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Abstract

Node classification is an important problem in re-
lational machine learning. However, in scenarios
where graph edges represent interactions among
the entities (e.g., over time), the majority of cur-
rent methods either summarize the interaction in-
formation into link weights or aggregate the links
to produce a static graph. In this paper, we propose
a neural network architecture that jointly captures
both temporal and static interaction patterns, which
we call Temporal-Static-Graph-Net (TSGNet). Our
key insight is that leveraging both a static neigh-
bor encoder, which can learn aggregate neighbor
patterns, and a graph neural network-based recur-
rent unit, which can capture complex interaction
patterns, improve the performance of node clas-
sification. In our experiments on node classifica-
tion tasks, TSGNet produces significant gains com-
pared to state-of-the-art methods—reducing clas-
sification error up to 24% and an average of 10%
compared to the best competitor on four real-world
networks and one synthetic dataset.

1 Introduction

Node classification is a central task in relational machine
learning. In complex network domains, node classification
methods have used different types of relational information
such as features of direct neighbors [Lu and Getoor, 2003]

and autocorrelation of class labels [Jensen et al., 2004].
While these, and other, methods have shown the effective-
ness of using neighbor information to improve node clas-
sification, many real-world network datasets have sparse
link structure which limits the amount of neighbor infor-
mation available for classification. This is particularly true
for networks constructed from interactions over time. Re-
cent work on low-dimensional node embeddings and neural
network architectures for graphs [Kipf and Welling, 2016;
Grover and Leskovec, 2016] has shown promising results for
addressing the sparsity problem in node classification tasks
on static graphs. In particular, GCN [Kipf and Welling, 2016]

learns individual node embeddings by passing, transforming,
and aggregating node feature information across neighbors in
an end-to-end fashion.

While many real world social network domains consist of
interactions that are changing and evolving over time, it can
be difficult to leverage the dynamics of temporal interactions
in node classification methods. For example, users develop
connections in social networks while interacting and commu-
nicating among themselves over time. The temporal patterns
of interactions could be potentially useful for predicting their
class labels (e.g., political view.) However, when the interac-
tion edges are very sparse in each temporal snapshot or when
a node’s neighborhood is biased toward a particular class la-
bel in different snapshots, it may be difficult to identify tem-
poral patterns that are useful for prediction. In these cases,
static aggregated patterns may be more informative. Our pro-
posed model can not only learn temporal interaction patterns,
but also model the aggregated neighborhood, and jointly learn
how to combine the two views for node classification.

Specifically, in this paper, we propose a novel deep neu-
ral network architecture for sequences of interaction graphs,
called TSGNet. Our TSGNet model learns a temporal en-
coder that leverages the strengths of both the GCN to discover
interaction patterns at each temporal snapshot and a recurrent
unit, LSTM [Hochreiter and Schmidhuber, 1997], to capture
complex long-term dependencies. To learn the temporal rep-
resentation more efficiently, we propose a mini-batch training
via importance sampling, which reduces the recursive neigh-
borhood expansion across layers and helps to decrease time
complexity while maintaining performance. In addition, TS-
GNet learns a second neighbor encoder representation from a
static summary of each node’s neighborhood. The static and
temporal components of the model are jointly estimated to
optimize node classification performance. For evaluation, we
conduct extensive experiments on both one synthetic and four
different real-world networks, with and without attributes,
and we observe significant performance gains compared to
state-of-the-art methods. Moreover, we conduct a careful ab-
lation study to show that our architecture design is most ro-
bust compared to models that use different static and/or tem-
poral components.

2 Problem Definition

2.1 Motivation

Figure 1a-b show examples of interactions in complex net-
works. Each node and edge indicate an author and a co-
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Figure 1: Examples of interactions over time (k): (a) User A and B have same neighbors when aggregated, but different patterns over time.
(b) User A and B have same patterns over time but different neighborhood patterns when aggregated. (c) Architecture for TSGNet.

