(C1; C2) =

P
l12C1

leafsimT1;T2
(l1) �W (l1)P

l12C1
W (l1)

(1)

This is just the weighted average of the individual leafsim values of the leaves in T1. Note that

sin
e C1 is a bag, the summation is over all members of the bag, and is not the set average. In our

example, sim(A;B) is also 2
3 , sin
e the 
ontributions from b1 and b2 are identi
al.

Note that OGM is, in general, asymmetri
, i.e., sim(A;B) 6= sim(B;A). If we desire to 
ompute

a symmetri
 similarity value between two 
olle
tions C1 and C2, we 
ould de�ne it to be the average,

the minimum, the maximum, or any other fun
tion of the two values, depending on what we desire.

9



sim JC DC CSM GCSM OGM

A,B 0 0 0 0.8 0.67

A,C 0 0 0 0.4 0.33

A,D 0.33 0.5 0.5 0.65 0.67

B,C 0 0 0 0.4 0.33

B,D 0 0 0 0.52 0.5

C,D 0 0 0 0.26 0.25

Table 1: Comparison of the various measures

3.4 Dis
ussion

Table 1 shows the similarity values 
omputed by various traditional measures dis
ussed in Se
tion

2, as well as by GCSM and OGM, for the 
olle
tions in Figure 1. JC stands for Ja

ard's CoeÆ
ient

and DC for Di
e's CoeÆ
ient. The values shown are symmetri
 similarity values, with the average

of the two asymmetri
 values being used for OGM. As motivated in Se
tion 1, we would expe
t to

�nd that 
ustomers A and B are more similar to ea
h other than A and C. C and D should be

even less similar. From Table 1, we see that both of our First Generation measures produ
e this

result, while the traditional measures do not.

Intuitively, it is not 
lear whether sim(A;D) should be higher than sim(A;B). There is a 
ase

for saying that sim(A;B) is higher, sin
e both A and B are \pure" Beatles persons. One 
ould

also 
ontend that A and D have a CD in 
ommon, while A and B have none, and, therefore, that

sim(A;D) ought to be higher. OGM gives them the same similarity values, while GCSM makes

sim(A;B) higher. The traditional measures 
laim that sim(A;D) is higher, sin
e they do not

dete
t any similarity between A and B. GCSM and OGM 
an be tuned to adjust the 
on
lusion

in 
ases su
h as these. We dis
uss how to a
hieve this tuning in se
tion 4.5.1.

3.4.1 Contrasting GCSM with OGM

Having seen how the First Generation measures fare on our simple example when 
ompared with

the traditional measures, we now examine the di�eren
es between GCSM and OGM in a little more

detail.

� GCSM uses many-to-many mat
hes, while OGM uses many-to-one mat
hes. In GCSM, the

similarity 
ontribution of an element in one 
olle
tion is gathered from all elements in the other

10




olle
tion that have a non-zero similarity to that element. On the other hand, OGM simply

uses the best similarity s
ore it 
an �nd for ea
h element.

� GCSM is a symmetri
 measure, whi
h means that we will not get high similarity s
ores if one


olle
tion is a subset of the other [SGM95℄. OGM is an asymmetri
 measure, and 
onveys more

information that may help us identify di�erent semanti
 notions of similarity. For example,

if we wanted to �nd an \expert" for a parti
ular user A, i.e., someone who is knowledgeable

about the things that A buys, we would look for a user B su
h that his pur
hases are 
lose

to a superset of A's pur
hases. Thus, sim(A;B) would be very high, but sim(B;A) might be

fairly low.

� GCSM has worst-
ase 
omplexity quadrati
 in the number of elements in the two 
olle
tions.

OGM has 
omplexity linear in the number of nodes in the indu
ed trees of the two 
olle
tions.

4 Dealing with Multiple O

urren
es { The Se
ond Generation

The Ve
tor-Spa
e Model's approa
h to multiple o

urren
es of elements is a 
onsequen
e of its

origins in query-do
ument similarity. The presumption is that, given a query word, a do
ument

that has 100 o

urren
es of the word is more relevant to the query than a do
ument that has

one o

urren
e of it. While this approa
h is reasonable for query-do
ument similarity, it is not


ompletely satisfa
tory for inter-do
ument similarity, or, more generally, inter-
olle
tion similarity.

To see the problem, imagine three people X, Y and Z. Let's say that X buys one unit of

some element e, Y buys 2 units of it, and Z buys 100 units of it (and all of them buy a few other,

more-or-less-similar elements). Intuitively, X and Y are more similar than X and Z, sin
e X and

Y buy about the same number of units of e, while Z is quite di�erent from the two of them. This


on
lusion is the exa
t opposite of that obtained by GCSM. OGM o�ers the same 
on
lusion as

GCSM sin
e it, too, uses simple many-to-one mat
hes. While one may not expe
t people to buy

100 
opies of the same CD, there are many domains where su
h a situation does arise.

More importantly, the use of a hierar
hy exa
erbates the problem, sin
e we no longer insist on

exa
t mat
hes. For example, let us look at Figure 1 and 
ompute the similarity between A and

E. A

ording to OGM, sim(A;E) is 0:75, while a

ording to GCSM it is 0:89. Table 1 shows

that sim(A;D), a

ording to the two measures, is 0:65 and 0:67 respe
tively. Thus, both measures


laim that sim(A;E) is higher than sim(A;D). In this example, we don't have multiple 
opies

of any one element, but we had a mismat
h in the number of elements under the Beatles bran
h.
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Figure 4: Illustrating the problems with multiple o

urren
es

i OGM GCSM PGM BGM(0:8) RGM

1 0.7 0.7 0.7 0.7 0.7

2 0.717 0.717 0.47 0.667 0.638

3 0.725 0.703 0.35 0.620 0.617

4 0.730 0.690 0.28 0.573 0.606

1 0.75 0.612 0.0 0.0 0.575

Table 2: Similarity between T1(i) and T2

Thus, multiple o

urren
es at any level in the hierar
hy 
an prove to be a problem.

