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Abstract

The skewed degree distribution of real-world graphs is
the main source of poor locality in traversing all edges of
the graph, known as Sparse Matrix-Vector (SpMV) Multi-
plication. Conventional graph traversal methods, such as
push and pull, traverse all vertices in the same manner,
and we show applying a uniform traversal direction for all
edges leads to sub-optimal memory locality, hence poor e�-
ciency. This paper argues that di�erent vertices in power-law
graphs have di�erent locality characteristics and the traver-
sal method should be adapted to these characteristics.
To solve this problem, we propose to inspect the num-

ber of destination and source vertices in selecting a cache-
compatible traversal direction for each type of vertex. We
introduce in-Hub Temporal Locality (iHTL), a structure-aware
SpMV that combines push and pull in one graph traversal,
but for di�erent vertex types. iHTL exploits temporal locality
by traversing incoming edges to in-hubs in push direction,
while processing other edges in pull direction.

The evaluation shows iHTL is 1.5× - 2.4× faster than pull
and 4.8× - 9.5× faster than push in state-of-the-art graph
processing frameworks such as GraphGrind, GraphIt and
Galois. More importantly, iHTL is 1.3× - 1.5× faster than pull
traversal of state-of-the-art locality optimizing reordering
algorithms such as SlashBurn, GOrder, and Rabbit-Order.

CCS Concepts: • Computing methodologies → Shared
memory algorithms;Massively parallel algorithms;Vec-
tor / streaming algorithms.

Keywords: Graph traversal, Memory locality, High perfor-
mance computing, Graph algorithms, Sparse Matrix-Vector
Multiplication
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1 Introduction

Among data-intensive problems, graph processing is par-
ticularly challenging due to high memory bandwidth require-
ments and irregular memory access patterns that make it
hard to optimize locality of memory accesses, especially in
traversing all edges of the graph (or Sparse Matrix-Vector
(SpMV) multiplication) where caches cannot contain the data
of all vertices. Graph traversal is performed in two major
patterns or directions: (1) In pull direction, a vertex pulls
data of its in-neighbours and results in random read memory
accesses and sequential write memory accesses. (2) In push
direction, a vertex updates data of its out-neighbours and
read accesses are sequential but write accesses are random.

The push traversal requires protecting data of out-neigh-
bours from concurrent updates of parallel threads which is
performed through (1) atomic instructions, (2) bu�ering [29],
or (3) partitioning edges by destination [35]. Pull traversal is
faster than push by traversing edges based on their unique
destinations and therefore write memory accesses do not
require protection. Pull traversal underpins several analytics
like Hyperlink Induced Topic Search [20], Belief Propagation
[19], Graph Neural Networks [40], Recurrent Neural Net-
works [27], PageRank [11], and Community Detection [47].

The structure of many real-world graphs poses challenges
to e�cient pull traversal. Graphs derived from social net-
works, the internet, and world-wide web show a skewed or
heavy-tailed degree distribution, often following a power-
law distribution: a very small fraction of vertices, which are
known as hubs, are connected to a disproportionately large
fraction of edges. The impact of hubs on temporal locality
becomes problematic when a massive amount of vertex
data is pulled into the cache by pull processing of an
in-hub (a vertex with large in-degree) which displaces
much of the cache contents and intensely reduces the
opportunity for future reuse.
Locality optimizing graph relabeling algorithms [2, 9, 24,

36, 41, 42] use di�erent techniques like graph clustering, com-
munity detection, and cache simulation to improve memory

https://doi.org/10.1145/3472456.3472462
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locality by rearranging the order in which vertices are num-
bered. However, we found that graph reordering algorithms
are successful in improving locality of non-hub vertices, but
not so for the hubs. Crucially, hubs have so many neighbours
that exploiting reuse of the neighbours of one hub to the
neighbours of the next vertex is unlikely.

Our solution for this problem is based on the property of
skewed graphs that a very small fraction of the vertices (the
hubs) connect to a disproportionately high number of edges:
when traversing the in-edges of the in-hubs, it follows
that the set of possible destinations (in-hubs) is very
small, yet the set of possible sources is very large (due
to the large in-degree of the in-hubs). Our insight is that,
for such a sub-graph, a cache-compatible traversal direc-
tion is the push direction and not the intended pull: while
the cache cannot satisfy random accesses to numer-
ous source vertices of the edges to in-hubs in the pull
traversal, the push traversal results in random mem-
ory accesses to a small set of destination vertices (in-
hubs) that can be satis�ed by cache. Importantly, these
destination-based random accesses can be captured in full
in the on-chip caches if we control the number of hubs cor-
rectly. Consequently, we can traverse an important fraction
of the edges with no random accesses to main memory.

This paper develops this insight and presents the in-Hub
Temporal Locality (iHTL) that optimizes SpMV-based graph
analytics by using push direction for processing incoming
edges to in-hubs and pull for incoming edges to non-hubs.
The contributions of this paper are thus:
• We analyze the challenges imposed by hubs during
graph traversal and demonstrate that locality optimiz-
ing graph relabeling algorithms fail to address locality
issues of hubs.

• We introduce the iHTL algorithm that applies a be-
spoke mix of push and pull traversal in order to maxi-
mize cache reuse. We demonstrate how to e�ciently
prepare the iHTL graph in a light-weight preprocess-
ing step by designing an algorithm to determine hubs
based on graph structure.