author event, respectively. Note that colors represent topic
labels, yellow for NLP and grey for Database. In Figure 1a,
user A and B have the same coauthors (neighbors) when they
are aggregated. In this context, the existing graph embedding
approaches (e.g., Node2Vec [Grover and Leskovec, 2016] or
GCN [Kipf and Welling, 2016]) will end up learning simi-
lar latent representations for the two nodes. However, their
temporal interaction patterns may be different. When author
A collaborates with other authors differently over time, com-
pared to author B, their representations should be modified
accordingly. Meanwhile, if node A and B show similar inter-
action patterns over time, then it may be difficult to determine
the correct class labels through temporal patterns only. In
Figure 1b, although the temporal coauthoring patterns around
author A and B are similar, their neighborhoods on the aggre-
gated graph are entirely different. In that case, using the ag-
gregated neighborhoods (which correspond to static features)
the class labels of node A and B could be identified.

In this paper, our goal is to jointly learn patterns in both
interactions over time and in static neighbor sets. In order to
model both properties, we propose a neural network model,
TSGNet. The details are described in Section 3.

2.2 Notation

We define a graph sequence as a set of graphs such that
G = [G1, G2, ..., Gm]. Each Gk has the same set of nodes,
vi ∈ V where ∀i ∈ [1, n], but a different set of edges,
Ek ⊆ V ×V such that Gk = 〈V,Ek〉. If eij ∈ Ek, there is an
edge between vi and vj at time k, otherwise there is not. Al-
ternatively, let A = [A1,A2, ...,Am] be the set of adjacency
matrices for G, where Ak[i, j] = 1 if eij ∈ Ek, 0 otherwise.
While the network structure is changing over time, we assume
that the node attributes are not changing over time1. Let F be

1The setting is realistic for many social and interaction graphs
because available node attributes are from basic profiles, resources,
or fixed properties, so they are static or changing very slowly. For
example, in Facebook, profile attributes like gender and religious

the feature (attribute) set over the nodes. Each vi ∈ V has
a corresponding feature vector fi ∈ F . Y is the label set
over the nodes. Only a subset of the nodes, vi ⊆ V , have a

class label, yi ∈ R
|C|, where C is a set of class labels. The

goal is to learn a model from the partially labeled network
and use the model to make predictions ŷ for the unlabeled
nodes {vi} s.t. yi /∈ Y . In this work, we assume that Y can
be multi-labeled. Moreover, each prediction ŷi for vi has an
estimated probability.

3 TSGNet for Node Classification

Figure 1c represents the overall architecture for TSGNet. The
TSGNet is composed of (1) a static neighbor encoder and (2)
multiple layers of GCN for modeling interaction graphs at
each time step k. The details of each are described below.

3.1 GCN Layers

We use GCN as a basic component for modeling each tempo-
ral graph, A = [A1,A2, ...,Am]. Before the data is fed into
the GCN, we use the symmetric normalizing trick described
in [Kipf and Welling, 2016]. Dk is the diagonal degree ma-
trix of Ak + I, and I is an Identity matrix:

Ǎk = Dk
−1/2(Ak + I)Dk

−1/2 (1)

Each GCN layer produces node-level output H
(l+1)
k ∈

R|V |×Z(l)

where |V | is the number of nodes and Z(l) is the
size of output representation per a node, which is determined

by W
(l)
k . The outputs are generated at each time step, k.

H
(l+1)
k = f(H

(l)
k , Ǎk)

= (ReLU(ǍkH
(l)
k )W

(l)
k ))

(2)

views are used as attributes, and in IMDB pre-determined values
like contents-rating and budgets are used as attributes of movies.
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Note that each GCN layer has its own W
(l)
k at each time

stamp, and ReLU is used only in the first GCN layer. More-

over, GCN originally uses the attribute matrix for H
(1)
k

[Kipf
and Welling, 2016]. In this paper, we also support a non-

attribute option, where the identity matrix is used for H
(1)
k .