In the rest of this se
tion we will use an abstra
t example, shown in Figure 4, to explain the

behaviour of the First Generation measures and the new measures that we propose. In this �gure,

we 
ompare a family of 
olle
tions represented by tree T1(i), for various i, to a 
olle
tion represented

by tree T2. The weights of all leaves are taken to be 1. The right bran
h of T1(1) is identi
al to the

right bran
h of T2. As i in
reases, we add more and more leaves to the same bran
h of T1 at node

12. We wish to see how sim(T1(i); T2) 
hanges as i in
reases.

Table 2 shows the (asymmetri
) similarity values 
omputed by the various measures as a fun
tion

of i. For example, the �rst 
olumn shows the behaviour of OGM. We see that the similarity value

progressively in
reases and 
onverges to 0:75, whi
h is what ea
h additional leaf under node 12


ontributes. A

ording to our intuition, the similarity should de
line as i in
reases, espe
ially for

large values of i.

The se
ond 
olumn shows the behaviour of GCSM. We see that the similarity value goes up

for a short while, and then eventually de
lines to 0:612. This pattern seems more promising but,

a
tually, it too is poor. The 
ru
ial fa
t to note is that this value of 0:612 is still di
tated solely by

the 
ontribution of ea
h additional leaf, whi
h is 0:75. But now, instead of the similarity simply
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Figure 5: The Balan
ed Genealogy Measure

being equal to this value (0:75), it is a
tually proportional to the square root of this value.

Intuitively, the reason for this behaviour is that the magnitude of the 
olle
tion 
orresponding

to T1(i) also in
reases as i in
reases sin
e T1(i) now has more \overlap" among its own elements.

This in
rease has the e�e
t of trying to lower the 
osine similarity, but it is not strong enough to

over
ome the linear in
rease in the numerator of the formula for GCSM. We will provide a more

detailed 
omparison of the semanti
 impli
ations of the various measures at the end of this se
tion.

The rest of the 
olumns in the table show the behaviour of the measures we will des
ribe in the

remainder of this se
tion.

4.1 The Balan
ed Genealogy Measure

OGM admits of a simple generalization that solves the multiple o

urren
es problem. The general

idea is to be less \optimisti
" during similarity 
omputation, and penalize many-to-one mat
hes: if

more than one leaf in the �rst tree gets its best mat
h from one leaf in the se
ond tree, we lower the

similarity values that the dupli
ate mat
hes 
ontribute. Sin
e we don't want to be too pessimisti


in our similarity 
omputation either, like the traditional measures are, we 
all this measure the

Balan
ed Genealogy Measure (BGM).

BGM has a parameter �, a real number in [0; 1℄, whi
h 
ontrols the rate at whi
h similarity

de
ays with multipli
ity of mat
hes. To illustrate, 
onsider the two trees T1(3) and T2 in Figure 5.

Ea
h leaf of T1(3) is annotated with the leafsim value (re
all Se
tion 3.3) that BGM provides it.

To see how these values are obtained, let us start with leaf 13 in T1(3). This leaf s
ores a value of

1 sin
e 13 also exists in tree T2. Next, we move on and try to �nd a mat
h for leaf 14. The only

possible mat
h for 14 is, on
e again, leaf 13. In OGM, we would have given this mat
h a s
ore of

0:75. But now, we want to penalize leaf 14, sin
e it mat
hes with a leaf that has been mat
hed
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on
e already. So, we give it a s
ore 0:75�. For leaf 15, again, the best mat
h available for it in T2

is 13. Sin
e 13 has been mat
hed twi
e already, we give 15 a s
ore 0:75�2. We then mat
h leaf 6

with leaf 9 in T2, giving it a s
ore of 0:4. Finally, as usual we take the weighted average of these

s
ores to arrive at an overall similarity s
ore, whi
h is 0.620 for � = 0:8.

The pro
edure we have outlined above is dependent on the order in whi
h we examine the leaves

of T1. For example, if we had mat
hed leaf 14 before leaf 13, leaf 14 would have re
eived a s
ore of

0:75 and 13 would have re
eived a s
ore 1 times �, thus lowering the overall similarity s
ore. We

de�ne the similarity s
ore produ
ed by BGM to be the s
ore generated by \optimal" mat
hing,

i.e., by the mat
hing that maximizes the overall similarity s
ore. We explain how to 
ompute this

s
ore in the formal de�nition, next.

4.1.1 Formal De�nition

Say we want to 
ompute sim(C1; C2), with C1 and C2 indu
ing trees T1 and T2 respe
tively. BGM

pro
eeds as follows:

For ea
h leaf l1 in T1, visited in optimal order (to be de�ned later):

1. Find a mat
h l2 in T2. Re
all that l2 is a leaf in T2 that provides the best LCA for l1. If there

is more than one possible mat
h, pi
k that l2 whi
h has been mat
hed the fewest times so far.

2. In
rement l2's mat
h 
ount. (Initially, all mat
h 
ounts are zero.)

3. De�ne:

optleafsimT1;T2(l1) =
depth(LCAT1;T2(l1))

depth(l1)

and:

leafsimT1;T2
(l1) = optleafsimT1;T2

(l1)� �mat
h 
ount(l2)�1

The value sim(C1; C2) is 
omputed as the weighted average of the individual leafsim values, just

as in OGM.

The optimal order is that order of visits of the leaves that leads to the highest possible similarity

s
ore 
omputed a

ording to this algorithm. If C1 has n elements, the number of possible orderings

of leaves is n!. So, we 
annot a�ord to investigate every possible order and then pi
k the best one.

