
Exploiting Inductive Logic Programming

Techniques for Declarative Process Mining

Federico Chesani1, Evelina Lamma2, Paola Mello1,
Marco Montali1, Fabrizio Riguzzi2, and Sergio Storari2

1 DEIS – Università di Bologna
viale Risorgimento, 2 – 40136 – Bologna, Italy

{federico.chesani,paola.mello,marco.montali}@unibo.it
2 ENDIF – Università di Ferrara

Via Saragat, 1 – 44100 – Ferrara, Italy
{evelina.lamma,fabrizio.riguzzi,sergio.storari}@unife.it

Abstract. In the last few years, there has been a growing interest in
the adoption of declarative paradigms for modeling and verifying pro-
cess models. These paradigms provide an abstract and human under-
standable way of specifying constraints that must hold among activities
executions rather than focusing on a specific procedural solution. Min-
ing such declarative descriptions is still an open challenge. In this paper,
we present a logic-based approach for tackling this problem. It relies on
Inductive Logic Programming techniques and, in particular, on a modi-
fied version of the Inductive Constraint Logic algorithm. We investigate
how, by properly tuning the learning algorithm, the approach can be
adopted to mine models expressed in the ConDec notation, a graphical
language for the declarative specification of business processes. Then, we
sketch how such a mining framework has been concretely implemented
as a ProM plug-in called DecMiner. We finally discuss the effectiveness
of the approach by means of an example which shows the ability of the
language to model concurrent activities and of DecMiner to learn such a
model.

1 Introduction

When facing the problem of defining and developing a Business Process (BP), we
can mainly identify two different and complementary roles: the business analyst,
a domain expert aiming at improving the performances of her company, and
the IT-expert, who has the responsibility of bringing business-level models to an
effective underlying implementation. The complementarity of these roles leads
to different perspectives about the process to be developed: while the IT-expert
typically adopts a procedural style of modeling, dealing with implementation
aspects and trying to obtain an executable process, the business analyst follows
a more declarative approach (see Figure 1). Indeed, at a business level it is very
important to represent in an intuitive and concise way the domain and problem
under study, rather than focusing on a specific solution. In this respect, the

K. Jensen and W. van der Aalst (Eds.): ToPNoC II, LNCS 5460, pp. 278–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Exploiting Inductive Logic Programming Techniques 279

execution

modeling

procedural
model

declarative
model

policies

regulations

business
rules

execution traces

Declarative
Process Mining

mining

Fig. 1. Declarative and procedural perspectives when modeling Business Processes

model will typically involve business rules, covering best practices and internal
constraints as well as internal/external regulations and compliance requirements.

The importance of adopting a declarative style of modeling has been recently
pointed out by van der Aalst and Pesic [18]: we agree with their claim that
declarative languages fit better complex, unpredictable processes, where a good
balance between support and flexibility is of key importance. To this end, in [18]
they propose a new graphical language for specifying process flows in a declara-
tive manner. The language, called ConDec, does not completely fix the control
flow among activities, but rather envisages a set of constraints expressing poli-
cies/business rules for specifying either what is forbidden as well as mandatory
in the process. Therefore, the approach is inherently open and flexible, because
workers can perform actions if they are not explicitly forbidden. ConDec adopts
an underlying semantics by means of Linear Temporal Logics (LTL), and can
also be mapped onto a logic programming-based framework called SCIFF (So-
cial Constrained IFF) [2,4], which was originally developed for the specification
and verification of global interaction protocols in open Multi-Agent Systems but
has recently been applied in the context of BPs and SOA (Service-Oriented
Architecture) Choreographies. SCIFF provides a declarative language based on
Computational Logic, where constraints are imposed on activities in terms of re-
active rules (namely Integrity Constraints). Such reactive rules mention in their
body occurring activities, i.e., events, and additional constraints on their vari-
ables in the style of Constraint Logic Programming (CLP) [12]. SCIFF rules
contain in their head expectations over the course of events. Such expectations
can be positive, when a certain activity is required to happen, or negative, when
a certain activity is forbidden to happen.

An important topic related to declarative process specification, which is still
an open challenge, concerns their discovery starting from execution traces, i.e.,
declarative process mining. Indeed, up to now, the goal of process mining has
been the discovery of procedural process models (such as Petri Nets or Event-
driven Process Chains [21,24]). We claim the necessity of mining also declarative
models, to enable the possibility of inferring essential process constraints, easily
understandable by business analysts and not affected by procedural details.

In this paper, we present a logic-based approach to address this issue. It
relies on Inductive Logic Programming (ILP) techniques and, in particular, on
a modified version of the Inductive Constraint Logic (ICL) algorithm [15]. The

280 F. Chesani et al.

algorithm takes as input a set of process execution traces, previously labeled
as compliant or not, and produces a set of SCIFF rules which correctly classify
them. This algorithm has been further modified, by properly tuning it and relying
on the mapping presented in [4], for learning ConDec models. Then, we describe
how the whole approach has been implemented as a plug-in of the ProM [23]
process mining framework. The plug-in, called DecMiner, is capable of mining
ConDec models starting from a set of process execution traces. The plug-in
envisages different phases, ranging from the classification of traces into compliant
and non-compliant subsets to the choice of which ConDec constraints have to be
considered and finally to the presentation of the mined model. The effectiveness
of the approach is illustrated by considering an example inspired by the one
presented in [17] that involves the management of a hotel and spa.