Let L be the number of GCN layers for each time step,
then the final output for each time step will be an input for an

LSTM cell. I.e., H
(L+1)
k for each time step, k, is the tempo-

ral input for the kth cell in the LSTM sequence. In Eq. (3)
below, oi returns the final output vector for vi in the LSTM.
The output, oi, is projected a final time using the weight ma-
trix, Wlstm, and bias vector, blstm. This will be added to the
neighbor encoder for vi below. If the interaction of vi ends
before the last step, m, it still uses the same Wlstm, and blstm

to generate the output, o′
i.

oi =LSTM(H
(L+1)
1,...,m(vi))

o′
i =softmax(Wlstmoi + blstm)

(3)

3.2 Neighbor Encoder (NE)

The neighbor encoder uses an aggregated matrix Ǎagg as

input. Ǎagg is created by aggregating all elements in
[A1,A2, ...,Am] and normalizing in the same way de-
scribed above. The static component reduces the dimension-
ality for node vi from its neighbor vector in Ǎagg, using
stacked fully-connected layers.

NE
(2)
i = ReLU(W(1)(Ǎagg[i, :]⊙ hi) + b(1))

= ...

NE
(L′+1)
i = softmax(W(L′)NE

(L′)
i + b(L′))

(4)

where ⊙ refers to the Hadamard product, hi = {hi,j}
|V |
j=1.

Here, if Ǎagg[i, j] > 0, hi,j = β (for β ≥ 1). Otherwise,
hi,j will be equal to 0. This Hadamard product is used to
overcome sparsity in the adjacency matrix. If β is 1, it is
the same as the adjacency matrix. Otherwise, it puts more
weight on non-zero elements in the matrix. It is expected that
β will make larger outputs and offset issues from sparsity. In
experiments, we set β = 20, and using this we observe up to
4% of improvement in accuracy.

3.3 Addition Layer

The element-wise addition layer combines the outputs from
the GCN-LSTM and the Neighbor Encoder. Specifically, we
compute v̂i as the element-wise addition of the outputs from
the GCN-LSTM (Eq. 3) and the Neighbor Encoder (Eq. 4):

v̂i = NE
(L′+1)
i + o′

i (5)

The addition layer enables a joint representation learned
from both the static and temporal neighborhoods around the
node. An additional benefit is that the addition layer does
not introduce extra parameters, nor does it increase computa-
tional complexity. Then, the output, v̂i is put though another
softmax layer for classification:

ŷi = softmax(Wfinalv̂i + bfinal) (6)

Algorithm 1 TSGNet’s mini-batched training (one epoch)

Generate a mini-batch set B from V
for each mini-batch ∈ B do

Sample |S| vertices, v1, ..., vs ∈ B according to distri-
bution q from mini-batch

Assign H
(1)
k = H

(1)
k [S, :]

For l = [1, L−1], assign Ã
(l)
k = Ǎk[S, S]

Assign Ã
(L)
k = Ǎk[:, S]

Initialize Ãagg to |V | × |V | matrix of zeros
for each v ∈ S do

Assign Ãagg[:, v] = Ǎagg[:, v]
end for
Compute the categorical cross-entropy in Eq. (7)

Update W
(l)
k , Wlstm, W(1),..,(L′), b(1),..,(L′), Wfinal,

and bfinal

end for

Here, ŷi is the vector output of the softmax function, and each
dimension ŷi,j represents the predicted probability of the cor-
responding class j, given the inputs. For learning, we use
categorical cross-entropy (over VL, the set of labeled nodes)
as a loss function at the final layer

L = −
∑

i∈VL

|C|∑

j

yi,j log(ŷi,j) (7)

Since all activation functions are differentiable, learning is
simply done via back-propagation.

3.4 Importance Sampling

Note that, in Eq. (2), the neighbor aggregation for node u
is computed as:

(ǍkH
(l)
k )u = |V |

|V |∑

v=1

1

|V |
Ǎk[u, v]H

(l)
k [v, :] (8)

which involves a sum over all other nodes in the graph. When
we use multiple GCN layers, the recursive neighborhood ex-
pansion across layers poses time and memory challenges for
training with large graphs. To overcome this limitation, we
propose a method for efficient sampling-based learning.