Fortunately, it is possible to 
ompute the similarity s
ore a

ording to the optimal order, with very

little 
omputational overhead. We �rst illustrate a simple 
ase where all leaves are at the same

depth and all leaf weights are equal.

The strategy we adopt is to look for mat
hes in multiple phases. In the �rst phase, we look only
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for exa
t mat
hes between leaves. In the se
ond phase, we look for pairs of leaves with a 
ommon

parent; in the third phase, pairs of leaves with a 
ommon grandparent, and so on. This strategy

is guaranteed to produ
e the optimal s
ore. To see why this strategy works, observe that we are

looking for mat
hes in the de
reasing order of their optleafsim value 
ontribution. If we think of

BGM as being exa
tly identi
al to OGM, ex
ept that some of the optleafsim values are redu
ed,

we see that the strategy always attempts to redu
e the smallest possible optleafsim at ea
h stage.

For example, the mat
h that produ
es the highest similarity s
ore never gets redu
ed by �.

The strategy for the general 
ase, where we have leaves at di�erent depths and di�erent leaf

weights, is a generalization of the strategy outlined above. The key idea is to generate leafsim

values in de
reasing order of optleafsim � W , using a generalization of the multi-phase approa
h

that we outlined above. This order is 
omputed in a prepro
essing step, and does not have to be

generated for ea
h individual similarity 
omputation.

4.1.2 Computational Complexity

Let l1 and i1 be the number of leaves and internal nodes in T1, l2 and i2 the number of leaves and

internal nodes in T2, h the height of the hierar
hy, and b the maximum bran
hing fa
tor in T2. Let

l = l1 + l2 and i = i1 + i2.

We noted earlier that OGM has 
omplexity O(l + i). The 
omputational 
omplexity for BGM

is higher than for OGM be
ause, for BGM, we need to maintain state in the leaves of T2 and use

this state while 
omputing similarity. There is also a slight overhead asso
iated with 
omputing

the optimal order, be
ause we need to examine l1h nodes in T1 instead of l1 + i1 nodes in the 
ase

of OGM.

In order to maintain state eÆ
iently in T2, we use priority queues to order the 
hildren of all the

internal nodes. It 
an be shown that, due to the nature of updates to the various priority queues,

the worst-
ase 
omputational 
omplexity is O(lh(h + log b)).

In pra
ti
e, log b would be mu
h smaller than h whi
h, itself, tends to be small in most domains.

Also note that this bound is the worst 
ase, and is realized only when 
omputing the similarity

between extremely dissimilar 
olle
tions. In most appli
ations, we would not be interested in the

exa
t similarity value between su
h dissimilar 
olle
tions, and will be able to prune the 
omputation,

thus a
hieving a mu
h better 
omputational 
omplexity.
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Figure 6: The Re
ursive Genealogy Measure

4.1.3 Dis
ussion

First, noti
e that setting � = 1 instantiates BGM to OGM. At the other extreme, setting � = 0

is a pessimisti
 evaluation of similarity where we insist that no leaf in T2 is mat
hed more than

on
e. We 
all this extreme the Pessimisti
 Genealogy Measure (PGM). PGM and OGM provide

the lower and upper bounds respe
tively on the similarity values 
omputed by BGM.

We now look at the similarity s
ores 
omputed by BGM for the example in Figure 4 for two

di�erent � values, 0 (PGM) and 0:8. Table 2 shows these values. We see that similarity de
lines

to 0 in both 
ases, but it de
lines mu
h faster with � = 0. This behaviour is no surprise, sin
e �


ontrols the degree of optimism of the measure. The important observation is that the similarity

s
ore a
tually does de
line as i in
reases, whi
h is what we set out to a
hieve.

4.2 The Re
ursive Genealogy Measure

Let us revisit the multiple o

urren
es problem. The problem, as we have seen, is that we tend to

be too \optimisti
" in our similarity estimates, whi
h is unwarranted when we have many leaves

in one tree mat
hing just one leaf in the other tree. If we revisit the 
omputation performed by

OGM, shown in Equation 1, we see that there are two ways of solving this problem. The �rst is

the approa
h adopted by BGM, namely lowering similarity for dupli
ate mat
hes. Alternatively,

we 
ould leave the similarity values alone and, instead, lower the weight that we assign to these

dupli
ate mat
hes. This is the approa
h that we study now, 
alled the Re
ursive Genealogy Measure

(RGM). In Se
tion 4.3, we 
ompare the semanti
 underpinnings of these two approa
hes.

We will, on
e again, use trees T1(3) and T2, shown in Figure 6, to explain RGM. The similarity
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omputation 
onsists of two phases. In the �rst phase, we simply 
ompute leafsim values just as

in OGM. In Figure 6, they are the �rst element of the ordered pairs on the leaves of T1(3). To


ompute the overall similarity value for the two trees, we use a bottom-up 
omputation on T1(3)

to make the leafsim values 
ow to the top of the tree. The value that is obtained at the root node

is the similarity between the two trees. The value at an internal node stands for the similarity

between that subtree and the appropriate portion of T2.

In order to perform this 
omputation, we �rst need to de�ne weights for the nodes in the two

trees. We will take the weights of all the leaves to be 1 in this example. Let us �rst look at T2.

Here, the weight of an internal node is simply the sum of the weights of its 
hildren. Thus, the root

has a weight of 2, while all others have a weight of 1 (shown in square bra
kets). The 
rux of the

measure is in the assignment of weights to the nodes in T1(3). Weights are de�ned in T1(3) just as

in T2, with one ex
eption. If a node in T1 also happens to be in T2, and its weight is lower in T2,

we use this lower value as its weight in T1.