• We evaluate iHTL on 10 real-world graphs with up to
7.9 billion edges demonstrating that iHTL signi�cantly
improves locality and outperforms the pull traver-
sal in state-of-the-art graph processing systems such
as GraphGrind [35], GraphIt [46] and Galois [16] by
1.5 × −2.4×. Moreover, the evaluation of iHTL in com-
parison to state-of-the-art relabeling algorithms such
as SlashBurn [24], GOrder [41] and Rabbit-Order [2]
shows iHTL is faster than pull traversal of the relabeled
graphs by 1.3×−1.5×while reducing the preprocessing
time by 780×.

Section 2 explains key background material and motivates
the iHTL approach. Section 3 presents iHTL. The evaluation
of iHTL is discussed in Section 4 and Section 5 studies related
work. Section 6 presents future work.

Algorithm 1: SpMV in pull direction

Input: � (+ , �) ,D8−1, D8

1 for E ∈ + do
2 BD< = 0;

3 for D ∈ # −
E do

4 BD< += D8−1 [D];

5 D8 [E] = BD<;

Figure 1. The last level cache miss rate of SpMV conditional
on the degree of the traversed vertex

2 Background and Motivation

2.1 Terminology

Graph � = (+ , �) has a set of vertices + , and a set of
directed edges �. The adjacency matrix is a binary matrix
representing the graph: the element at row 8 and column 9

is 1 if � contains an edge from vertex 8 to 9 , and 0 otherwise.
Graphs are represented in Compressed Sparse Rows and
Columns (CSR, and CSC) [30]. # −

E , and # +
E are the set of

in-neighbours and out-neighbours of vertex E , respectively.
The hub, in-hub, and out-hub vertices are vertices with

the highest degree, in-degree, and out-degree, respectively.
We do not present a formulaic de�nition of hubs. Instead,
we reserve the term hub only for those vertices identi�ed by
iHTL as meriting an opposite traversal direction.

2.2 High Cache Miss Rate of in-Hubs

We �rst demonstrate that cache misses incurred during
pull traversal are concentrated in the highest-degree vertices.
We use SpMV multiplication (Algorithm 1) that iteratively
calculates the new data of a vertex as summation of previous
data of its in-neighbours. Using the notation of D8

E for data
of vertex E in iteration 8 , SpMV calculates: D8

E =
∑

D∈# −
E

D8−1
D .

Figure 1 depicts the miss rate conditional on the degree of
a vertex for a social network graph (Twitter MPI) and a web
graph (SK-Domain). It shows that the initial graphs in-
cur substantialmiss rates for hubs that are the destina-
tion of themajority of the edges in power-lawgraphs [21]
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(a) Pull

(b) iHTL
(c) Timeline

Figure 2. (a) Example graph with (in-hubs: #3, #7) - (b) iHTL
graph (in-hubs: #1, #2) - (c) Timeline of pull vs iHTL ( E�ective

cache size: 2 - cache contains data of source (S) vertices in pull direction, or

destination (D) vertices in push direction. )

and consequently a signi�cant part of execution time is con-
sumed for processing hub vertices.
Figure 1 also illustrates the result of optimizing locality

using relabeling algorithms: SlashBurn, GOrder, and Rabbit-
Order. Relabeling algorithms change the order of vertices
that a�ects hubs’ locality by changing (1) the cache contents
immediately before starting the processing of hubs, and (2)
the spatial locality of hubs’ neighbours. However, locality op-
timizing relabeling algorithms cannot change the structure
of the graph and the number of hubs’ neighbours.
Figure 1 shows that the locality optimizing relabeling al-

gorithms can improve cache miss rates of non-hub vertices.
However, hubs experience a high cache miss rate even
after reordering [21]. In contrast, iHTL signi�cantly re-
duces the cache miss rates corresponding to the hubs, which
translates to substantial performance gain.

2.3 Ine�cient Cache Utilization in Pull Traversal

To explain this high miss rate of hubs, Figure 2.(a) presents
an example graph, and Figure 2.(c) shows its pull traversal
execution timeline. Vertices 3 and 7 are in-hubs and the
e�ective cache size is 2. For a LRU cache with one vertex
data per cache line, the notation [G,~] is used to show the
data of vertices G and ~ are in the cache. Before processing
vertex 3, vertices 1 and 2 have been processed and ⇒ [1, 7].

For pull traversal of the �rst in-hub (vertex 3), the data of
vertices 2, 5, 6, 7, and 8 should be read. Starting from vertex
2, its data is not in the cache and is fetched from the memory,
and ⇒ [2, 1]. Then the data of vertex 5 is required that is
not in the cache and is read from the memory and ⇒ [5, 2].
In the same way, the data of vertices 6, 7, and 8 also is read
from the main memory and no reuse happens for processing
5 in-edges of vertex 3.

Algorithm 2: SpMV in push direction

Input: � (+ , �) ,D8−1, D8

1 for E ∈ + do
2 for D ∈ # +

E do
3 D8 [D] += D8−1 [E];

Figure 2.(c) shows, the same behaviour happens for pull
traversal of the second in-hub (vertex 7), and no reuse is
experienced for processing 4 edges. This shows that the high
degree of an in-hub limits the reuse of the cache contents in
pull traversal of in-hubs.

2.4 iHTL Idea

In a pull traversal (Algorithm 1), each vertex reads data of
its in-neighbours (Line 4) and writes its new data. Therefore
most of the capacity of cache is dedicated to random read
accesses to data of source vertices in pull traversal. In a
push traversal (Algorithm 2), the new data of out-neighbours
(Line 3) are randomly updated by data of source vertices
and most of the capacity of cache is dedicated to random
write accesses to destination vertices in push traversal.