Similar to [Chen et al., 2018], we approximate the equa-
tion above with importance sampling. First, we sam-
ple a set of S nodes using an importance distribution
based on the overall number of interactions, q(v) =

||Ǎagg[:, v]||
2
/
∑

v′∈V ||Ǎagg[:, v
′]||

2
. Then given the sam-

pled set S, we set Ã
(l)
k = Ǎk[S, S] ∈ R

|S|×|S| for all layers

l < L and Ã
(l)
k = Ǎk[:, S] ∈ R

|V |×|S| when l = L, i.e., the
last GCN layer. At the last layer, GCN still returns the node
representation for all V . Finally, we approximate Eq. (8) for
node u as follows:

(ǍkH
(l)
k )u ≈

|V |

|S|

|S|∑

v=1

1

q(v)
Ã

(l)
k [u, v]H

(l)
k [v, :] (9)
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Note the distribution q is only calculated once (i.e., before
training) given the normalized aggregated graph and the input

feature matrix, H
(1)
k , should also be updated according to S

via H
(1)
k = H

(1)
k [S, :].

Our overall mini-batched training procedure is described
in Algorithm 1. At every epoch, all nodes are randomly di-
vided to create a mini-batch set, B, which is composed of
multiples of γ nodes. We set γ = 1024. B provides a candi-
date node set for sampling |S| later. When it comes to a new

mini-batch, Ã
(1)..(L)
k is induced from Ǎk according to the

S. Similarity, the input matrix of neighbor encoder, Ǎagg, is

replaced by Ãagg. The inner for-loop for Ǎagg retains only
the edges in S, but maintains the dimensionality of the NE.

3.5 Complexity Analysis

Recall that m is the number of temporal GCNs and |F | is
the number of node attributes. Then assuming the number of
hidden units in LSTM, GCN, and NE is constant, the compu-
tational complexity of TSGNet is O(|V | +m|F ||E|), where
O(|V |) is from neighbor encoder and O(m|F ||E|) is from the
set of temporal GCNs. Because m and |F | are typically much
smaller than |E|, the time complexity is linear in the number
of edges, i.e., O(|E|). With importance sampling, the com-
plexity becomes O(|V | + |ES |), where |ES | is the number
of edges induced in S. When the non-attribute option is cho-
sen, the complexity is still O(|V | + |ES |) because the input
identity matrix is sparse, thus |F | = 1 in the sparse represen-
tation, and can be considered as a constant with sparse-dense
matrix multiplication.

4 Related Work

Supervised node classification. There is some work on re-
lational models that consider temporal patterns to improve
node classification. TVRC [Sharan and Neville, 2008] at-
tempts to model temporal structures through a two-step pro-
cess. The key idea behind the TVRC is to model the temporal
patterns through an exponential weight decay kernel, where
the implicit assumption is that network structure in recent past
is more important than the structure in the earlier past. The
work was extended to ensemble model in [Rossi and Neville,
2012], but it is still limited in learning complex temporal in-
teraction patterns because it heavily relies on the graph sum-
marization with kernel-based edge weighting. This limits the
models ability to learn more diverse temporal interactions,
and temporal information is lost when collapsing graphs. In
addition, DDRC [Park et al., 2017] proposed a convolutional
neural network architecture with max pooling for node classi-
fication, which models temporal interactions among a node’s
neighbors. DDRC shows stable performance in spite of dif-
ferent variability of neighbor vectors. However, its effective-
ness was partially shown in long and relatively denser graph
sequences. Our TSGNet is evaluated from more diverse and
larger graph datasets and shows better performance.

Dynamic node embedding. Recently, dynamic network
embedding approaches were proposed by [Zhang et al., 2018;
Zhu et al., 2018; Ma et al., 2018], which use spectral up-
dates over time for general relational tasks. However, they

No Attributes Static Node Attrs.

Dynamic Edges
TSGNet,
DynamicTriad

TSGNet, DDRC

Static Edges Node2Vec, LR, NN
NN, GraphSAGE,
GCN, ASNE, LR

No Graph not applicable LR, NN

Table 1: Models categorized w.r.t., the types of relational inputs.

are evaluated in a synthetic setting, where two temporal snap-
shots are created by assigning a random timestamp to each
edge. Moreover, attributes are also not exploited for learning
temporal representations. In addition, CTDNE [Nguyen et
al., 2018] learns node representations using temporal random
walks. While the method shows promising results on link
prediction tasks, it is still limited for learning attributes of
nodes and is under-explored to supervised node classification
tasks. DynamicTriad [Zhou et al., 2018] also attempted to
learn node evolution through representation learning for gen-
eral relational learning tasks using multiple temporal graph
snapshots, but their effectiveness on node classification is still
not clear. For example, they are limited to specific types of
evolution strategies, and attributes are also not used.