Our previous papers on process mining [14,13] focused on the algorithm for
learning SCIFF rules and presented only a sketch of the technique for the trans-
lation into ConDec. In this work we describe how we automated this process and
implemented it into the DecMiner ProM plug-in.

The paper is organized as follows. Section 2 describes the declarative languages
we consider, namely SCIFF and ConDec, and the mapping between ConDec
and a subset of SCIFF rules. Section 3 presents the learning process and the
DecMiner plug-in. Section 4 discusses the experiments performed for validating
the approach. Section 5 presents related works and, finally, Section 6 concludes
the paper and discusses future work.

2 Declarative Specification of Business Processes

In this section, we first briefly introduce the SCIFF language, a logic-based
language originally developed for specifying and verifying interaction protocols in
open Multi-Agent Systems [2]. We then briefly describe ConDec [18], a graphical
language supporting the intuitive modeling of declarative constraints on the flow
of activities. Finally, we sketch how SCIFF can be exploited to formalize ConDec
models as well as to extend its expressiveness, relying on the results presented
in [4].

2.1 An Overview of the SCIFF Framework

The SCIFF framework [2] is based on abduction, a reasoning paradigm which
allows to formulate hypotheses (called abducibles) accounting for observations.
In most abductive frameworks, integrity constraints are imposed over possible
hypotheses in order to prevent inconsistent explanations. SCIFF considers a
set of interacting peers as an open society, formalizing interaction protocols by
means of a set of global rules (constraints) which constrain the external and
observable behavior of participants.

To represent that an event ev happened (i.e., an atomic activity has been
executed) at a certain time T , SCIFF uses the symbol H(ev, T), where ev is a
term and T is a variable or a number indicating the time. Hence, an execution

Exploiting Inductive Logic Programming Techniques 281

trace is modeled as a set of executed (happened) events. For example, we could
formalize that bob has performed activity a at time 5 as follows: H(a(bob), 5). Fur-
thermore, SCIFF introduces the concept of expectation, which plays a key role
when defining global interaction protocols, choreographies, and more in general
event-driven processes. It is quite natural, in fact, to think of a process in terms
of rules of the form: “if ev1 happened, then ev2 is expected to happen.” Positive
expectations are denoted by E(ev, T) meaning that ev is expected to happen
at time T . To satisfy a positive expectation, an execution trace must contain
a matching happened event. Negative expectations are denoted by EN(ev, T)
meaning that ev is expected not to happen at time T . To satisfy a negative
expectation an execution trace must not contain a matching happened event.

SCIFF Integrity Constraints (ICs for short) are forward rules of the form
body → head, where body can contain literals (i.e. a logical atom or its negation)
and happened events, and head contains a disjunction of conjunctions of expec-
tations and literals. In this paper, we consider a syntax of ICs that is a subset of
the one in [2]. In this simplified syntax, an IC C is a logical formula of the form

Body → DisjE1 ∨ . . . ∨ DisjEn ∨ DisjEN1 ∨ . . . ∨ DisjENm (1)

We will use Body(C) to indicate Body and Head(C) to indicate DisjE1 ∨ . . .∨
DisjEn∨DisjEN1∨ . . .∨DisjENm of a rule C. Body is of the form b1∧ . . .∧bl

where the bis are literals. Some of the literals may be of the form H(ev, T)
meaning that event ev has happened at time T . DisjEj is a formula of the
form E(ev, T) ∧ d1 ∧ . . . ∧ dk where ev is an event and the dis are literals. All
the formulas DisjEj in Head(C) will be called positive disjuncts. DisjENj is a
formula of the form EN(ev, T)∧d1∧ . . .∧dk where ev is an event and the dis are
literals. All the formulas DisjENj in Head(C) will be called negative disjuncts.

The event ev can be a term. The literals bis and dis refer to predicates defined
in a SCIFF knowledge base. Variables in common to Body(C) and Head(C) are
universally quantified (∀) with scope the whole IC. Variables occurring only in
positive disjuncts are existentially quantified (∃) with scope the disjunct itself.
Variables occurring only in negative disjuncts are universally quantified (∀) with
scope the disjunct itself. An example of an IC is

(IC.1) H(a(bob), T) ∧ T < 10

→ E(b(alice), T1) ∧ T < T1 ∨
EN(c(mary), T2) ∧ T < T2 ∧ T2 < T + 10

The meaning of the IC.1 is the following: if bob has executed action a at a time
T < 10, then we expect alice to execute action b at some time T 1 later than T
(∃T 1) or we expect that mary does not execute action c at any time T 2 (∀T 2)
within 9 time units after T .