In the �gure, the weights of the nodes are shown as the se
ond element of the ordered pairs

en
losed by [ ℄. In the left subtree of T1(3), the weights are all simply 1. But in the right subtree,

the weight of node 12 is not 3. We noti
e that 12 has a lower weight of just 1 in T2. So, we assign

it a weight 1 in T1(3), too. Noti
e that this assignment of weights in T1(3) 
aptures the multiple

o

urren
es. The fa
t that all leaves under 12 
an mat
h just a single leaf in T2 is 
aptured by

assigning a weight of 1 to node 12.

On
e these weights are assigned, we 
ompute similarity by a simple bottom-up 
al
ulation. The

similarity at any internal node is the weighted average of the similarity at all its 
hildren. Thus, in

Figure 6, the similarity at node 12 is seen to be 1+0:75+0:75
3 = 0:833 (shown as the �rst element of

the ordered pair). The similarity we see at the root is the a
tual similarity value between the two

trees, whi
h is 0:617 in this 
ase.

4.2.1 Formal De�nition

For any tree T and any node n in T , let CT (n) be the set of all 
hildren of n in T . Let WT (k) be

the weight of node k in tree T . We will shortly explain how to 
ompute WT (k), given our original

weight fun
tion W whi
h is de�ned only for the leaves of trees.

Let C1 and C2 be the two 
olle
tions under 
omparison, and let T1 and T2 be their asso
iated

trees, as usual. We �rst de�ne the weights to be asso
iated with all the nodes in tree T2. We then

17



de�ne the weights for all the nodes in T1.

WT2(n) = W (n) if n is a leaf of T2

=
X


2CT2 (n)

WT2(
) if n is an internal node of T2

= 1 otherwise

We have de�ned the weights of nodes not in T2 to be 1 for notational 
onvenien
e.

WT1(n) = W (n) if n is a leaf of T1

= min(
X


2CT2 (n)

WT1(
);WT2(n)) if n is an internal node of T1

= 0 otherwise

For any internal node in T1, its weight is determined both by the sum of the weights of its 
hildren

in T1, say p, and by the weight of the same node in T2, say q. Although we have 
hosen to use

min(p; q) as our weight, we 
ould, in general, use any fun
tion, although fun
tions that return a

value between p and q make the most sense. We dis
uss the e�e
t of this 
hoi
e in Se
tion 4.3.

Let simT1;T2(n) denote the similarity value \at" a node n in tree T1. The similarity between

the two trees sim(T1; T2) is given by:

sim(T1; T2) = simT1;T2(root(T1))

For all nodes n in T1, we de�ne:

simT1;T2(n) = optleafsimT1;T2
(n) if n is a leaf (de�ned in Se
tion 4.1.1 )

=

P

2CT1 (n)

WT1(
) � simT1;T2(
)P

2CT1 (n)

WT1(
)
if n is an internal node

4.2.2 Comparison

First, noti
e that the 
omputational 
omplexity of RGM is linear in the total number of nodes in

the indu
ed trees of the 
olle
tions under 
omparison. This 
omplexity is the same as OGM and

better than BGM.

The last 
olumn in Table 2 shows the similarity values as 
omputed by RGM for the trees

in Figure 4. We see that the similarity value de
lines as i in
reases, whi
h is the e�e
t that was

desired. We also noti
e that the similarity value de
lines slowly and does not eventually 
onverge to

zero; instead, it 
onverges to a value 0:575. At �rst sight, this behaviour seems to resemble GCSM,
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whi
h also de
lines and 
onverges to a non-zero value. But there is a big qualitative di�eren
e

between the values that they 
onverge to, whi
h we explain in Se
tion 4.3. RGM is very di�erent

from GCSM as will also be seen from our experimental results in Se
tion 5.1.

4.3 Summary and Dis
ussion

The fa
t that we have proposed more than one measure, ea
h of whi
h handles multiple o

urren
es

in its own way, is a natural 
onsequen
e of the di�erent possible interpretations of the idea of

similarity. Re
onsider our original example in Figure 1, parti
ularly the similarity between A and

E. Re
all that A has two Beatles CDs, while E has 14 Beatles CDs and one 
lassi
al musi
 CD.

One way to look at the similarity of A and E would be to observe that a high per
entage of E's

pur
hases are Beatles CDs. Therefore, we 
ould treat E as a \Beatles person." Sin
e A is also a

\Beatles person", we give them a very high similarity s
ore. This interpretation is the one o�ered

by OGM. GCSM uses an interpretation that is almost identi
al, but with one important di�eren
e.

It observes that ea
h of A's pur
hases is very similar to almost every one of E's pur
hases. The

high similarity s
ore resulting from this observation is tempered by the fa
t that E's pur
hases are,

themselves, very similar to ea
h other.

The BGM interpretation is in
uen
ed by the di�eren
e in size between A and E: The fa
t that

E has 14 Beatles CDs while A has just 2 makes them somewhat dissimilar a

ording to BGM.

The fourth, and �nal, interpretation di�ers markedly from the �rst three. None of the �rst three

interpretations were in
uen
ed mu
h by the fa
t that E bought a Mozart CD. All of them were

swayed primarily by the fa
t that the majority of the CDs bought by E were Beatles CDs. The

RGM interpretation lo
alizes the e�e
ts of the Beatles CD pur
hases, and is in
uen
ed by the other

pur
hases of A and E as well.

It is not 
lear that one of these interpretations is always the \
orre
t" interpretation. Quite

often, it depends on the nature of the domain, the nature of the 
olle
tions, and the exa
t semanti


need. For example, if we knew that we wanted similarity of queries to do
uments, and we don't 
are

too mu
h about overlap between query terms, we would settle for the �rst interpretation (OGM).