Model categorization. Table 1 categorizes TSGNet and
other baseline models according to the types of relational
information they use as inputs to their models (w.r.t. edges
and attributes). TSGNet uses dynamic interaction edges with
and without attributes. In our experiments, we compare TS-
GNet to all the listed models. Logistic Regression (LR) and
Multi-layered Neural Network (NN), Node2Vec [Grover and
Leskovec, 2016], and an attributed node embedding, ASNE
[Liao et al., 2018], are also employed to model static edges.
See Section 5 for more detail. The colors in the table will
be used later in the experiments to highlight the performance
achieved using each type of relational input.

5 Experimental Evaluation

5.1 Data

We use four real-world network datasets for evaluation. Ta-
ble 2 reports brief statistics for each network.

Facebook. The Facebook network was scraped from the
Purdue University network [Pfeiffer et al., 2015]. Each user
(node) is associated with political views for their class labels.
An edge is formed when a user writes a post to his or her
friend’s wall. Users who post more than once a week for at
least 8 weeks are chosen. A time window is defined as two
weeks. Node attributes are religious views and gender.

|V | |E| m |F | |C|
Facebook 2,716 22,712 55 2 2
DBLP 17,191 318,735 18 2,997 2
IMDB G 5,043 43,494 65 73 2
IMDB R 92,611 472,630 14 - 2

Table 2: Network data statistics. m is the number of time windows,
and other notations are from Section 2.2.
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DBLP. For this dataset, we extract a co-authorship network
from the papers published in DBLP from 2000-2017. An
edge is created to link two authors when they publish a paper
together, with a time stamp based on the publication. Thus,
nodes represent authors. Publication venues are selected from
AI/NLP and DB conferences2. Authors are selected when
they have at least 7 years of publication history, and their class
label is assigned as the area in which they publish the major-
ity of their papers. Node attributes correspond to term vectors
from the titles of each user’s published papers.

IMDB G (Gross Income). We use Kaggle’s IMDB (Inter-
net Movie Database) 5,000 movie dataset. An edge is formed
when two movies share an actor or actress at each year. All
movies have at least 2 temporal edges. A movie has a positive
label if the movie gross is larger than 10 million dollars. For
this work, we choose budgets, content rating, the number of
faces in a movie poster, and genres as features. The budgets
are quantized from 0 to 9 using percentiles. Each feature is
transformed into one-hot encoding representation.

IMDB R (Rating). This dataset is from the whole IMDB
database3, and all participants including actors and writers
are imported. An edge is formed when two movies share any
crew at each year. When a movie’s rating is larger than 7.0,
it is chosen as a positive label. The periods of all movies are
from 2005 and 2018. There are many missing values when all
movies are considered, so node attributes are ignored in this
dataset. All movies have at least 11 temporal edges.

5.2 Comparison Models

Logistic regression (LR). Logistic regression is performed
using neighbor vectors with L1 regularization. This allows
us to compare how relational and temporal patterns improve
performance. The aggregated (binary or degree normalized
(weighted)) graph of all temporal graphs is used for training.

LSTM. We use the TSGNet’s input representation for the
LSTM, but the GCN layers and the neighbor encoder are not
used in the architecture. For inputs, the first-hop neighbors at
each time window are fed directly into the LSTM layer.

GCN and GraphSAGE. To compare TSGNet with Graph
neural networks, GCN [Kipf and Welling, 2016] and Graph-
SAGE [Hamilton et al., 2017] are evaluated with the aggre-
gated (binary) static graph input. Attributes are used in the
same way with TSGNet. We used an LSTM aggregator for
GraphSAGE. Because other aggregators for the GraphSAGE
such as GCN, mean, and pool are worse than LSTM, the re-
sults are not reported here.

Node2Vec. For learning a static node embedding method,
Node2Vec, we set d = [16, 32, 64], r = 10, l = 80, k = 10,
and p and q were searched over [0.5, 1, 2]. The aggregated
(binary) matrix is used for its training.

ASNE. ASNE [Liao et al., 2018] is a recent attributed
node embedding method. We used the same hyper-parameter
search criteria as in [Liao et al., 2018].