The interpretation of an IC is the following: if there exists a substitution of
variables such that the body is true in an interpretation representing a trace,
then one of the disjuncts in the head must be true. A positive disjunct means
that we expect event ev to happen with T and its variables satisfying d1∧. . .∧dk.
Therefore the disjunct is true if there exist a substitution of variables occurring

282 F. Chesani et al.

in it such that ev is present in the trace and the dis are satisfied. A negative
disjunct means that we expect event ev not to happen with T and its variables
satisfying d1 ∧ . . . ∧ dk. Therefore the disjunct is true if for all substitutions of
variables occurring in it and not appearing in Body either ev does not happen
or, if it happens, its properties violate d1 ∧ . . . ∧ dk.

The main and original application of the SCIFF framework and its proof pro-
cedure is to verify whether an execution of the process concretely adheres to
the specification, i.e., to perform compliance checking. SCIFF is seamlessly able
to check compliance both at run-time, by dynamically collecting and reason-
ing upon occurring events, or a posteriori, by analyzing the log of an observed
execution trace.

Roughly speaking, SCIFF combines occurred events with the specified rules,
to suitably generate the corresponding expectations; then expectations are veri-
fied against the execution trace: a positive expectation must have a correspond-
ing matching event, whereas a negative expectation forbids the presence of a
matching event. If such conditions are not met (i.e., a positive/negative expec-
tation is not/is matched by a corresponding event), then the expectations are
violated, and the execution trace is evaluated as non-compliant.

A posteriori compliance checking has been wrapped into a ProM plug-in called
SCIFFChecker [3], which can be exploited to classify MXML execution traces
as compliant or non-compliant w.r.t. a high-level declarative criterion. Such a
criterion is specified by configuring reactive business rules expressed in a natural
language-like manner and by automatically mapping them onto the underlying
formalism.

2.2 ConDec and Its SCIFF Mapping

ConDec [18,16] is a graphical language suitable for the declarative specification
of flexible Business Processes. Flexibility is provided since ConDec does not fix
a completely specified process flow, but rather imposes only the (minimal) set
of constraints that must be satisfied when executing the process activities. Con-
straints are policies/business rules which can be exploited to describe both what
is mandatory and what is forbidden in the process. They are mainly organized
into three basic groups: (i) existence constraints, unary relationships constraining
the cardinality of activity executions; (ii) relation constraints, positive relation-
ships between two activities used to specify what should be executed when a
given situation holds; (iii) negation constraints, the negated version of relation
ones, imposed to forbid the execution of a certain activity when a given situation
holds.

We have provided a complete mapping of ConDec relationships to SCIFF [4].
Table 1 shows some basic ConDec constraints, together with their corresponding
formalization. For example, the existence constraint specifies that the involved
activity must be executed at least once; this can be expressed in SCIFF by simply
stating that the activity is expected to happen. The responded existence between
A and B imposes the existence of B only if activity A is executed, without
putting any temporal condition between the two executions. Temporizing such

Exploiting Inductive Logic Programming Techniques 283

Table 1. Mapping of some ConDec formulas onto SCIFF

Name SCIFF Mapping

A

1..*

existence true →E(A,T)

A B responded existence H(A, TA) → E(B, TB)

A B response H(A, TA) → E(B, TB) ∧ TB > TA

A B precedence H(B, TB) → E(A,TA) ∧ TA < TB

A B succession
H(A, TA) → E(B, TB) ∧ TB > TA

H(B, TB) → E(A,TA) ∧ TA < TB

A B negation response H(A, TA) → EN(B, TB) ∧ TB > TA

a constraint leads either to a response or precedence constraint, depending on
what kind of ordering is imposed between the two activities. For example, re-
sponse states that if activity A has been performed, then B must be performed
afterward; the “after” ordering can be modeled in SCIFF by putting a “greater
than” CLP [12] constraint among the execution time associated to B and the
one associated to A, i.e. TB > TA. The precedence constraint is modeled in a
similar way, by inverting the constraint to express a “before” relationship.

Finally, ConDec supports also negative constraints, i.e., constraints used to
forbid the execution of certain activities. They are mapped to SCIFF similarly
to positive relation constraints but imposing negative expectations instead of
positive ones (see, for example, the negation response constraint in Table 1, which
states that after activity A it is not possible to execute B anymore, being TB

universally quantified with scope the disjunct where it appears).
SCIFF can be used not only to formalize ConDec, but also to support different

extensions to the language, such as: (i) considering conjunction of events in
relationships (e.g., to model synchronizing responses, namely responses which
trigger only when two or more events occur); (ii) involving quantitative temporal
constraints, such as deadlines and delays; (iii) constraining also data involved in
the activities execution, such as originators.

2.3 Running Example

In order to explain how the declarative mining approach works, we use a pro-
cess model that is inspired to [17] as a running example. This model describes a
simple process of renting rooms and services in a hotel and spa. Every process
instance starts with the registration of the client name and her preferred way
of payment (e.g., credit card). Data can also be altered at later time (e.g the
client may decide to use another credit card). During her stay, the client can
require one or more room, laundry and massage services. Each service, identified
by a code, is followed by the respective registration of the service costs into the
client bill. Of course, each service cost must be registered only if the service has
been effectively provided to the client and only one time. Moreover, if the client

284 F. Chesani et al.

chooses a shiatzu massage, the spa presents her a special offer. The cost related
to nights spent in the hotel must be billed. It is possible for the total bill to be
charged at several stages during the stay.