The se
ond interpretation (GCSM) might be useful for longer queries, where we might take into

a

ount the fa
t that two of the query words are des
ribing related 
on
epts. For example, if we

had both the words \
ar" and \bi
y
le" in a query, whi
h also 
onsisted of many other words, we

might want to take into a

ount the relationship between these words.

Choosing between the third (BGM) and fourth (RGM) interpretations is di
tated by the relative
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importan
e of the 
overage and distribution of elements. For example, in Figure 1 we 
ould 
hoose

to ignore the fa
t that E bought a Mozart CD, as BGM does, as long as we 
are only about the

distribution of the elements. If 
overage is important, we do want to fa
tor in E's Mozart CD, and

the RGM interpretation permits us to do so. By suitably 
hoosing the 
orre
t fun
tion to use in


omputing weights in RGM, we 
an pi
k the desired balan
e between 
overage and distribution.

4.4 Other Extensions

4.5 Other Extensions

There are other extensions to the model and the metri
s that we have omitted for ease of des
ription.

We provide a brief overview of some of them here.

4.5.1 Edge Weights

We 
an introdu
e edge weights into our tree model, assigning them a priori. Edge weights helps


apture the relative importan
e of a `
on
ept leap' from a parent to a 
hild. For example, the

`distan
e' between Aerosmith and Hard Ro
k may be smaller than the `distan
e' between Hard

Ro
k and Ro
k. Modifying the metri
s to handle these edge weights is a straightforward exer
ise:

We use distan
es from the root instead of node depth, when 
omputing leaf similarities.

4.5.2 DAGs

Several of these metri
s 
an be extended to handleDAGs rather than just trees. We just rede�ne the


on
ept of the LCA to be that an
estor that provides the highest leaf similarity value. Generalizing

RGM to handle DAGs is rather more 
ompli
ated, sin
e it relies on a bottom-up 
omputation

whi
h we will have to generalize to DAGs.

4.5.3 Handling Weight Skew

In all our algorithms, we might be mat
hing a leaf l1 with a high weight with a low-weight leaf, say l2.

When we 
ompute the overall similarity in BGM by 
omputing a weighted average, we have simply

used the weight of l1. But, there is a 
ase for using a lower weight for l1 in the averaging pro
ess,

if the leaf it mat
hed had a mu
h lower weight. This problem is, in fa
t, identi
al in spirit to the

size skew problem. The simplest way to handle it is to introdu
e a new fa
tor f(WT1(l1);WT2(l2)),

a value between 0 and 1 that will modify the leafsim value that we assign to l1.
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The Re
ursive Genealogy metri
 already handles the weight-skew problem in a 
orre
t fashion.

5 Evaluation

We now pro
eed to evaluate our measures empiri
ally. There are at least three types of questions

one may pose:

1. How di�erent are the measures from ea
h other and from the traditional measures in pra
ti
e?

If all measures give roughly the same rankings, we might as well use the traditional measures.

But if there are di�eren
es, 
an we 
hara
terize when the di�eren
es o

ur?

2. How well does ea
h of them mat
h human intuition? Would a human agree with the similarity

rankings produ
ed by our measures?

3. What measure is best or most appropriate for a given appli
ation?

In this paper we fo
us on the �rst two types of questions, sin
e the third type is 
learly appli
ation-

dependent and very hard to answer. However, we believe that if a parti
ular measure mat
hes

human intuition (item 2 above), it is likely to perform well in a variety of appli
ations.

In Se
tion 5.1, we provide detailed 
omparisons of the various measures, analyze where and how

mu
h the measures di�er and, in the pro
ess, show that using a hierar
hy produ
es results very

di�erent from those produ
ed by traditional measures. In order to show that a hierar
hy yields

more intuitive similarity results, we rely on a user study, as detailed in Se
tion 5.2.

In our evaluation, we 
hoose Ja

ard's CoeÆ
ient as representative of the traditional measures,

and refer to it as the Naive measure. All of the traditional measures are extremely similar when


ompared against our First and Se
ond Generation measures, so Ja

ard's CoeÆ
ient is a good

representative.

5.1 Experimental 
omparison of the di�erent measures

For the experiments reported in this se
tion, we used trans
ripts of undergraduate CS majors at

Stanford as our data set. Ea
h trans
ript is a 
olle
tion of (
ourse,grade) elements. The obje
tive

is to 
ompute how similar two students are, on the basis of the 
ourses they have taken and the

grades they have obtained in those 
ourses. There were a total of 403 trans
ripts, with an average

of about 41 (
ourse,grade) pairs per trans
ript.

The hierar
hy 
onsists of 6 levels: department, 
ourse level, 
ourse subje
t, 
ourse number, and

a two-level grade 
lassi�
ation, in that order. Changing this order leads to di�erent hierar
hies
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and, 
onsequently, di�erent semanti
s for similarity. For example, pla
ing the grade levels at the

top of the hierar
hy would mean that we want to pay more attention to the grades that students

get, rather than the 
ourses they take, in determining the similarity between two students. Thus,

the 
hoi
e of the hierar
hy re
e
ts the semanti
 need of the appli
ation.

5.1.1 The Distan
e Measure

Given a similarity measure M and any 
olle
tion X, we 
an generate a ranked list of 
olle
tions

LM (X), in de
reasing order of similarity to X. In most 
ases, it is this ranked list that is impor-

tant, rather than the a
tual similarity values that we 
ompute. Moreover, most appli
ations only


are about the top portion of this list, say the Top K, whether it is in order to �nd the nearest

neighbors of a given 
olle
tion, or whether it is to return the Top K mat
hes to the 
olle
tion. We

therefore de�ne a distan
e measure3 to 
ompare similarity results on the basis of these ranked lists

of 
olle
tions.

Let S be the set of all 
olle
tions. Let rankM;X(A) be the rank of 
olle
tion A in list LM (X).