2AI/NLP: IJCAI, AAAI, SIGIR, ECIR, CLEF, CHIIR, AIRS,
ACL, EMNLP, and COLING; DB: ICDE, VLDB, SIGMOD/PODS,
and EDBT.

3The IMDB dataset was downloaded November 2018.

Figure 2: Dense Block Model used to generate synthetic networks.
Sparse Block model is 10 times sparser than the Dense Block Model.

DDRC. DDRC [Park et al., 2017] is a CNN-baed temporal
classifier, which considers interactions over time. This does
not have a neighbor encoder or GCN component. The inputs
are used as in LSTM above.

Multi-layered neural network (NN). For NN, the neigh-
bor encoder of TSGNet is used for training and testing.

TempGCN (GCN+LSTM). This is a version of the TS-
GNet without the neighbor encoder (NE) component where
we use GCN to model the temporal graphs with an LSTM.

DynamicTriad. A dynamic node embedding method, Dy-
namicTriad, is also tested with all combinations of param-
eters as in [Zhou et al., 2018]. Both unweighted graphs
and weighted graphs were used for learning, and edges are
weighted by the number of common neighbors.

5.3 Evaluation Methodology

Every result we report is the average of 10 trials using ran-
domly shuffled node sets. Note that the entire graph is known
before learning, and 70%, 20%, and 10% of node labels are
used for training, testing, and validation, respectively. If the
accuracy on the validation dataset does not increase during
five epochs, learning stops. We also use dropout regulariza-
tion (0.2) and rectified linear units for activation functions.
For optimization, we use the adam optimizer [Kingma and
Ba, 2014] to update variables. For TSGNet, LSTM, and
GCN, the number of hidden nodes is searched over [16, 32,
64, 128], and the numbers of hidden nodes in the neighbor
encoder are 512, 128, and 16 at each layer. In addition, there
are three GCN layers for TSGNet. For importance sampling,
the sampling size, |S| is chosen from [16, 32, 128, 256, 512].

5.4 Results: Synthetic Data

To evaluate the concept of TSGNet, we generate synthetic
data from two simplified-Dynamic Stochastic Block Models
(DSBM) [Yang et al., 2011] to evaluate our model. We set
the number of users to 100, and the length of time-windows
for each node is determined by 25+ uniform(0, 1)× 25. The
first DSBM (Dense Block Model) is composed of 4 different
partitions, P1, .., P4, at time(k)%2 == 1. Each partition is
composed of 50×50 nodes. In all other time-windows, edges
are generated from 9 partitions, P ′

1, .., P ′
9. Each partition has

different edge probabilities, as in Figure 2. The second model
(Sparse Block Model) is designed to generate sparse DSBM
with low probability. All other conditions are same, but each
probability is 10 times sparser than the dense block model.
For class labels, 0 is assigned for the first half of nodes (thus,
senders of P1 and P2), and 1 is set to the second half.
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Dense Block Model Sparse Block Model

TSGNet 0.89 (0.0299) 0.884 (0.0282)
DynamicTriad 1.0 (0.0) 0.615 (0.0316)
DDRC 1.0 (0.0) 0.705 (0.026)
LSTM 1.0 (0.0) 0.530 (0.0376)
GCN 0.519 (0.0272) 0.504 (0.0277)
Node2Vec 0.494 (0.0360) 0.771 (0.0260)
LR 0.429 (0.0164) 0.63 (0.2270)
NN 0.485 (0.0212) 0.688 (0.0326)

Table 3: Classification accuracy on synthetic data. Values in ( )
denote standard errors. Colors indicate type of relational input used
by the model from Table 1.

Node classification accuracy (and standard errors) on the
synthetic data are shown in Table 3. Bold numbers indicate
statistically significant top results. For data from both sparse
and dense block models, our proposed model exhibited good
performance. While DynamicTriad, DDRC, and LSTM show
better performance than TSGNet in the dense data, they are
worse in the sparse block model. Meanwhile, other classi-
fiers (GCN, LR, and NN), which were originally designed for
static graphs, showed the worse performance than TSGNet’s
results. Node2Vec works well for the sparse data, but it is
worse than TSGNet (p-value < 0.05 in paired t-test).