On the other hand, real-world graphs with power-law
structure have few in-hub vertices with each having sev-
eral in-neighbours. In a pull traversal of an in-hub, cache is
dedicated to source vertices and the number of these source
vertices is greater than the capacity of cache resulting in
high rate of cache misses (Figure 1).
iHTL states that for incoming edges to in-hubs, the

number of destination vertices (in-hubs) is much less
than the number of source vertices, therefore cache
can be e�ciently used only if it is dedicated to the des-
tination vertices. In otherwords, push traversal is suit-
able for traversing incoming edges to in-hubs.
In order to facilitate this, iHTL relabels the graph and

assigns the lowest vertex IDs to in-hubs: vertices 3 and 7
of the example graph in Figure 2.(a) become vertices 1 and
2 in Figure 2.(b). Moreover, iHTL processes the graph in
two steps. In the �rst step incoming edges to in-hubs are
processed in push direction. In the second step, other edges
are processed in pull direction. Figure 2.(c) shows the iHTL
execution timeline for Figure 2.(b). For push traversal of
incoming edges to in-hubs, �rst, vertex 1 updates data of
vertex 2 by its data and vertex 2 updates data of vertex 1
⇒ [1, 2]. Then, vertex 3 reads its data from main memory
and updates the data of in-hubs (vertices 1, 2), and one reuse
out of two updates is achieved (cache content is [2, 1]). In the
same way, two more reuses are achieved for push traversal
of outgoing edges of vertices 4 and 5 to in-hubs.
The comparison of pull and iHTL execution timelines

shows that reuse is more frequent in iHTL because by
push traversal of incoming edges to in-hubs, random
accesses are targeted at a small number of in-hubs that
are maintained in cache. In iHTL every edge is traversed
exactly once as it should be, even though iHTL mixes push
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Figure 3. Adjacency matrix of an iHTL graph

and pull traversals. The timeline also shows that by increas-
ing the number of common in-hubs, reuse is increased.

3 In-Hub Temporal Locality

iHTL performs push for incoming edges to in-hubs, and
applies pull for incoming edges to non-hubs. To perform
e�cient push and pull, iHTL creates subgraphs for groups
of edges. We explain iHTL graph in Section 3.1. Sections 3.2
and 3.3 discuss the process of creating an iHTL graph, and
Section 3.4 shows how SpMV is performed in iHTL.

3.1 iHTL Graph

In order to facilitate push and pull traversals in iHTL, we
distinguish blocks (subgraphs) within the graph adjacency
matrix. Figure 3 shows the adjacency matrix structure of
iHTL graph. Note that we use the convention that a pull
traversal corresponds to a column-major traversal of the
adjacency sub-matrix, while a push traversal corresponds to
a row-major traversal.
The iHTL graph is comprised of three major parts:

• A number of �ipped blocks that contain incoming
edges to in-hubs,

• A sparse block that contains edges to non-hubs, and
• A zero block that contains no edges.

iHTL uses push traversal for processing incoming edges
to in-hubs and it is necessary to ensure data of in-hubs are
maintained in cache. For a graph that has in-hubs more than
cache capacity, iHTL creates multiple �ipped blocks.
Due to the skewed degree distribution of graphs, �ipped

blocks are very dense (contain few hubs, but many edges).
We will show in the evaluation section that �ipped blocks in
iHTL contain 40-70% of the edges for 8 out of 10 graphs.
The sparse block, on the other hand, contains edges to

non-hubs and iHTL uses pull traversal which dedicates cache
to the source vertices of edges and since there is no in-hub
in the sparse block, reuse of cache contents is improved.
To create these blocks, iHTL categorizes vertices into:

• in-hubs,
• VWEH: Vertices With Edges to Hubs, and
• FV: Fringe Vertices, which have no edges to in-hubs.

In iHTL, all edges in the �ipped blocks are either edges
from VWEH to in-hubs, or from in-hubs to in-hubs. Fringe

vertices do not link to in-hubs. As such, they do not appear in
�ipped blocks and a zero block (∅) appears in the adjacency
matrix (Figure 3). We separate out fringe vertices in order
to (1) avoid loading their vertex data from main memory
during processing of �ipped blocks, and also to (2) shrink
the size of topology data of �ipped blocks.

3.2 Creating iHTL Graph

The iHTL graph (Figure 3) is created in 3 steps:
(1) Creating Relabeling Array: To enforce the new ar-

rangement of vertices, the iHTL relabeling array is created
such that all in-hubs have smaller labels than VWEH and all
VWEH have smaller labels than FV. iHTL brings vertices of
the same type (in-hubs, VWEH, and FV) close to each other
by assigning consecutive IDs. However, it keeps the initial
order between vertices of the same type in VWEH and FV. In
this way, iHTL tries to have a minimal change on the initial
neighbourhood of the vertices.
Figure 4 shows the creation of the relabeling array for

the example graph in Figure 2.(a). Firstly, in-hubs are se-
lected as a number of vertices with the highest degree and
�rst IDs are dedicated to in-hubs. The number of in-hubs
depends on the number of �ipped blocks and is discussed in
Section 3.3. Secondly, the VWEH is identi�ed by traversing
CSC representation of the main graph for the selected in-hub
vertices. The remaining vertices are FV. Figure 5 shows the
adjacency matrix of the example graph, and Figure 6 shows
the adjacency matrix of its iHTL graph after relabeling.
It is worth mentioning that contrary to locality optimiz-

ing relabeling algorithms like GOrder and Rabbit-Order, the
relabeling array in iHTL does not improve locality and is
used to form the blocks required in iHTL adjacency matrix.
Locality is improved in iHTL by increasing reuse in push
traversal for incoming edges to in-hub vertices.
(2) Creating Flipped Blocks: Flipped blocks in iHTL

contain in-edges of in-hubs. If a �ipped block contains � in-
hubs, then the 8-th �ipped block contains edges to the in-hubs
with IDs in the range �'8 = [(8 − 1)�, 8� ). Creating �ipped
blocks requires a pass over outgoing edges from {ℎD1B ∪