Further, let LM(X)[i℄ refer to the 
olle
tion that has rank i. Our distan
e measure 
ompares the

ranked lists generated by two di�erent measures by imagining one of the measures as generating

an \ideal" ranking. We then measure how mu
h ea
h 
olle
tion is displa
ed from its ideal ranking

by the se
ond measure.

To illustrate, let us look at Figure 7. There are two measures, 1 and 2, that produ
e two di�erent

ranked lists of 
olle
tions A;B;C;D and E, given some other 
olle
tion X to 
ompare against. We

now want to quantify the di�eren
e between these two ranked lists. First, we noti
e that A has

rank 1 in the �rst list, while it has rank 2 in the se
ond. Thus, A 
ontributes a displa
ement of 1

to the total distan
e between the lists. Next, we see that B has rank 2 in the �rst list, while it has

rank 1 in the se
ond. This is an upward displa
ement and we do not 
ount it, be
ause it is already


aptured by the fa
t that A;B;C and D are all pushed down a step by B's moving up. Similarly,

C 
ontributes a displa
ement of 1, while D and E 
ontribute nothing. Thus, the total distan
e

between the ranked lists is 2, and the average displa
ement is 2
5 = 0:4.

In the example above, we 
omputed the distan
e over the whole list. Computing it over the

Top K is done in the same manner, ex
ept that we only 
onsider the top K 
olle
tions of the �rst

measure.

Formally, we de�ne the Top-K Distan
e between measures M1 and M2, when used to 
ompute

3not to be 
onfused with our similarity measures
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Figure 7: The Distan
e Measure
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Figure 8: Average Top K distan
e w.r.t. RGM

similarity against 
olle
tion X, as follows. (The _� operator yields 0 if the di�eren
e is negative.)

TopKDistM1;M2;K
(X) =

PK
i=1 rankM2;X(LM1

(X)[i℄) _�i
K

We also de�ne a distan
e measure over a \window" of the ranked lists. This de�nition is identi
al

to the previous one, ex
ept that instead of looking at the Top K a

ording to the �rst measure,

we look at 
olle
tions in a spe
i�
 window. In this 
ase, we 
annot omit downward displa
ements,

sin
e omitting them would make windows in the lower segments of the list appear 
loser. For the

example in Figure 7, the average distan
e for a window of size 3, starting at position 2, i.e., 
overing


olle
tions B;C and D, is given by 1+1+1
3 = 1. Formally,

WindowDistM1;M2;I;K(X) =

PI+K�1
i=I jrankM2;X(LM1

(X)[i℄) � ij
K

This measure helps us analyze how well two measures agree in di�erent segments of the ranked lists

that they produ
e. Noti
e that the ranked lists we have seen so far have been generated by pi
king

an arbitrary 
olle
tion X, and arranging all other 
olle
tions by their similarity to it. Thus, in

order to be able to 
ompare two measures, we average the distan
es we 
ompute over all possible


hoi
es for X.

Figure 8 shows the average rank displa
ement in the Top K list for various measures with

respe
t to RGM, as a fun
tion of K. Noti
e that the average displa
ement for the Naive measure,

even for the Top 10, is as mu
h as 40, whi
h is about 10% of the size of the entire 
orpus. This
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result means, informally, that the 
olle
tions that RGM 
onsiders the top 10 would be, on average,

around the 40th or 50th position under the Naive measure, a very signi�
ant di�eren
e! On the

other hand, all the Genealogy measures are bun
hed around the bottom of the graph, with even

their peak displa
ement being well under 20. In fa
t, for the Top 10 list, the average displa
ement

between RGM and OGM is just 1:42. This result means that RGM and OGM agree very well on

what the most similar 
olle
tions to a target 
olle
tion X are. For the BGM family, as the value

of � de
reases, the displa
ement starts getting larger and larger, but it is still mu
h smaller than

the displa
ement of GCSM, and that of the Naive measure.

It is important to realize that we 
an only 
ompare measures with respe
t to RGM from this

graph. For example, the displa
ement between the GCSM and the Naive measure is not given by

the di�eren
e between the 
urves 
orresponding to them on this graph. Also noti
e that all the


urves have roughly the same shape, rising for a while before dropping o� again. This behaviour is

illustrated better by Figure 9(a), whi
h shows the average rank displa
ement, in a sliding window

of size 10, of all measures with respe
t to RGM.

The shape of the 
urve tell us that, for all the measures, there is greater agreement at the

beginning and the end of the list than in the middle: there are a few 
olle
tions whi
h are 
learly

the most similar and there are a few 
olle
tions whi
h are 
learly the most dissimilar. These
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olle
tions are more easily identi�ed by all the measures and, therefore, they agree more in the

beginning and the end.

Figure 9(b) plots a similar graph, this time 
omparing the various measures to OGM. On
e

again, we noti
e that the Naive measure produ
es results that are extremely di�erent from the

results produ
ed by OGM. For BGM, the distan
e from OGM gets larger as � de
reases, whi
h is

only to be expe
ted sin
e OGM has � = 1. But the rankings appear mu
h less sensitive to � at

the beginning and the end of the ranked lists. We also see that the 
urve for RGM lies between

the 
urves for � = 0:6 and � = 0:8. This does not mean that the RGM behaves like the BGM with

� = 0:7. All it means is that RGM is as di�erent from OGM as the BGM with � = 0:7.

These graphs 
on
lusively establish that using a hierar
hy makes a big di�eren
e to the similarity

rankings that are generated. We also 
on
lude that GCSM is rather di�erent from the Genealogy

measures, a fa
t that we attribute to GCSM's use of many-to-many mat
hes. BGM is sensitive to

the spe
i�
 
hoi
e of �, but the sensitivity is mu
h lower at the top and the bottom of the lists.