This process was modeled by using eleven activities and eleven constraints. Ac-
tivities register client data, check out and charge are about the check-in/check-
out of the client and expenses charging. Activities room service, laundry service,
and massage service log which services have been accessed to by the client, while
billings for each service are represented by corresponding activities. For each ac-
tivity, a unique identifier is introduced to correctly charge the clients with the
billings for the services they effectively made use of. Moreover, for the mas-
sage related activities, an additional parameter is used to specify the massage
type (aromatic or shiatzu). Finally, the activity shiatzu offer maps the busi-
ness policy of offering a special packet/discount to clients interested in shiatzu
massages.

Business related aspects of our example are represented as follows:

– (C.1) every process instance starts with activity register client data. No lim-
its on the repetitions of this activity are expressed, hence allowing alteration
of data;

– (C.2) bill room service must be executed after each room service activity,
and bill room service can be executed only if the room service activity has
been executed before;

– (C.3) bill laundry service must be executed after each laundry service ac-
tivity, and bill laundry service can be executed only if the laundry service
activity has been executed before;

– (C.4) bill massage service must be executed after each massage service, and
bill massage service can be executed only if the massage service activity has
been executed before;

– (C.5) shiatzu offer must be executed after a massage service activity with
type shiatzu;

– (C.6) check out must be performed in every process instance;

– (C.7) charge must be performed in every process instance;

– (C.8) bill nights must be performed in every process instance.

– (C.9) bill room service must be executed only one time for each service iden-
tifier;

– (C.10) bill laundry service must be executed only one time for each service
identifier;

– (C.11) bill massage service must be executed only one time for each service
identifier;

The SCIFF representation is composed by the following ICs:

Exploiting Inductive Logic Programming Techniques 285

(C.1) true

→ E(register client data, T rcd)) ∧ Trcd = 1.

(C.2) H(room service(rs id(IDrs)), T rs)

→ E(bill room service(rs id(IDbrs)), T brs) ∧
IDrs = IDbrs ∧ Tbrs > Trs.

H(bill room service(rs id(IDbrs)), T brs)

→ E(room service(rs id(IDrs)), T rs) ∧
IDbrs = IDrs ∧ Trs < Tbrs.

(C.3) H(laundry service(la id(IDls)), T ls)

→ E(bill laundry service(la id(IDbls)), T bls) ∧
IDls = IDbls ∧ Tbls > T ls.

H(bill laundry service(la id(IDbls)), T bls)

→ E(laundry service(la id(IDls)), T ls) ∧
IDbls = IDls ∧ T ls < Tbls.

(C.4) H(massage service(ma id(IDms), type(TY ms))), Tms)

→ E(bill massage service(ma id(IDbms), type(TY bms)), T bms) ∧
IDms = IDbms ∧ TY ms = TY bms ∧ Tbms > Tms.

H(bill massage service(ma id(IDbms), type(TY bms))), T bms)

→ E(massage service(ma id(IDms), type(TY ms)), Tms) ∧
IDbms = IDms ∧ TY bms = TY ms ∧ Tms < Tbms.

(C.5) H(massage service(ma id(IDms), type(TY ms)), Tms) ∧ TY ms = shiatzu

→ E(shiatzu offer , T bms) ∧ Tbms > Tms.

(C.6) true

→ E(check out, T co).

(C.7) true

→ E(charge, T ch).

(C.8) true

→ E(bill nights, T bn).

(C.9) H(bill room service(rs id(IDbrs1)), T brs1)

→ EN(bill room service(rs id(IDbrs2)), T brs2) ∧
IDbrs1 = IDbrs2 ∧ Tbrs2 > Tbrs1.

(C.10) H(bill laundry service(la id(IDbls1)), T bls1)

→ EN(bill laundry service(la id(IDbls2)), T bls2) ∧
IDbls1 = IDbls2 ∧ Tbls2 > Tbls1.

(C.11) H(bill massage service(ma id(IDbms1), type(TY bms1))), T bms1)

→ EN(bill massage service(ma id(IDbms2), type(TY bms2)), T bms2) ∧
IDbms1 = IDbms2 ∧ TY bms1 = TY bms2 ∧ Tbms2 > Tbms1.

286 F. Chesani et al.

register client data

room service
rs_id(IDrs)

laundry service
ls_id(IDls)

massage service
type(Tms), ms_id(IDls)

check out charge

shiatzu offer

bill massage service
ms_id(IDbms)

bill room service
rs_id(IDbrs)

bill nights

bill laundry service
ms_id(IDbls)

init 1..*

1..*

IDbrs = IDrs

IDbls = IDls

IDbms = IDms

Tms = shiatzu

1..*

C.1

C.2

C.3

C.4

C.8

C.6 C.7

C.5

1 C.9

1 C.10

1 C.11

Fig. 2. A ConDec model augmented with a data-related perspective

One thing to observe is that, for constraint (C.1), the ConDec init constraint
has been mapped in SCIFF by imposing that the “register client data” activity
is expected to happen at time 1 (the first activity in an execution trace).