+,�� } in the CSR representation of the main graph and
selecting edges with in-hub destinations (that are identi�ed
using the iHTL relabeling array).
(3) Creating A Sparse Block: The sparse block of iHTL

contains edges to non-hubs that are processed in pull direc-
tion. It is formed by a pass over the CSC representation of the
main graph for all in-edges to {+,�� ∪ �+ } and relabeling
source of edges using the iHTL relabeling array.

3.3 Number of in-Hubs and Flipped Blocks

The main bene�t of iHTL is to traverse the �ipped blocks
such that random accesses are made to the few hubs that are
maintained in the cache. To accomplish this, the number of
hubs is dimensioned based on a combination of cache size
and graph structure. Taking cache size into account is critical
to catch the random accesses to the in-hubs on chip. However,
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1) Adding hubs

3 7

2) Adding VWEH

3 7 2 5 6 8

3) Adding FV

3 7 2 5 6 8 1 4

Figure 4. iHTL relabeling array (ele-
ment E stores the original ID of E)

#1 #2 #3 #4 #5 #6 #7 #8

#1 1

#2 1 1

#3 1

#4 1

#5 1 1

#6 1 1 1 1

#7 1 1

#8 1

Figure 5. Adjacency matrix of graph
in Figure 2.(a)

#1 #2 #3 #4 #5 #6 #7 #8

#1 1

#2 1 1

#3 1 1

#4 1 1

#5 1 1 1 1

#6 1

#7 1

#8 1

Figure 6. iHTL Adjacency matrix of
graph in Figure 2.(a) after relabeling

graph data sets may require more hubs than contemporary
processor cache sizes can handle. Because of this, iHTL
�xes the number of in-hubs in a �ipped block based
on cache size and constructs multiple �ipped blocks
as needed based on graph structure.

The number of in-hubs in a �ipped block is determined by
the on-chip cache size. We identi�ed that the level 2 cache
is the best location for holding the vertex data of in-hubs
(Section 4.7). As such, we specify the number of hubs per
�ipped block as � by dividing the level 2 cache size by the
size of vertex data.
If graph structure mandates more hubs, we increase the

number of �ipped blocks. Therefore,HTLneeds to balance
the bene�t of creating more �ipped blocks with the
drawbacks. The bene�t is improved locality, however, there
are two drawbacks for increasing the number of �ipped
blocks: (1) While all members of {ℎD1B∪+,�� } have edges
to in-hubs in the �rst �ipped block, this number diminishes
in subsequent �ipped blocks, reducing e�ciency as some
fetched vertex data will not be used during push traversal.
(2) Flipped blocks, moreover, increase the size of the graph
topology data, as each block requires its ownmetadata. Based
on these observations, iHTL allows a new �ipped block
to be formed if its hubs have edges from at least 50%
of the {hubs ∪ VWEH}.
If �+8 = {B ∈ {ℎD1B ∪ +,�� }|∃(B, ℎ) ∈ � ∧ ℎ ∈ �'8 },

iHTL increases the number of �ipped blocks (#5 1), while
|�+#5 1 | > 0.5 ∗ |�+1 |. In order to calculate |�+8 |, a pass
over in-edges to � in-hub vertices in the 8-th �ipped-block
is required to mark the �+ members and one other pass is
needed to count the number of marked vertices.

3.4 iHTL Processing

In parallel processing of a �ipped block, concurrent threads
will perform random updates to the vertex data of in-hubs.
To avoid race conditions, we opt for a bu�ering technique
(where each thread operates on copies of the vertex data
which are later merged [29]) as it is more e�cient in the
setting of iHTL using the private and fast L2 cache for each
thread. As we see in the evaluation, bu�er merging in iHTL

Algorithm 3: SpMV in iHTL

Input: 8�)!_6A0?ℎ ℎ, D8−1, D8

/* Push traversal of the flipped blocks */

1 par_for 5 1 ∈ ℎ.5 ;8??43_1;>2:B

2 par_for E ∈ {ℎ.ℎD1B ∪ ℎ.+,�� }

3 foreach ℎD1 ∈ 5 1.ℎD1BE do

4 bu�er_dC83ℎD1+ = D8−1
E ;

/* Aggregation of thread buffers */

5 par_for ℎD1 ∈ ℎ.ℎD1B

6 foreach C ∈ CℎA403B do
7 D8

ℎD1
+ = bu�er_dCℎD1 ;

/* Pull traversal of the sparse block */

8 par_for E ∈ {ℎ.+,�� ∪ ℎ.�+ }

9 foreach D ∈ # −
E do

10 D8
E+ = D8−1

D ;

does not take more than 3% of iHTL execution time (each
thread bu�ers � ∗ #5 1 vertex data).
Algorithm 3 shows SpMV execution for iHTL. Flipped

blocks (Lines 1-4) use push traversal in iHLT. For each �ipped
block, the old data of a vertex E that has edges to hubs (5 1.ℎD1BE)

is read and the related index of the local bu�er (bu�er_dC83 )
of thread (C83) is updated. Since threads write updates locally
during processing �ipped blocks, the parallel for loop in
Line 1 does not require synchronization between threads
and di�erent threads can process vertices of di�erent
�ipped blocks. However, each thread should process only
one �ipped block at a time.