Thus, the 
hoi
e of � is not too 
riti
al, if one is trying to identify 
learly similar or dissimilar


olle
tions. RGM and OGM are extremely similar at the top of the list, whi
h is to be expe
ted in

this domain. Our data set does not have any multipli
ity at the leaf level (there is multipli
ity at

higher levels), sin
e it was rarely the 
ase that a student repeated a 
ourse and ended up with the

same grade.

5.2 Mat
hing Human Intuition

In order to understand how well the various measures mat
h human intuition, we performed an

informal user study. Some of the important issues in the design of the study were:

� The users needed to be familiar with the domain from whi
h the 
olle
tions were drawn. With

this in mind, we 
hose the supermarket domain, and ea
h 
olle
tion was a bag of gro
ery items.

� It was not reasonable to expe
t users to 
ome up with absolute similarity s
ores between


olle
tions. Instead we asked users to rank two 
olle
tions a

ording to their similarity to a

given 
olle
tion.

� The 
olle
tions needed to be reasonably small in order to keep the questions tra
table. There-

fore, we used 
olle
tions with a small number of distin
t elements. Fortunately, these 
olle
tions

proved suÆ
ient to test the validity of the premises underlying the di�erent measures.

The study was 
arried out on 33 people, all members of the Stanford Database Group. It


onsisted of 10 multiple-
hoi
e questions su
h as the ones shown in Figure 10. The study was
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Figure 10: Two Sample Questions

designed su
h that the answer to ea
h question would be a vote for or against one or more measures.

Figure 10(a) shows a sample question from our user study. It shows three 
olle
tions A, B

and C, and the user needs to determine whether sim(A;B) is greater than, equal to, or less than,

sim(A;C). If the user thought that 
ustomer C was more similar to A (than B was to A), say

be
ause C and A appear to like health foods, then the user would 
ir
le the \<" symbol. In this

example, A and B have two elements in 
ommon, while A and C have just one element in 
ommon.

Thus, the traditional measures would report that sim(A;B) is higher. On the other hand, 75% of

the users de
ided that sim(A;C) is higher, whi
h agrees with all the First and Se
ond Generation

measures. We 
on
lude that, in this 
ase, the First and Se
ond Generation measures perform better

than the traditional measures.

Figure 10(b) shows another sample question from the survey. In this 
ase, OGM would predi
t

that sim(A;C) is higher. BGM predi
ts that sim(A;B) is higher (for most �), while RGM predi
ts

that B and C are equally similar. Of the 33 users, 28 agreed with either BGM or RGM, from whi
h

we dedu
e that OGM does not mat
h human intuition. The distribution of responses was not 
lear

enough for us to 
hoose between BGM and RGM in this 
ase.

We do not have spa
e to report all our results, but brie
y, the following 
on
lusions were drawn

from the survey:

� Using the hierar
hy is de�nitely an improvement over a naive approa
h, and more intuitive

similarity results are obtained.
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� GCSM does not perform as well as the Genealogy measures in this domain, and 
annot be

re
ommended as a general-purpose measure.

� There was a lot of support for both BGM and RGM, and the varian
e of the results ruled out

our being able to de
ide whether one was better than the other. In pra
ti
e, one would need

appli
ation-spe
i�
 experiments to determine whi
h measure better mat
hes the appli
ation

semanti
s.

� For BGM, it was established that � values of 0 and 1 are both unsatisfa
tory. Again, appli
ation

semanti
s would determine the exa
t value of � although the reasonably low sensitivity to �

in our experiments in Se
tion 5.1 suggests that a � value around 0:5 is reasonable.

While the user study was fairly limited in its s
ope, we believe that its 
on
lusions are nonethe-

less useful and generally a

eptable in most domains. We provide more details on the user study

in the appendix.

6 Related Work

There have been attempts to improve traditional 
osine similarity, as well as address data spar-

sity, using dimensionality-redu
tion te
hniques su
h as Latent Semanti
 Indexing [DDF+90℄. This

te
hnique a
tually shows some improvement in the quality of the similarity s
ores, sin
e it tries to

infer latent relationships between dimensions. Su
h te
hniques have also been tried in 
ollaborative

�ltering [SKKR00℄ but it appears somewhat un
lear as to whether it a
tually improves re
ommen-

dation quality. Noti
e that using a domain hierar
hy is a
tually an impli
it form of dimension

redu
tion, sin
e the hierar
hy implies that all elements are not orthogonal to ea
h other. On the

other hand, our te
hniques expli
itly de�ne the relationship between the di�erent dimensions, while

LSI infers the relationships from the 
orpus.

There have been quite a few attempts to use word hierar
hies su
h as WordNet [MRF+90℄ in

Information Retrieval. Rada et al. [RMBB89℄ de�ned the semanti
 similarity between two words as

the weight of the path between the words, whi
h bears a lot of resemblan
e to our de�nition of the

LCA of two leaves. Lee et al. and Kim et al. [LK93, KK90℄ have also used this \
on
eptual distan
e"

measure for Information Retrieval. There are also other, information-based measures based on the

same hierar
hy [Res95℄ whi
h 
an be used for word similarity. Ri
hardson et al. [RS95℄ 
ompare the

eÆ
a
y of di�erent word-similarity measures in 
omputing query-do
ument similarity. All these

works are fo
ussed on query-do
ument similarity and do not generalize to inter-
olle
tion similarity.
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Ri
hardson et al. [RS95℄ also dis
uss the issue of generating edge weights for the 
on
ept graphs,

whi
h 
ould �nd use in our work in generating edge weights for our hierar
hy.

