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Segmentation of the prostate from Magnetic Resonance Imaging (MRI) plays an important role in prostate cancer diagnosis.
However, the lack of clear boundary and signi�cant variation of prostate shapes and appearances make the automatic segmentation
very challenging. In the past several years, approaches based on deep learning technology havemade signi�cant progress on prostate
segmentation. However, those approaches mainly paid attention to features and contexts within each single slice of a 3D volume. As
a result, this kind of approaches faces many di
culties when segmenting the base and apex of the prostate due to the limited slice
boundary information. To tackle this problem, in this paper, we propose a deep neural network with bidirectional convolutional
recurrent layers for MRI prostate image segmentation. In addition to utilizing the intraslice contexts and features, the proposed
model also treats prostate slices as a data sequence and utilizes the interslice contexts to assist segmentation. �e experimental
results show that the proposed approach achieved signi�cant segmentation improvement compared to other reported methods.

1. Introduction

Accurately segmenting the prostate from Magnetic Reso-
nance Imaging (MRI) provides very useful information for
clinical applications like computer aided diagnosis and image
guided interventions [1]. However, it is a very challenging
task due to the lack of clear boundary de�nition and the
signi�cant variation of shape and texture across images from
di�erent patients [2] as shown in Figure 1.

According to the guidance information used in the
model, we can classify the existing prostate MRI segmen-
tation methods into four kinds: region based, shape prior
based, contour based, and classi�cation methods [3–5]. Toth
et al. [6] presented an Active Shape Model (ASM) initial-
ization scheme for prostate segmentation which leverages
multimodal information to initialize ASM. Samiee et al. [7]
proposed a model using shape prior of prostate to re�ne
the prostate boundary; Klein [8] proposed an automatic
segmentation model which is based on manually matching
segmented atlas images.

In the past several years, deep learning based techniques,
especially fully convolutional neural networks (FCNs), have
proved very e�ective on image segmentation [9–11], includ-
ing biomedical image segmentation. Zhu et al. [12] proposed a
deeply supervised CNN that utilized the residual information
to accurately segment the prostate MRI. Bao and Chung [13]
introduced amultiscale structured FCNmodel for brainMRI
segmentation by capturing discriminative features from input
patch. Other examples on introducing deep learning into
biomedical image segmentation can be found in [14–17].

However, a straightforward extension of those 2D image
segmentation methods to 3D may not yield satisfactory
performance, due to the anisotropic nature of many medical
imaging modalities. To tackle this problem, Chen et al. [18]
proposed a method to combine fully convolutional neural
networks with the extended Convolutional Long Short-Term
Memory (C-LSTM), which improved 3D medical image
segmentation performances by simultaneously leveraging the
abstraction capabilities of both FCNs and RNNs. Neverthe-
less, their model relies on the so-called U-Net [18] to extract
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Figure 1: Challenges in segmenting prostate inMR images. (a) Imaging artifacts inside the bladder. (b)Weak boundary. (c) Complex intensity
distribution.

image features. �e following Bidirectional Convolutional
LSTMs (BDC-LSTMs) only work on the extracted features.
�us, useful information for assisting image segmentation
may be lost.

As to prostate segmentation task, an insurmountable
challenge is the image slice speci�cally at the apex and base
always loses clear boundaries and necessary information.
�is phenomenon brings the main di
culty to prostate
segmentation. However, shape prior is an e�ective way to
resolve this challenge. For instance,Qin et al. [19] proposed an
adaptive shape prior constrained directional level set model
(ASPDLS) to segment the inner and outer boundaries of
the bladder wall and achieved accurate segmentation results.
Motivated by the fact that the acquired MRI images typically
have a high intraslice resolution and there exists a high
spatial dependence between slices from the same patient, we
utilize interslice as shape prior to guide the process of feature
extraction and explore necessary information from interslice
to alleviate information loss as shown in Figure 2. Besides
the architecture of RNNs has superiority performances in
modeling sequential data [17, 20, 21]. To improve the perfor-
mance of prostate segmentation, in this paper, we propose
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Figure 2: Interslice as shape prior to guide the process of feature
extraction.

a network, called UR-Net, which treats prostate slices as a
data sequence, utilizing the intraslice contexts and features to
assist segmentation.