After completion of processing �ipped blocks, thread bu�ers
are merged (Lines 5-7) to specify data of hubs. Finally, pull
traversal is used for processing the sparse block (Lines 8-10).

4 Evaluation

4.1 Evaluation Method and Datasets

We use a 2-socket machine with 768 GB main memory.
Each socket has an Intel® Xeon® Gold 6130 with 16 cores,
32KB L1 cache, 1MB L2 cache, and 22MB L3 shared cache.

HTL has been implemented in the C language using pthread,
libnuma, and papi [37] libraries, and compiled by gcc-9.2

https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
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Dataset Name Source |V| (M) |E| (B)
In-degree

Max. (K)

Out-degree

Max. (K)

LvJrnl LiveJournal KN 7 0.22 15 15
Twtr10 Twitter 2010 NR 21 0.26 422 302
TwtrMpi Twitter MPI NR 41 1.5 770 2,997
Frndstr Friendster NR 65 1.8 4 4
SK SK-Domain LWA 50 2 8,564 13
WbCc Web-CC12 NR 89 2 2,329 1,317
UKDls UK-Delis LWA 110 4 1,261 15
UU UK-Union LWA 133 5.5 6,367 22
UKDmn UK-Domain KN 105 6.6 975 975
ClWb9 ClueWeb09 NR 1.7K 7.9 6,445 2

Table 1. Datasets

Push Pull iHTL
GGrind GraphIt GGrind GraphIt Galois

LvJrnl 91 770 54 106 37 28
Twtr10 176 340 143 76 114 57
TwtrMpi 895 1,606 693 402 422 268
Frndstr 1,352 2,023 1,149 858 885 627
SK 828 2,547 289 187 176 112
WbCc 1,245 1,444 981 606 664 382
UKDls 1,606 1,346 535 312 281 231
UU 2,479 3,626 757 430 390 320
UKDmn 2,637 1,827 806 439 407 348
ClWb9 6,844 6,220 7,301 3,405 4,407 2,367
Avg.  Speedup 4.8× 9.5× 2.4× 1.7× 1.5× 1×

Figure 7. Per iteration execution time (in milliseconds) of
PageRank

with -O3 �ag. The implementation uses interleaved NUMA
memory policy and applies work-stealing [6] for parallel
processing of graph partitions created by vertex and edge
partitioning [35, 44]. The master-worker model has been
used for managing parallel threads.
Table 1 shows the datasets and their sources: “Konect”

(KN) [7, 22, 26], “NetworkRepository” (NR) [10, 13, 15, 28, 32],
and “Laboratory for Web Algorithmics” (LWA) [7–10, 23]. The
�rst 4 datasets are social networks, and the other ones are
web graphs. Numbers of edges are in billions and numbers of
vertices are in millions, counted after removing zero degree
vertices because of their destructive e�ect [35]. Graphs are
represented in CSR and CSC with |+ | + 1 index values of 8
bytes per index value and |� | neighbour IDs of 4 bytes each
as |+ | < 232.

GraphGrind (commit 5099761), GraphIt (commit c4781d8,
OpenMP), and Galois (V5, commit 6ce5f0d) are graph pro-
cessing frameworks we use to evaluate iHTL. GOrder [41]
(commit 7ccdfe9), Rabbit-Order [2] (commit f67a79e), and
SlashBurn [24] are state-of-the-art locality optimizing rela-
beling algorithms we use for evaluation of iHTL. GOrder
has a limit of |� | < 231 and Rabbit-Order could not complete
relabeling of ClWb9 because of an "out of memory" error.

We evaluate iHTL using the PageRank application which
has been implemented in all graph processing frameworks
and iteratively performs SpMV-type calculations: %'8E =

0.15
=

+ 0.85
∑

D∈# −
E

%'8−1
D

|# +
D |
. The vertex data size is 8 bytes.

4.2 iHTL vs Pull and Push Implementations

Figure 7 compares per iteration PageRank execution time
for iHTL vs pull and push traversals in di�erent graph pro-
cessing frameworks (Galois does not include PageRank in

Dataset GraphGrind GraphIt Galois iHTL

LvJrnl 16.8 8.5 24.1 32.6
Twtr10 6.3 11.8 7.9 15.7
TwtrMpi 7.1 12.2 11.6 18.3
Frndstr 5.0 6.8 6.6 9.3
SK 13.8 21.4 22.8 35.8
WbCc 3.6 5.8 5.3 9.2
UKDls 6.2 10.6 11.7 14.3
UU 5.0 8.8 9.7 11.9
UKDmn 6.8 12.5 13.5 15.8
ClWb9 2.3 5.0 3.8 7.1

Average 7.3 10.3 11.7 17.0

Table 2. iHTL preprocessing overhead based on PageRank
iterations (The numbers show how many SpMV iterations
are performed in the time iHTL requires for preprocessing).