As described in Section 2.2, SCIFF can be used not only to formalize ConDec,
but also to support different extensions to the language. These extensions are
useful in the formalization of the hotel and spa process model. Let us consider the
following constraints: after having chosen a massage service, this service must
be billed to the client and a massage service must be billed only if the client
has effectively received the service; if the client has chosen a shiatzu massage,
then she can also take advantage of a special offer. In order to link each different
service with its specific bill, we attach to the execution of these activities an
identifier. Moreover, the second statement deals with a specific execution of the
massage service, namely the one in which the client has actually chosen a shiatzu
massage; so we attach a type attribute to massage services. This information has
been included into the terms representing events in the SCIFF language and the
two sentences mapped to the integrity constraints (C.4) and (C.5).

We could incorporate such a data-related perspective directly at a graphical
level, by representing activities together with their data and annotating the
ConDec constraints with data condition (such as TY ms = shiatzu in C.5).
Figure 2 shows how the model discussed above can be graphically rendered with
annotations.

3 Learning Models

In this section, we describe the approach adopted for mining ConDec models.
We first briefly review some concepts of Inductive Logic Programming and the
ICL algorithm in particular, then we discuss how ICL has been applied to learn-
ing SCIFF constraints and finally we illustrate the DecMiner ProM plug-in for
mining SCIFF and ConDec constraints.

Exploiting Inductive Logic Programming Techniques 287

3.1 Inductive Logic Programming Techniques

The idea of exploiting Inductive Logic Programming (ILP) for declarative pro-
cess mining comes form the similarities between learning a SCIFF theory, com-
posed by a set of Social Integrity Constraints, and learning a clausal theory
as described in the learning from interpretation setting of ILP [15]. Besides
the fact that both SCIFF and clausal theories can be used to classify a set of
atoms (i.e., an interpretation) as positive or negative, they have strong similar-
ities in the structure of the logical formula composing the theory. Then, thanks
to the mapping of ConDec into SCIFF rules, it is possible to learn ConDec
models.

A clause C is a formula in the form b1 ∧ · · · ∧ bn → h1 ∨ · · · ∨ hm where bi are
logical literals and hi are logical atoms. A formula is ground if it does not contain
variables. An interpretation is a set of ground atoms. Let us define head(C) =
{h1, . . . , hm} and body(C) = {b1, . . . , bn}. Sometimes we will interpret clause C
as the set of literals {h1, . . . , hm,¬b1, . . . ,¬bn}.

The clause C is true in an interpretation I iff, for all the substitutions θ
grounding C, (I |= body(C)θ) → (head(C)θ ∩ I �= ∅). Otherwise, it is false. A
set of clauses (i.e. a theory) is true in an interpretation I iff all the clauses are
true in I.

Sometimes we may be given a background knowledge B with which we can
enlarge each interpretation I by considering, instead of simply I, the inter-
pretation given by M(B ∪ I) where M stands for a model, such as the least
Herbrand model of Clark’s completion [5]. By using a background knowledge
we are able to encode each interpretation parsimoniously, by storing only once
the rules that are not specific to a single interpretation but are true for every
interpretation.

The learning from interpretation setting of ILP is concerned with the following
problem: given a clausal language L, a set P of positive interpretations, a set
N of negative interpretations and a definite clause background theory B, we
want to find a clausal theory H ∈ L such that for all p ∈ P , H is true in the
interpretation M(B ∪ p), and for all n ∈ N , H is false in the interpretation
M(B ∪ n). Given a disjunctive clause C (theory H) we say that C (H) covers
the interpretation I iff C (H) is true in M(B ∪ I). We say that C (H) rules out
an interpretation I iff C (H) does not cover I.

The clausal language L is used in order to restrict the search space. It is
usually described in an intensional way using a specific representation language.
The description of L in this language is called language bias (LB).

An algorithm that solves the above problem is ICL [6]. In it, a function named
Inductive-Constraint-Logic performs a covering loop in which negative interpre-
tations are progressively ruled out and removed from the set N . At each iteration
of the loop, a new clause is added to the theory and the negative examples ex-
cluded by it are removed from N . The loop ends when N is empty or when no
clause is found.

The clause to be added in every iteration of the covering loop is returned
by another procedure (namely, Find-Best-Clause). It looks for a clause by using

288 F. Chesani et al.

beam search with p(�|C) as a heuristic function, where p(�|C) is the probability
that an example interpretation is classified as negative given that it is ruled out
by the clause C. This heuristic is computed as the number of ruled out negative
interpretations over the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many positive interpretations
as possible and rule out as many negative interpretations as possible. The search
starts from an initial beam composed of the most specific clauses present in the
language bias that is returned by the function MostSpecific(LB). The clauses in
the beam are then gradually generalized. The maximum number of generalization
steps is a user-defined parameter.

The generality order that is used is θ-subsumption [19], a relationships be-
tween two clauses that can be checked syntactically and is stronger than impli-
cations. Generalizations of a clause C are obtained by adding a literal to the
body or an atom to the head of C. The language bias of ICL defines the literals
that can be added to clauses. Moreover, the language bias defines also the set of
most specific clauses.