�ere are two main contributions of this paper. First, we
treat prostate slices as a data sequence and utilize interslice
as shape prior to guide the process of feature extraction
and explore necessary information from interslice. Second,
we explore the power of RNNs rather than the traditional
CNNs to extract image feature. �e experimental results
demonstrate that the use of RNNs can substantially improve
the performance of prostate segmentation.

�e rest of the paper is organized as follows. �e
architecture of Recurrent Neural Network and the details of
proposed network architecture are described in Section 2.
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Figure 3: Architecture of the Recurrent Neural Networks and unfolding Recurrent Neural Networks into a full network. �� is the input at
time step �. ℎ� is the hidden state at time step �, which is the “memory” of the network. �� is the output at time step �.

Section 3 presents the experimental results and performance
evaluation. �e conclusions are provided in Section 4.

2. UR-Net

In this section, we �rst review the classic Recurrent Neural
Networks (RNNs) and then move on to describe the exten-
sion of RNNs to Long Short-Term Memory (LSTM) [22]
and Convolutional Long Short-Term Memory (CLSTM) [18]
which are speci�c Recurrent Neural Networks. A�er that, the
proposed UR-Net is presented in detail.

2.1. Recurrent Neural Networks (RNNs). Recurrent Neural
Network (RNN) has a long history in the arti�cial neural
network community which was designed to model temporal
sequences. �e architecture of typical RNNs is shown in
Figure 3. �is model has shown great promise in many tasks,
such asNLP [23], non-Markovian control, and text tasks [24].
�e idea behind RNNs is to make use of sequential infor-
mation with the output being dependent on the previous
computation. RNNshave amemory,which can remember the
information about what has been calculated so far. In theory
[25], RNNs can remember the information in arbitrarily long
sequences and make use of the previous computations, but
in practice they are limited to looking back only a few steps,
because of the problem of vanishing gradient.

At each time step �, the RNNs utilize the input data �� and
the previous hidden state ℎ�−1 to calculate the next hidden
state ℎ� and output �� by applying the following recursive
operation:

ℎ� = �ℎ (�ℎ�� + 	ℎ�−1 + 
ℎ) ,
�� = �� (��ℎ� + 
�) ,

(1)

where� is an element-wise nonlinearity function;�ℎ,	, and
ℎ are the parameters of hidden state; �� and 
� are output
parameters.

During the last decade, several methods have been ex-
plored for training RNNs, such as backpropagation through
time (BPTT) [26], real-time recurrent learning (RTRL) [27],
and extended Kalman �ltering based techniques (EKF) [28].
�ough those training methods can help us train RNNs, they
su�er from the vanishing gradient problem.
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Figure 4: Architecture of the Long Short-Term Memory.
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Figure 5: Architecture of the forget gate in LSTM.

2.2. Long Short-Term Memory (LSTM). To address the prob-
lem of vanishing gradient and long-term dependency resid-
ing in RNNs [29], a special implementation of RNN, Long
Short-Term Memory (LSTM), was introduced by Hochreiter
and Schmidhuber [22].�e architecture of LSTM is shown in
Figure 4.

One LSTM unit consists of an input gate (�), a forget gate
(�), an output gate (), and a memory cell (�) which possess
the ability of remembering or forgetting the information over
potentially long periods of time. �e input gate puts and
controls the input data into the memory cell. �e forget-
ting gate decides what information we are going to throw
away form the memory cell. �e output gate decides which
parts of data in the memory cell are going to output and
simultaneously controls the output data �ow into the rest of
the network.

�e step of LSTM can be described as follows: (1) the �rst
step in the LSTMmodel corresponds to (2) which is to decide
what information should be discarded from input data. �is
decision is made by forget gate; the architecture of forget gate
is shown in Figure 5. �e forget gate possesses a forgetting
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Figure 6: Architecture of the input gate in LSTM.

layer which consists of a sigmoid function. When getting the
data from previous stage ℎ�−1 and input data ��, the sigmoid
function outputs a number 0 or 1 for each data in the cell state
��−1, the number 0 represents completely throwing it away,
while 1 represents storing it.