Dataset Memory Accesses L3 Cache Misses L2 Cache Misses

Pull iHTL Pull iHTL Pull iHTL

LvJrnl 502 630 25 23 148 54
Twtr10 662 1,216 72 61 207 132
TwtrMpi 3,219 5,917 510 341 1,023 606
Frndstr 4,042 6,627 1,317 974 1,733 1,392
SK 4,243 5,702 194 169 316 235
WbCc 4,656 5,715 673 540 1,167 817
UKDls 8,630 10,803 346 349 480 477
UU 11,917 14,637 493 469 782 647
UKDmn 13,942 15,923 525 528 730 729
ClWb9 25,306 26,797 3,537 3,207 3,869 3,539

Table 3.Memory accesses (load and store instructions), L3
and L2 cache misses (in millions)

push direction). We compare against several frameworks as
each applies a di�erent set of optimizations. GraphGrind
performs an edge-balanced partitioning for a pull traversal.
GraphIt includes the Cagra [45] locality optimizations (Sec-
tion 5.4) which make it faster than Galois for some graphs.
Figure 7 demonstrates the e�ectiveness of the iHTL locality
optimizations as it is faster than di�erent implementations
of pull traversal by 1.5× - 2.4×.

Figure 7 also shows that iHTL preserves the initial lo-
cality of graphswell, even for graphs like “SK-Domain”
with high initial locality.

Table 2 shows the overhead of iHTL preprocessing as a
multiple of PageRank iterations in di�erent frameworks. It
shows that, on average, iHTL requires 7.3 - 11.7 SpMV
iterations in other frameworks as the preprocessing
time. The preprocessing overhead can be completely amor-
tized between di�erent executions if the iHTL graph is stored
in its binary format (similar to the special �le formats that
each framework uses) on disk after preprocessing. In Sec-
tion 6, we present avenues for future work that may reduce
the preprocessing time of iHTL.

4.3 Memory Accesses and Cache Misses

Table 3 compares the memory accesses (loads and stores
of data) and also the level 3 cache misses for pull traversal vs
iHTL, captured using PAPI. iHTL incurs additional memory
accesses due to: (1) increased volume of topology data, (2)
updates to local bu�ers when processing �ipped blocks, (3)
merging bu�ers and (4) resetting bu�ers. Types 1, 3, and 4
are sequential, i.e., assisted by prefetching. Type 2 includes
random writes, however, these are captured by the level 2
cache.

http://konect.cc/networks/livejournal-groupmemberships/
http://networkrepository.com/soc-twitter-2010.php
http://networkrepository.com/soc-twitter-mpi-sws.php
http://networkrepository.com/soc-friendster.php
http://law.di.unimi.it/webdata/sk-2005/
http://networkrepository.com/web-cc12-hostgraph.php
http://law.di.unimi.it/webdata/uk-2007-02/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://konect.cc/networks/dimacs10-uk-2007-05/
http://networkrepository.com/web-ClueWeb09.php
http://konect.cc
http://networkrepository.co
http://lwa.di.unimi.it
https://github.com/Jaiwen/GraphGrind
https://github.com/GraphIt-DSL/graphit
https://github.com/IntelligentSoftwareSystems/Galois/
https://github.com/datourat/Gorder
https://github.com/araij/rabbit_order
http://datalab.snu.ac.kr/~ukang/SlashBurn-1.0.zip
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Dataset CSC (GiB) iHTL (GiB) iHTL Overhead (%)

LvJrnl .9 1. 3
Twtr10 1.2 1.9 57
TwtrMpi 6.2 9.7 56
Frndstr 7.5 10.7 42
SK 8.2 8.5 4
WbCc 8.5 8.9 5
UKDls 16.5 17. 3
UU 22.5 23.3 3
UKDmn 26.6 27.2 2
ClWb9 43.8 44.9 3

Table 4. Size of topology data (in Giga Bytes)

As such, the key distinction in cache misses that impacts
performance occurs when processing in-hubs: where the
pull traversal performs random reads that result in L3
cache misses, iHTL performs random writes captured
by the L2 cache. This large di�erence in L3 cache misses is
a key explainer for the performance of iHTL.

4.4 iHTL Memory Overhead

Table 4 compares the memory size of CSC representation
of the main graphs vs. their iHTL graphs. The topology data
grows in iHTL compared to a standard compressed sparse
columns representation. This results from replication of the
index array for each block.
However, topology data is read sequentially from main

memory as the graph topology is too large to �t in on-chip
caches. The size increase is therefore not a major problem.
Section 6 explains methods for reducing topology data.

4.5 iHTL vs Relabeling Algorithms

To have a better scale of locality optimization of iHTL, Fig-
ure 8 compares PageRank execution time for iHTL and pull
traversal of the datasets after relabeling by SlashBurn (SB),
GOrder (GO), and Rabbit-Order (RO).
Relabeling algorithms rearrange the vertices to provide

better reuse of vertex data, and as Figure 1 shows they can
provide better locality for non-hub vertices. However, a
structure-agnostic pull traversal does not allow relabeling
algorithms to improve locality of hubs (Figure 1). In contrast,
iHTL targets locality of hubs (Figure 1), which capture a
signi�cant portion of the edges (Table 5). Thus, iHTL out-
performs the relabeling algorithms.

Figure 8 compares the preprocessing time of iHTL to rela-
beling algorithms. GOrder has a sequential implementation.
SlashBurn and Rabbit-Order have a parallel code, however
the complexity of their algorithms makes them much slower
than iHTL. iHTL has a simple preprocessing algorithm (Sec-
tion 3.2) and does not need to investigate the neighbourhood
of each vertex in detail. This gives iHTL a very short prepro-
cessing time.