3.2 Application of ICL to SCIFF Learning

ICL has been effectively used to learn SCIFF ICs in Declarative Process Model
Learner (DPML) [14]. Each IC is seen as a clause that must be true in all the
positive interpretations (compliant execution traces) and false in some negative
interpretations (non-compliant execution traces). A theory, composed of a set of
ICs, must be such that all the ICs are true when considering a compliant trace
and at least one IC is false when considering a non-compliant one.

If we define a generality order and a generalization operator for ICs, we can
apply an algorithm similar to ICL for learning ICs. The generality order can be
defined in this way: an IC C is more general than an IC D (written C ≥ D) if
there exists a substitution θ for the variables of body(D) such that body(D)θ ⊆
body(C) and for each disjunct d in the head of D: if d is positive, then there
exist a positive disjunct c in the head of C such that dθ ⊇ c; if d is negative,
then there exist a negative disjunct c in the head of C such that dθ ⊆ c.

A generalization of an IC C can be obtained in the following ways: adding
a literal to the body, adding a disjunct to the head, removing a literal from a
positive disjunct in the head or adding a literal to a negative disjunct in the
head. The language bias takes the form of a set of assertions that are couples
(BS, HS): BS is a set that contains the literals that can be added to the body
and HS is a set that contains the disjuncts that can be added to the head. Each
element of HB is a couple (Sign, Literals) where Sign is either + for a positive
disjunct or - for a negative disjunct, and Literals contains the literals that can
appear in the disjunct.

When adding a disjunct to the head, the generalization operator behaves
differently depending on the sign of the disjunct: in the case of a positive disjunct,
the disjunct formed by the E literal plus all the literals in the language bias for
the disjunct is added; in the case of a negative disjunct, only the EN literal is
added.

Exploiting Inductive Logic Programming Techniques 289

3.3 Learning ConDec Models and SCIFF Rules: The DecMiner
Plug-in

DPML has been further extended in this work in order to be able to learn both
ConDec models and SCIFF ICs and re engineered as a mining plug-in of the
ProM [23] process mining framework, named DecMiner.

DecMiner learns a ConDec model, by first learning SCIFF ICs and then trans-
lating them into ConDec constraints using the mapping introduced in Section
2.2. In order to ease the translation, we provide DecMiner with a special lan-
guage bias that allows only ICs that can be translated into ConDec. We generate
this language bias automatically starting from a set of general templates, one for
each ConDec constraint, that can be instantiated to generate specific assertions
for the language bias. The number of all possible assertions can be huge, while
the user could be interested to models defined only by a small, yet meaningful
set of ConDec constraints. For this reason, we let the user the possibility of
selecting a subset of activities A and a subset of ConDec constraints T . Then,
our approach uses only the instantiation of these constraints with the selected
activities for learning the model. Besides providing as output a model that fits
the user requirements, smaller constraint sets allow also better performances of
the learning algorithm.

The accuracy and learning time depends on the choice of these subsets. They
influence the accuracy of the learned model because an activity relation discrimi-
nating between compliant and non-compliant execution traces cannot be learned
if the appropriate template and/or activities were not chosen. The time com-
plexity is linear in the number of traces and in the number of constraints. With
respect to the number of activities, it is quadratic if there are binary constraints,
and linear if there are only unary constraints.

An advantage of mining ConDec constraints through SCIFF is that the ap-
proach can be extended to induce constraints involving more than two activities,
for example constraints having a conjunction of preconditions or a disjunction
of postconditions, and constraints with conditions over data.

DecMiner implements all the data preparation and learning phases of the min-
ing process described above and guides the user by means of its graphical user
interface. In the first phase, named “Classification”, the user uses the graphical
interface shown in Figure 3 to browse the execution traces and label some of
them as compliant (positive) or not compliant (negative). In the second phase,
named “Activities”, the user can choose among all the activities and their as-
sociated parameters the information that she considers important for learning
the declarative model. In the third phase, named “Templates”, the user uses
the graphical interface shown in Figure 4 to choose the set of existence, relation
and negation ConDec templates to be used in the mining phase. The fourth
phase, named “Mining”, is started when the “Start mining” button is pressed.
In this phase the language bias for ICL is generated, by instantiating the cho-
sen templates with the chosen activities, and the learning algorithm is applied,
producing the declarative model. In the fifth phase, named “Results”, the learned

290 F. Chesani et al.

Fig. 3. DecMiner plug-in: trace classification

SCIFF rules and ConDec constraints are presented to the user1. The current
version of the tool can be downloaded from the web2.

4 Experiments

In order to evaluate the effectiveness and robustness of the learning approach,
we followed a typical machine learning experimentation methodology: first, we
create an artificial process model, described in Section 2.3, which presents some
difficulties for the learning approach to be tested; second, we randomly generate
from such model several training and testing datasets; third, we apply the learn-
ing approach on the training datasets obtaining models; finally, we compare the
learned models with the original one and compute the classification accuracy of
the learned models on the testing datasets.