�� = � (���� + 	�ℎ�−1 + 
�) . (2)

(2)�e second step is to decide what new information we
should store in the cell. �e input gate consists of a sigmoid
function and a tanh function as shown in Figure 6. When the
input gate receives a new data, the sigmoid function decides
what values will be updated and the tanh function creates a
candidate values��, those operations corresponding to (3). At
last, the input gate controls the candidate values to update the
cell state.

�� = � (���� + 	�ℎ�−1 + 
�) ,
�� = tanh (���� + 	�ℎ�−1 + 
�) .

(3)

(3)Whenwe got the information coming from forget gate
and input gate, we can utilize (4) to update the cell state. �is
operation can drop some useless information.

�� = �� ∘ ��−1 + �� ∘ ��. (4)

(4) �e fourth step is to decide what information we
should output which is based on cell state. �e �nal result
consists of two parts, the �rst part comes from cell state
selected by a tanh function. �e second part comes from
input data which will be selected by a sigmoid function. �e
output gate is shown in Figure 7 and the computing methods
are

� = � (���� + 	�ℎ�−1 + 
�) ,
ℎ� = � ∘ tanh (��) .

(5)
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Figure 7: Architecture of the output gate in LSTM.

Putting those together, the gates at discrete time � (� =
1, 2, . . .) are computed as follows:

�� = � (���� + 	�ℎ�−1 + 
�) ,
�� = � (���� + 	�ℎ�−1 + 
�) ,
� = � (���� + 	�ℎ�−1 + 
�) ,
�� = tanh (���� + 	�ℎ�−1 + 
�) ,
�� = �� ∘ ��−1 + �� ∘ ��,
ℎ� = � ∘ tanh (��) .

(6)

�e standard LSTM architecture is just designed for one-
dimensional data. It cannot be directly applied to 2D image
data. To apply LSTM in prostate image, in our model, we
apply Convolutional LSTM (CLSTM) as convolutional layer.
�is can be achieved by using a convolution operator to
replace the matrix multiplication. �e core equations of
CLSTM are presented in

��� = � (��� ∗ ��� + 	�� ℎ��−1 + 
�� ) ,
��� = � (��� ∗ ��� + 	��ℎ��−1 + 
��) ,
�� = � (��� ∗ ��� + 	�� ℎ��−1 + 
�� ) ,
��� = tanh (��� ∗ ��� + 	��ℎ��−1 + 
��) ,
��� = ��� ∘ ���−1 + ��� ∘ ��� ,
ℎ�� = � ∘ tanh (��) ,

(7)

where (∗) denotes convolution operator and ℎ is the output
of the layer; � denotes the fact that the CLSTMworks slice by
slice in certain direction.

2.3. �e Proposed Network Architecture. In order to exploit
the interslice information e�ectively, we introduce a Bidirec-
tional Convolutional LSTM (BDC-LSTM) layer into our deep
learning network. A BDC-LSTM layer consists of two sets of
CLSTMs to extract features as shown in Figure 8. �e two
CLSTM streamswork in two opposite directions. Rather than
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Figure 8:�e architecture of BDC-LSTM. One BDC-LSTM layer contains two CLSTM layers working in two opposite directions. One from
��+1 to ��−1 and the other from ��−1 to ��+1. �e results of two CLSTM layers are connected together as the input of next layer.

Fusion

Convolution

Deconvolution

So�max

Figure 9: Architecture of U-Net.

serializing each prostate image into sequential patches and
then leveraging Bidirectional LSTM to segment each patch,
in our method, we treat each image as a whole and three
adjacent image slices compose a sequence.

When we put one image sequence denoted by ��−1, ��,��+1 into the BDC-LSTM layer as shown in Figure 8, the layer
will utilize interslice and intraslice information to extract
prostate features. Firstly, the layer extracts the �rst slice’s ��−1
features. And then the result of ��−1 and �� will be treated as a
shape prior combined with the later slice �� and ��+1 as input
to guide the process of segmentation in turn. Simultaneously
the layer will extract features of each slice in opposite
directions from ��+1 to ��−1, at last, connecting the two
di�erent features maps together as the input of next layer.