4.6 iHTL Execution Breakdown

Table 5 characterizes the iHTL graph and relative process-
ing speed for �ipped blocks. For social networks, �ipped
blocks contain 45% - 65% of the edges. The push traversal of
�ipped blocksmakes good use of the sequentially fetched ver-
tex data, as a high percentage of the vertices link to the hubs

Iteration Time (ms) Preprocessing Time (s)
SB
Pull

GO
Pull

RO
Pull iHTL SB GO RO iHTL

LvJrnl 44 45 48 28 4 362 6 0.9
Twtr10 63 101 84 57 9 712 15 0.9
TwtrMpi 345 306 399 268 68 5,697 66 4.9
Frndstr 841 682 652 627 78 4,894 139 5.8
SK 212 192 153 112 240 588 35 4
WbCc 601 492 410 382 112 6,587 72 3.5
UKDls 356 234 231 1,044 67 3.3
UU 537 346 320 1,736 80 3.8
UKDmn 492 399 348 1,022 69 5.5
ClWb9 3,147 2,367 416 16.9
Avg.  Speedup 1.5× 1.4× 1.3× 1× >200× >2000× 38× 1×

Figure 8. Left: Execution time (in milliseconds) of pull traversal af-

ter relabeling vs iHTL - Right: The preprocessing time of relabeling

algorithms vs iHTL (in seconds)

Dataset Graph Statistics Exec. Breakdown

#FB VWEH
Min. Hub

Degree

FB

Edges

FB

Time

Bu�er

Merging

FB

Speed

LvJrnl 1 47% 158 47% 32% 2.38% 1.48
Twtr10 2 28% 109 67% 37% 1.73% 1.81
TwtrMpi 8 87% 223 59% 41% 1.73% 1.46
Frndstr 16 60% 192 45% 22% 1.56% 2.00
SK 1 78% 1,389 68% 48% 0.52% 1.43
WbCc 1 56% 1,351 44% 13% 0.18% 3.32
UKDls 1 65% 4,844 49% 34% 0.28% 1.45
UU 1 71% 3,703 44% 32% 0.22% 1.39
UKDmn 1 67% 3,961 27% 21% 0.19% 1.26
ClWb9 1 9% 2,654 13% 4% 0.03% 2.94

Table 5. iHTL graph statistics and iHTL PageRank execution
breakdown (FB: �ipped blocks, Topo: topology data)

(column VWEH). As a result, iHTL spends just 22% - 40%
of its time for processing �ipped blocks of social networks.
Web graphs contain only one �ipped block that contains
40% of edges on average and is processed in just 25% of the
processing time, on average.

The relatively high processing speed of �ipped blocks com-
pared to the whole graph is captured by the �ipped block
speed (column “FB speed”). It is calculated as the percentage
of edges in the �ipped blocks divided by the relative time
spent in �ipped blocks. Values higher than 1 indicate that an
edge in a �ipped block is processed more e�ciently than av-
erage across the graph. This is a consequence of containing
the random memory accesses in the on-chip caches during
processing of �ipped blocks, which cannot be guaranteed
for the sparse block.
Table 5 shows that bu�er aggregation in iHTL requires

less than 2.5% of total processing time. Each �ipped block
implies bu�er merging overhead, however, by inspecting
graph structure iHTL incurs this overhead only when there
is a corresponding gain in locality.

4.7 iHTL Bu�er Size

Table 6 shows the impact of iHTL bu�er size. Note that
bu�er size determines the number of hubs per �ipped block.
The aim is for random accesses to the bu�ers to be serviced
fast. Aligning the bu�ers to L1 cache size is ine�cient as
its 32 KB size is too small to accommodate many hubs. The
L2 cache is private to each core, which implies unfettered
access.
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Dataset L1-Size L2-Size / 2 L2-Size L2-Size ∗ 2

TwtrMpi 340 269 268 329
Frndstr 778 652 627 669
WbCc 424 384 382 376
UKDls 242 235 231 228
UU 337 326 320 318
UKDmn 355 347 348 343
ClWb9 2,424 2,356 2,367 2,371

Table 6. Execution time (in milliseconds) for di�erent bu�er sizes

Increasing the bu�er size beyond the L2 size is detrimental
for social networks, however, web graphs tolerate this well.
Increasing bu�er size beyond L2 size can be seen to be sub-
optimal as it increases usage of the L3 cache, which is shared
between the threads and is non-inclusive and non-exclusive
(NINE) with L2. Hence L3 size (22 MB per 16 cores) provides
only fractionally more space per core compared to the 1 MB
L2 cache.

Consequently, as Table 6 shows, L2 cache is the best choice
for accommodating data of in-hub vertices.

5 Related Work

5.1 Low-Degree vs. High-Degree

The history of using di�erent traversals for di�erent ver-
tices returns to the AYZ algorithm [1] for triangle counting
where low-degree and high-degree vertices are di�erentiated
to reduce computational complexity.

PowerLyra [14] reduces the communication cost in a dis-
tributed graph processing system by using vertex-cut parti-
tioning for low-degree vertices and edge-cut for high-degree
vertices. In this way, PowerLyra ensures that replicas of low-
degree vertices are not increased and processing high-degree
vertices will experience better load balance.

5.2 Push OR Pull

The e�ectiveness of push OR pull traversals are discussed
in [3, 5, 25, 33, 39]. These studies apply the same traversal
direction for all vertices in a single traversal of all edges. The
push or pull traversal is selected in these works based on den-
sity of frontier or possible convergence optimization that can
be applied on a special direction. Also, push and pull locality
have di�erent e�ects on the traversal performance [21].