Given the ConDec and SCIFF process models described in Section 2.3, we
generated five training and five testing datasets. The generation of each of them
is made in two phases. In the first, a Java application randomly creates an
execution trace. In the second phase, the SCIFF Checker (presented in Section
2) is used to classify each trace as compliant or non-compliant with respect to
the correct hotel process. The process is repeated until a dataset containing 2000
compliant traces and 2000 non-compliant traces has been generated.

1 The ConDec model is shown by using the DECLARE tool
http://is.tm.tue.nl/research/declare/

2 http://www.unife.it/dipartimento/ingegneria/informazione/informatica/pr

ocessmining/

Exploiting Inductive Logic Programming Techniques 291

Fig. 4. DecMiner plug-in: ConDec template selection

DecMiner has been then applied to each training dataset. By applying the
learned models to the classification of the testing sets, we computed the classi-
fication accuracy, defined as the number of compliant traces that are correctly
classified as compliant plus the number of non-compliant traces that are cor-
rectly classified as non-compliant divided by the total number of traces. The
average accuracy achieved by DecMiner was 100%.

Comparing the original hotel process model with those learned by using the
five training sets, we observe that sometimes there are differences in the learned
constraints. This happens because some of the randomly generated training sets
do not contain the traces that allow to distinguish the behaviors of similar con-
straints.

This is the case, for instance, of the precedence(A,B) and responded existen-
ce(A,B) constraints. They share a common set of labeled execution traces (BA
labeled as compliant, B labeled as compliant and A labeled as non-compliant)
and cannot be distinguished until a trace containing AB is labeled as compliant
or non-compliant. In the first case, DecMiner learns a responded existence(A,B)
constraint otherwise it learns a precedence(A,B). In real applications, this be-
havior can be considered an advantage because it allows dynamic adaptation
and refinement of the learned process models when new traces are classified as
compliant and non-compliant and added to the training set. If the traces distin-
guishing the behavior of two constraints are not present in the dataset, DecMiner
learns the constraint that comes first in the language bias.

We also investigated the robustness of DecMiner to noise in the classification
of traces: we repeated the experiments by considering training sets with an
increasing portion of misclassified examples. Table 2 shows that the performances
of DecMiner degrade gracefully with the increase of the amount of noise.

292 F. Chesani et al.

Table 2. Accuracy as a function of noise

Errors Accuracy

2% 99.72 %

10% 98.85 %

20% 97.29 %

As for other ILP systems, the learning phase depends not only on the training
set but also on the language bias: by restricting it to different subsets of the Con-
Dec constraints, it is possible to learn different models. Each model corresponds
to a different perspective about a real process, pointing out different aspects.
The 100% accuracy achieved in the former experiment is a consequence of the
chosen language bias: all the templates were added with those referring to the
constraints in the original hotel and spa model put at the top of the language
bias. We evaluated the influence of language bias on classification accuracy, by
randomly mixing the ConDec templates in the bias. Despite this change, the
accuracy achieved by DecMiner considering datasets without noise remains high
(99.97%).

Results achieved by our approach on other real and artificial datasets (e.g.,
the cervical cancer screening process, the netbill e-commerce protocol and an
auction protocol) are reported in [14] and [13].

5 Related Works and Discussion

Process mining is an active research field. Notable works in such a field are
[1,21,24,11,7,9]. Agrawal et al. [1] introduced the idea of applying process mining
to workflow management. The authors proposed an approach for inducing a
process representation in the form of a directed graph encoding the precedence
relationships. van der Aalst et al. [21] presented the α-algorithm for inducing
Petri nets from data and identified for which class of models the approach is
guaranteed to work. The α-algorithm is based on the discovery of binary relations
in the log, such as the “follows” relation. In [24] van Dongen and van der Aalst
described an algorithm which derives causal dependencies between activities and
uses them for constructing instance graphs, presented in terms of Event-driven
Process Chains. [11] is a recent work where a process model is induced in the
form of a disjunction of special graphs called workflow schemas.

We differ from these works because we use a representation that is declarative
rather than procedural, without sacrificing expressiveness. Moreover, we learn
from compliant and non-compliant traces, rather than from compliant traces.

[7,9] are closer to our work because they deal with mining (partially) declar-
ative specifications. In [7] the learning starts from process runs that are high
level specification of a set of process traces and are represented by means of Petri
nets. Mining is performed by merging the different runs for the same process.
The model that is obtained is hybrid, in the sense that it may contain sets of
activities that must be executed but for which no specific order is required. We

Exploiting Inductive Logic Programming Techniques 293

differ from this work because we start from traces rather than runs: while runs
specify already a partial order among activities, traces are simply a sequence of
events representing activity executions. Therefore, runs are already very infor-
mative of the process model.

[9] related BPM to the field of planning in artificial intelligence: activities in
business process are seen as planning operators with pre-conditions and post-
conditions. Representing a process in this way requires the specification of fluents
besides activities, i.e., properties of the world that may change their truth value
during the execution of the process. The adoption of fluents allows to explicitly
express pre-conditions and post-conditions of activities. Thus fluents introduce
a new dimension to BPM that needs further explorations. Our work remains in
the traditional domain of BPM in which the pre-conditions and post-conditions
of activities are left implicit. The approach for learning process models of [9]
involves iterating planning and operator refinement: given the current definition
of the pre-conditions and post-conditions of the activities, a plan for achieving
the business goal is generated and presented to the user which has to specify
whether each activity of the plan can be executed. In this way the system collects
positive and negative examples of activities executions that are then used in
a learning phase. In order to avoid asking the user to classify activities, [10]
proposed an approach for automatically generating negative events, i.e., events
that are used as negative examples. In the future we plan to investigate the
extension of this approach to the automatic generation of negative traces.