Our proposed network architecture is shown in Figure 10.
�e main framework of our proposed method follows the
architecture of U-Net [30], since U-Net can successfully
extract image features for segmentation with a reasonable
network depth. As a matter of fact, U-Net has obtained
state-of-the-art performances in many biomedical image
processing tasks. For example, Milletari et al. [31] proposed a
fully convolutional neural network for volumetric medical
image segmentation, called V-Net. �is model leverages the
power of U-Net to process MRI volumes. �e architecture of
U-Net is shown in Figure 9.

�e proposed network architecture consists of a contract-
ing path on the le�, an expansive path on the right, and a
classi�ed path on the bottom. Both the contracting path and
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Figure 10: Architecture of the proposed network.

expansive path possess 4 stages, and each stage consists of
one BDC-LSTM layer. At the end of networks one so�max
layer is added. At the contracting stage, a 2 × 2 max pooling
operation with a stride of 2 is attached for downsampling and
the number of feature channels is doubled a�er each stage.
On the opposite side, at the expansive stage, the �rst step is
upsampling, which makes the width and height of feature
maps doubled each time until they reach the size of the
original images. At the same time, upsampling also halves the
number of feature channels. To reduce information loss dur-
ing convolution, a concatenation from le� contracting path to
right expansive path is made. �e concatenation can provide
features extracted from early stage to late stage and also
can speed up the convergence of the network. To avoid
over�tting, dropout operations have been added at the end
of each stage.

2.4. Network Objective Function. For the prostate images, the
anatomy of interest usually occupies a very small part of
an image. �is brings the problem that the networks always
ignore the segmentation parts and become biased towards the
background. �is always led to the learning process trapped
in local minima. To overcome this problem, we apply the
dice coe
cient as the objective function. �e dice coe
cient
function can pay more attention to segmentation parts
in�uences. �e dice coe
cient (DSC) [19] function between
two images can be written as

DSC (�	, �
) = 2
�����	 ∩ �
���������	���� + �����
���� , (8)

where �	 denotes the result of automatic segmentation and
�
 denotes the result of manual segmentation.

In our work, the ground truth and results of segmentation
are binary images, so the dice coe
cient DSC between two
binary images can be written as

DSC = 2∑�� ����
∑�� �2� + ∑�� �2�

, (9)

� denotes the total number of pixels in the image, and ��,�� denote the pixels from ground truth and segmentation,
respectively.

�is formulation of dice can be di�erentiated yielding the
gradient:

��
��� = 2

[
[
�� (∑�� �2� + ∑�� �2� ) − 2��∑�� ����

(∑�� �2� + ∑�� �2� )2
]
]
. (10)

Besides, Milletari et al. [31] have proved that the DSC are
much better than the samenetwork trainedwith a logistic loss
for overcoming the network traps in local minima.

3. Experimental Results

3.1. Materials. �eMRI prostate images used in our work as
shown in Figure 11 were acquired from 80 patients using a
Philips 3T MRI scanner with endorectal coil. �e in-plane
resolution is 0.3mm × 0.3mm and interslice distance is 3
mm. Each patient image volume consists of about 26 slices.
�e dimension of each 2D slice is 512 × 512 pixels.

3.2. Training Strategy. We randomly selected 76 patients from
80 patients for training and the rest of patients are utilized
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Figure 11: Parts of MRI prostate images.
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Figure 12: �e $− direction and $+ direction.

for testing. During training, we put three sequential slices
denoted by ��−1, ��, ��+1 from one patient into the net-
work. And then the BDC-LSTM layers exploit intraslice and
interslice contextual information from two directions, one
in $− direction and the other in $+ direction as shown in
Figure 12. Our network is trained end-to-end on the prostate
scans dataset. And the network framework is implemented
under the open-source deep learning library Keras [32].
Experiments are carried out on GTX1080 GPU with 8GB of
video memory and the CUDA edition is 8.0. In the training
phase, the learning rate is set as 0.0001 initially. Due to the
limit by the memory, we choose 1 as the mini-batch. And all
of the train image and ground truth have been resized to 256
× 256.