5.5 Results: Real-world Data

Performance without Node Attributes

Table 4 shows the classification results for the four different
real-world datasets. Note that bolded numbers indicate sta-
tistically significant top results. (Weighted) in LR refers to
versions where the input matrices of the corresponding meth-
ods are normalized by the number of edges per each node. In
the experiment, TSGNet exhibited the best performance over
other alternatives for all datasets and shows comparable per-
formance to TSGNet w/o IS (Importance Sampling). While
simple static classifiers such as LR and NN return good per-
formance for Facebook (FB) and DBLP due to the high cor-
relation between neighbor vectors and class labels, however,
they are still worse than our TSGNet. These characteristics
make TempGCN more difficult to model the data because it
is too complex to learn the simple neighborhood. Despite
that, the neighbor encoder component of the TSGNet helps it
learn the hidden dependencies among nodes and their static
neighborhood well. As a result, it produces a significant gain
in performance. DDRC and LSTM showed poor performance
because the data is also very sparse. DynamicTriads are bet-
ter than GCN and GraphSAGE in IMDB G but still worse
than TempGCN and TSGNet. Overall, TSGNet produces an
average reduction in classification error of 16%, compared to
GraphSAGE, which is the best competitor.

Figure 3 shows learning curves on the four datasets as we
vary the amount of training data. The learning curves com-
pare the performance as the number of training nodes in-
creases. Note that the set of nodes for testing and valida-
tion is same across all range of x-axis. Although the number
of training nodes was controlled to calculate the supervised
loss, the complete adjacency matrices at each time step for
the GCN layers were fixed for the experiment. The experi-
mental assumption was also applied to all other alternatives,

TempGCN, Node2Vec, and LR. For Node2Vec, the compete
network structure is known for learning representation, and
the number of nodes is controlled when its supervised clas-
sifier is trained. Therefore, all results with the small training
data were not poor. In the Facebook and DBLP datasets, TS-
GNet was consistently better than the others. For IMDB G
dataset, TSGNet improved in performance as the size of train-
ing set increased.

Performance with Node Attributes

Table 5 shows classification results when node attributes are
incorporated into the models. The result for TSGNet with at-
tributes was better than the other alternatives which used at-
tributes in their input. Moreover, the performance of TSGNet
without attributes was even better than the result of the best
model which uses attributes. Note that, for the DDRC with-
out attributes, an identity matrix is concatenated to the input
neighbor vector. This result indicates that it can learn a good
representation with only the structural interactions. (attr. +
neighbor) refers to a concatenated input including both at-
tribute and neighborhood vectors. ASNE, LR, and NN with
the new input show good results in general, but they are worse
than TSGNet. ASNE performed poorly on DBLP because it
could not utilize labels to learn the embedding. Also, GCN
did not work well both with and without attributes. GCN is
based on a 1-layer perceptron, which is not a universal ap-
proximator [Hornik, 1991]. The 1-layer perceptron in the
GCN works like a linear mapping, so the layers may degen-
erate into simply summing over neighborhood features [Xu
et al., 2019]. With this reason, GraphSAGE with LSTM ag-
gregator can model interaction better than GCN for Facebook
and DBLP. Overall, TSGNet with or w/o attributes reduces
classification error up to 24% and produces an average reduc-
tion in classification error of 10%, compared to GraphSAGE.

Temporal Sequence Randomization: Impact on
Performance

To see the effect of temporal sequence’s randomization, the
time-windows were randomly shuffled and used for train-
ing. The order of words in language models for NLP and
speech recognition is quite important to represent sentences,
but the temporal order of social interactions could be reversed

FB DBLP IMDB G IMDB R

TSGNet 0.68 0.97 0.78 0.78
TSGNet w/o IS 0.688 0.97 0.786 0.771
TempGCN 0.646 0.734 0.77 0.591
DynamicTriad W 0.542 0.652 0.732 0.657
DynamicTriad 0.534 0.633 0.730 0.645
DDRC 0.554 0.542 0.717 -
LSTM 0.514 0.538 0.696 -
GraphSAGE 0.645 0.963 0.712 0.752
GCN 0.521 0.665 0.719 0.568
Node2Vec 0.515 0.96 0.7 0.768
NN 0.623 0.83 0.716 0.726
LR 0.593 0.939 0.699 0.665
LR W 0.613 0.955 0.689 0.673