With respect to performance evaluation, a direct comparison with [21,24] is
unfair since we adopted accuracy (since we have compliant and non-compliant
traces in the test set) while they adopt fitness.

In this special issue, [22] and [8] face the problem of mining a process rep-
resentation in the form of a Petri net, while [20] extracts metrics and patterns
from collaborative processes in SOA-based environments.

6 Conclusions and Future Work

We propose a methodology for analyzing a log containing several traces labeled
as compliant or non-compliant. From them we learn a set of declarative con-
straints expressed as SCIFF rules able to accurately classify a new trace, and
corresponding to a ConDec model.

The proposed methodology is based on Inductive Logic Programming and, in
particular, on the ICL algorithm. Such an algorithm is adapted to the problem
of learning integrity constraints in the SCIFF language. By considering not only
compliant traces, but also non-compliant ones, our approach can learn a model
which expresses also what is forbidden. Furthermore, the learned SCIFF ICs are
easily mapped into ConDec constraints. We call the resulting system DecMiner.

In order to test the proposed methodology, we performed an experiment on
a case study regarding the management of a hotel and spa. The results show
that DecMiner nearly recovers the correct model. Other experiments have been
documented in [14,13].

294 F. Chesani et al.

In the future, we plan to apply DecMiner to university students’ careers, where
positive traces are careers of students that graduated on time, and negative ones
are careers of students who did not finish their studies in the prescribed time.

Moreover, we plan to investigate the development of a mining-checking cy-
cle, in which learning is interleaved with classification of traces into positive or
negative either manually by the user or automatically using the SCIFF Checker
plug-in with a user specified model. In this way the user can improve an initial
model of the process by experimenting different languages biases.

Acknowledgments. This work has been partially supported by the FIRB
project “TOCAI.IT” and FAR projects by University of Bologna and University
of Ferrara. We would like to thank Pamela Zapparoli for her contribution to
DecMiner development.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable
agent interaction in abductive logic programming: the SCIFF framework. ACM T.
Comput. Logic 9(4) (2008)

3. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.: Check-
ing compliance of execution traces to business rules. In: Ardagna, D., et al. (eds.)
BPM 2008 Workshops. LNBIP, vol. 17, pp. 134–145. Springer, Heidelberg (2009)

4. Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative
semantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS,
Bologna, Italy (2007)

5. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)

6. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shi-
nohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS (LNAI), vol. 997, pp. 80–94.
Springer, Heidelberg (1995)

7. Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time
perspective. Int. J. Computer System Science & Engineering 15(5), 291–302 (2000)

8. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of process models
from example runs. In: Jensen, K., van der Aalst, W. (eds.) ToPNoC II. LNCS,
vol. 5460, pp. 243–259. Springer, Heidelberg (2009)

9. Ferreira, H.M., Ferreira, D.R.: An integrated life cycle for workflow management
based on learning and planning. Int. J. Cooperative Inf. Syst. 15(4), 485–505 (2006)

10. Goedertier, S.: Declarative techniques for modeling and mining business processes.
PhD thesis, Katholieke Universiteit Leuven, Faculteit Economie en Bedrijfsweten-
schappen (2008)

11. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

12. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Pro-
gram. 19(20), 503–582 (1994)

Exploiting Inductive Logic Programming Techniques 295

13. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

14. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS, vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

15. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
J. Logic Program. 19(20), 629–679 (1994)

16. Pesic, M.: Constraint-Based Workflow Management Systems. PhD thesis, Technis-
che Universiteit Eindhoven, Department of Technology Management (2008)

17. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference, pp. 287–300. IEEE Computer Society, Los Alami-
tos (2007)

18. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

19. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

20. Truong, H.L., Dustdar, S.: Online interaction analysis framework for ad-hoc col-
laborative processes in SOA-based environments. In: Jensen, K., van der Aalst, W.
(eds.) ToPNoC II. LNCS, vol. 5460, pp. 260–277. Springer, Heidelberg (2009)

21. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

22. van Dongen, B., de Medeiros, A.K.A., Wen, L.: Process mining: Overview and
Outlook of Petri net discovery algorithms. In: Jensen, K., van der Aalst, W. (eds.)
ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)

23. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

24. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: Building
instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)

	Exploiting Inductive Logic Programming Techniques for Declarative Process Mining
	Introduction
	Declarative Specification of Business Processes
	An Overview of the SCIFF Framework
	ConDec and Its SCIFF Mapping
	Running Example

	Learning Models
	Inductive Logic Programming Techniques
	Application of ICL to SCIFF Learning
	Learning ConDec Models and SCIFF Rules: The DecMiner Plug-in

	Experiments
	Related Works and Discussion
	Conclusions and Future Work
	References