S
ott et al. [SM98℄ have studied the use of a hypernym density representation instead of a bag-

of-words representation in text 
lassi�
ation and report improvements for 
orpora with a reasonable

amount of diversity. Rodriguez et al. [dBRGHDA97℄ also report improvements in text 
lassi�
ation

when using WordNet to enhan
e neural-network learning algorithms. But neither of these works

use a dire
t similarity measure based on the hierar
hy. Con
ept hierar
hies have frequently been

used in data mining. They have been used to mine multi-level asso
iation rules [HF95, SA95℄, and

to improve knowledge dis
overy in textual databases [FD95℄. Neither of these two appli
ations is

dire
tly related to 
omputing similarity using hierar
hies.

There are also other 
lasses of methods used to 
ompute similarity between 
olle
tions whi
h

exploit the stru
ture between 
olle
tions. For example, [BLG98℄ uses the link stru
ture of resear
h

papers to 
ompute similarity between them. Su
h methods are not dire
tly related to our work,

ex
ept they may perhaps be used to solve the same overall problem.

Besides the similarity measures that we have des
ribed in Se
tion 2, there have been a variety of

distan
e measures de�ned in various 
ontexts. One su
h 
lass of measures is edit distan
e, wherein

the distan
e between two stru
tures is measured by the 
ost of the edit operations needed to

transform one stru
ture to the other. Algorithms for �nding the optimal edit s
ript exist for various

types of stru
tures, and for various sets of edit operations. Computing the optimal edit distan
e

between unordered trees, even with simple edit operations, is NP-
omplete [SZ97℄. In addition,

edit distan
e does not give us the freedom to deal with nuan
es of inter-
olle
tion similarity, su
h

as handling multiple o

urren
es.

Another distan
e measure, popular in a variety of domains, is Earth-mover's distan
e [RTG98℄,

whi
h measures the distan
e between two 
olle
tions of points in spa
e by 
al
ulating the work to

be done in moving mounds of earth, lo
ated at points in the �rst 
olle
tion, to �ll holes, lo
ated at

the points in the se
ond 
olle
tion. On
e again, this model is not a good �t for the problem at hand

be
ause it for
es many-to-many mat
h semanti
s and, again, does not handle multiple o

urren
es

well.
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7 Con
lusions

We have proposed exploiting hierar
hi
al domain stru
ture to 
ompute similarity between 
olle
-

tions. We de�ned measures that use this hierar
hy, shown why both these and traditional measures

often have unsatisfa
tory semanti
s, and suggested re�nements that provide good semanti
s for

inter-
olle
tion similarity. We have performed empiri
al 
omparisons of our measures with tra-

ditional similarity measures, and shown that using the hierar
hy makes a large di�eren
e, both

in terms of the values that are produ
ed, and in terms of ranked lists of 
olle
tions similar to a

given 
olle
tion. We have reported the �ndings of an informal user study to justify our belief that

our measures generate results that are 
loser to human intuition than the traditional similarity

measures.

We are 
urrently in the pro
ess of building re
ommender systems using these measures, and us-

ing the hierar
hy in other portions of the re
ommender system. Preliminary results are en
ouraging,

and seem to provide higher-quality re
ommendations than the simple Pearson-
orrelation-based,

nearest-neighbor approa
hes.
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Appendix A The User Study

The user study that we undertook is shown below. Nearly all the questions had more than 70% of

the users sele
ting one of the three 
hoi
es. If this happened, the answer was 
onsidered to be the

\
orre
t" answer. The questions were designed in su
h a fashion as to make the di�erent similarity

measures provide di�erent answers. Thus, identifying the \
orre
t" answer to a question would

help us de
ide that some similarity measures are better than others.

The only questions for whi
h we 
ould not determine a \
orre
t" answer were designed to 
hoose

between BGM and RGM. Here, user votes were split between � and one of > or <. For example,

Question 5 had votes split between � (whi
h is the answer suggested by RGM) and > (whi
h

is suggested by BGM). We would have needed a more pre
ise 
hara
terization of the similarities

involved, perhaps in terms of exa
t numeri
al values, in order to be able to draw 
on
lusions on

the relative quality of RGM and BGM in these 
ases.

1. f Diapers, Fat-free Milk, Gerber Squash and Corn g
Baby Bee Apri
ot Baby Oil > Fat-free Milk

Gerber Green Beans � Diet Pepsi 6Pk.

1% Milk < Equal low 
alorie Sweetener

Miller Lite 6Pk.

2. fApples, I
e Cream, Cookies, 1 Sni
kers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

1 Sni
kers Candy Bar 2 Sni
kers Candy Bars

3. fApples, I
e Cream, Cookies, 1 Sni
kers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

2 Sni
kers Candy Bars 10 Sni
kers Candy Bars

4. f 1 gallon 1% milk g
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1 gallon 1% milk > 1 gallon 1% milk

1 gallon 2% milk � 1 gallon Orange Jui
e

<

5. f Apples, I
e Cream, Cookies, 1 Sni
kers Candy Bar g
Whole Wheat Bread > Whole Wheat Bread

Cheese Singles � Cheese Singles

Carrots < Carrots

20 Sni
kers Candy Bars 40 Sni
kers Candy Bars

6. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

1 Sni
kers Candy Bar < 2 Sni
kers Candy Bars

7. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

2 Sni
kers Candy Bars < 10 Sni
kers Candy Bars

8. f Apples, Whole Wheat Bread, 1% Milk, Carrots g
Whole Wheat Bread > Oranges

1% milk � Cra
ked Wheat Bread

Potato Chips < 1% milk

Pepsi Spina
h

9. f Whole Wheat Bread, 1% Milk, Cookies g
Whole Wheat Bread > Whole Wheat Bread

2% milk � 2% milk

10 Sni
kers Candy Bars < 20 Sni
kers Candy Bars

10. f 2 gallons 1% Milk g
1 gallon 1% Milk > 1 gallon 1% Milk

1 gallon 2% Milk � 1 gallon Orange Jui
e

<
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