Table 4: Classification accuracy on real-world datasets. Colors indi-
cate relational input type from Table 1. Results of DDRC and LSTM
for IMDB R are ignored due to the learning time limit (≥1 day).
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(a) Facebook (b) DBLP (c) IMDB G (d) IMDB R

Figure 3: Learning curves for each dataset as amount of training data is varied.

and often spontaneously happen. In this case, the random-
ized temporal sequences are likely to represent another in-
stance of evolution. As can be seen in Table 6, TSGNet and
TempGCN also work well given the randomized inputs and
are not significantly different from the results of original in-
puts. These results may be interpreted in the context of recent
work on Janossy pooling [Murphy et al., 2019] for learning
permutation invariant functions with LSTMs via randomiza-
tion. The fact that the randomized inputs work well within
our LSTM architecture may indicate that the model is learn-
ing a temporally-invariant function over the interactions.

Ablation Study of Model Components

TSGNet uses GCNs for learning temporal interactions and a
NN neighbor encoder for learning the aggregated static first-
neighbors. However, we could have chosen other architec-
tures for either component. Table 7 shows the results for
different variants of the architecture, with the original com-
ponents of TSGNet in the first row. Note that we did not use
importance sampling to see the true effect of each compo-
nent. Instead of the GCN in TSGNet, when we use regular
densely-connected NN, its performances decreases in DBLP,
as shown in the second row of the table. When the GCN is
missing in TSGNet like the last row of the table, it also does
not work well. Similarly, when the NN in TSGNet is replaced
with GCN layers or an empty layer, we can observe the sig-
nificant drop in Facebook and DBLP. This indicates that our
NN-based neighbor encoder helps to jointly learn the tempo-
ral network’s interaction well if we use GCN layers.

FB DBLP IMDB G

with Static Attributes

TSGNet 0.675 0.96 0.777
DDRC 0.554 0.938 0.749
GraphSAGE 0.655 0.967 0.717
GCN 0.483 0.881 0.720
ASNE 0.525 0.601 0.734
LR (attr. + neighbor) 0.664 0.96 0.744
NN (attr. + neighbor) 0.645 0.955 0.759
LR (attr. only) 0.63 0.891 0.756
NN (attr. only) 0.63 0.886 0.735

Table 5: Classification accuracy on real-world datasets with node
attributes. Colors indicate relational input type from Table 1.

FB DBLP IMDB G IMDB R

TSGNet 0.688 0.97 0.786 0.78
TSGNet (R) 0.679 0.96 0.774 0.772
TempGCN 0.646 0.734 0.771 0.591
TempGCN (R) 0.658 0.735 0.750 0.573

DDRC 0.554 0.542 0.717 -
DDRC (R) 0.573 0.54 0.718 -
LSTM 0.514 0.538 0.696 -
LSTM (R) 0.480 0.53 0.693 -

Table 6: Classification accuracy with different temporal inputs.
(R) denotes that the sequence of inputs is randomized.

N-En T-En FB DBLP IMDB G IMDB R

NN GCN 0.688 0.97 0.786 0.771

NN NN 0.676 0.953 0.776 0.711
GCN GCN 0.672 0.652 0.788 0.707
– GCN 0.646 0.734 0.771 0.591
– NN 0.647 0.732 0.769 0.707
GCN – 0.521 0.665 0.719 0.658
NN – 0.623 0.83 0.716 0.726

Table 7: Effect of joint learning with different approaches used for
the neighbor encoder (N-En) and the temporal encoder (T-En).

6 Conclusions

In this paper, we described TSGNet, a neural network archi-
tecture that can learn jointly from static and temporal neigh-
borhood structure. The architecture exploits the interactions
among local neighbors over time, by learning the temporal
evolution of a low-dimensional embedding from a GCN, and
models its static neighborhood with a densely connected NN.
TSGNet is able to improve classification performance by uti-
lizing both patterns in social interactions over time and the set
of nodes in the aggregate relational neighborhood.
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