On the other hand, iHTL applies di�erent traversal direc-
tions for di�erent vertex types in one traversal of all edges
of the graph.

5.3 Locality Optimizing Graph Reordering

Community detection algorithms like Scan [42] provide
better locality. Scan isolates hubs and outliers (vertices mar-
ginally appended to clusters) from clusters to prevent un-
related communities to be merged because of only one hub
neighbour. ScaleScan [31] removes unnecessary computa-
tions in Scan and parallelizes the execution. Graph relabel-
ing algorithms like SlashBurn [24], GOrder [41] and Rabbit-
Order[2] rearrange vertices in order to improve locality.
In contrast to vertex reordering algorithms, iHTL con-

centrates on reordering edges as its primary goal to

Figure 9. Asymmetricity degree distribution

provide temporal locality and as Section 4.5 shows iHTL
provides better locality while reducing the preprocessing
time.

5.4 Blocking Strategies

Starting from [18], blocking techniques have been widely
used to achieve di�erent goals. GraphGrind [34] and Grap-
tor [38] apply vertical blocking in their push traversals in
order to prevent race conditions made by concurrent updates.
Cagra [45] applies horizontal blocking of the adjacency

matrix in pull traversal that limits the range of random mem-
ory accesses during processing of a block and cache misses
are reduced. Per-thread bu�ers are used in Cagra to contain
intermediate updates of data of all vertices. iHTL provides
an e�cient bu�ering limited to in-hubs.

Lav [43] reduces the overheads of Cagra by creating hori-
zontal dense blocks only for those out-hubs that capture 80%
of the out-edges. To avoid bu�ermerging and to reduce cache
misses, Lav prevents concurrent processing of blocks that
may introduce load imbalance. In contrast, iHTL’s �ipped
blocks are easily load-balanced and are processed concur-
rently (Section 3.4).

Moreover, since real-world graphs are not truly power-
law graphs [12], it is not always possible to select the num-
ber of dense blocks using estimated degree distribution sta-
tistics. So, iHTL identi�es the number of �ipped blocks
by assessing the relation between hubs independently
from their degree (Section 3.3), and �ipped blocks contain
a wide range of 13% - 68% of the edges (Table 5).

E�cient horizontal blocking based on out-degrees is fun-
damentally impossible in some graphs. Figure 9 compares
the asymmetricity of vertices grouped by degree for a so-
cial network (Twitter MPI) and a web graph (UK-Union).
Asymmetricity of a vertex is de�ned as the fraction of in-
neighbours that are not out-neighbours :

�B~<<4CA828C~ (E) =
|{(D, E) ∈ � | (E,D) ∉ �}|

|{(D, E) ∈ �}|
Figure 9 shows that in-hubs are almost symmetric in

social networks (in-hubs are out-hubs), butweb graphs
do not have symmetric in-hubs. Therefore, the lack of
very high out-degrees in the graph implies that hor-
izontal blocking cannot create dense blocks, which is
most prominent in web graphs and can increase the over-
head of reading topology data. Similarly, if the graph does
not have very high in-degree vertices, it is not possible
to create vertical dense blocks.
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As an example, SK-Domain has in-hubs and no out-hubs
(Table 1), and for creating horizontal dense blocks based
on out-hubs, 36% of vertices are required to capture 80% of
edges, but iHTL creates a single vertical �ipped block that
contains 68% of the edges by selecting 0.3% of the vertices
as in-hubs (Section 4.6).
iHTL creates �ipped blocks using the same type of

hubs that experience low locality: in a pull traversal, in-
hubs do not experience locality and iHTL creates vertical
�ipped blocks based on in-hubs that exist.
Moreover, iHTL maintains the relative order of vertices

within the VWEH and FV categories, while other locality op-
timizing algorithms apply degree sorting throughout [4, 43,
45]. This destroys locality expressed in the initial assignment
of vertex labels [36].

6 Conclusion and Future Work

This paper represents iHTL that improves temporal local-
ity using both push and pull traversals in one graph traversal
but for di�erent vertex types. The evaluation on 10 real-
world graph datasets shows that iHTL is much faster than
pull and push traversals in graph processing frameworks.
Furthermore, iHTL outperforms state-of-the-art locality op-
timization relabeling algorithms.

This paper concentrates on improving locality in pull tra-
versal which is widely used in several graph analytics. How-
ever, the idea that irregular datasets require irregular
traversals is not limited to pull traversal and can be useful
for improving locality in other graph analytics like Trian-
gle Counting, Single Source Shortest Path, and Connected
Components. Moreover, iHTL can be improved by:

— The number of �ipped blocks (Section 3.3) can be iden-
ti�ed in an algorithm with lower complexity by limiting the
maximum number of �ipped blocks and applying a pass over
out-edges of �+1 to identify all |�+8 |.
— The size of topology data of iHTL graph (Section 4.4)

can be reduced using light-weight graph compression tech-
niques [9, 10] and vectorization [17, 38, 43].

— iHTL reduces cache misses of hubs and high-degree ver-
tices. Locality optimizing relabeling algorithms like Rabbit-
Order improve spatial locality of low-degree vertices [21].
In this way locality of the sparse block may improve by
applying Rabbit-Order.

Code Availability

Source code repository and further discussions relating
to this paper are available online in h�ps://blogs.qub.ac.uk/

GraphProcessing/Exploiting-in-Hub-Temporal-Locality-in-

SpMV-based-Graph-Processing/.
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