3.3. Experiments. To validate whether the deep neural net-
work with RNN layers can signi�cantly improve the segmen-
tation accuracy, we also modify the FCNs by utilizing BDC-
LSTM layers to replace the convolutional layers within FCNs.
�ese testing images come with a corresponding ground
truth segmentation map which is a binary image and is used
to evaluate the performances of automatic segmentation. At
last, we compare our model with U-Net, V-Net [31], fully
convolutional networks (FCNs), andmodi�ed FCNs. Parts of
segmentation results of our network are shown in Figure 13.

3.3.1. Qualitative Comparison. From the segmentation re-
sults, we selected some representative and challenging
images, which have fuzzy boundaries and the pixel intensity
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Figure 13: Parts of MRI prostate images segmentation results. �e red and green contour denote ground truth and the result of UR-Net.

distributions are inhomogeneous both inside and outside.
In addition, both prostate and nonprostate regions in those
images have similar intensity distributions as shown in
Figure 14.

As presented in the third column, FCNs only can detect
and segment a part of prostate. And the segmentation results
are not accurate, due to the fact that the FCNs model has
assigned the labels to a small patch rather than each pixel.
Besides, the FCNs ignore the boundaries information. So the
FCNsmodel cannot be directly used in prostate segmentation
problem.

As shown in the fourth column, U-Net model has got
more accurate segmentation results than FCNs. Because U-
Net assigns each label to every pixel and the architecture of
U-Net can enhance information propagation through the
whole network and improves the network performance, for
the slices at the apex and base which lack clear boundary
and complete texture, the model cannot segment the prostate
accurately.

�e results of modi�ed FCNs are shown in the ��h
column. Compared with original FCNs, the segmentation

results of modi�ed FCNs are more accurate. From the
results, we can see that the modi�ed FCNs can detect more
prostate information under the guidance of previous slice.
�e improvement of modi�ed FCNs can be attributed to
the superiority of the architecture of BDC-LSTM. Compared
with the traditional convolutional layer, the BDC-LSTM layer
can obtain the losing information from adjacent slices and
enhance the performance of network.

�e sixth column shows the results of V-Net. Compared
with FCNs andU-Net, V-Net can take fully use of the 3D spa-
tial information of the volumetric data. However, due to the
limited data and memory, each time, V-Net only can receive
local volume; this results in V-Net unable to obtain global
information. From Figure 14, we can see that the prostate
boundaries lose continuity and curvature.

�e results of UR-Net are shown in the seventh column.
We can observe that the model achieved the best results on
prostate segmentation. It can be attributed to the fact that
prostate sequence scans can provide more information than
a single slice. And themodel utilizes interslice information to
aid the segmentation process.
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Figure 14: Segmentation results. From le� to right are raw image, ground truth, the segmentation results of FCNs, U-Net, V-Net, modi�ed
FCNs, and UR-Net.

3.3.2. Quantitative Comparison. To quantitatively evaluate
the segmentation results, we have computed segmentation
results from three aspects as shown in Table 1 including the
mean, maximum, and median DSC values. From Table 1, it
can be seen that our proposed model obtained the highest
scores among all the methods. It shows that the deep
neural network with BDC-LSTM layers can obtain promis-
ing improvements on prostate MRI images segmentation.
Besides, the modi�ed FCNs obtain more accurate segmenta-
tion results compared with original FCNs.�is improvement
should be attributed to the superiority of BDC-LSTM layers,
which utilize interslice as shape prior to guide the process
of feature extraction and explore necessary information from
interslice to alleviate information loss and �nally improve the
segmentation results.

4. Conclusions

In this paper, we propose a deep neural network with RNNs
layers for MRI prostate image segmentation. Di�erent from
traditional methods, we treat the prostate scans as sequence
data. Except for the local features, we also utilize the interslice
information to aid prostate segmentation. In the proposed
network, we put three neighboring slices into the network
once. And then the network extracts intraslice contexts under
the guidance of previous segmentation results from di�erent
neighboring slices. Connecting the two di�erent features
maps coming from opposite sequential directions together

Table 1: Quantitative evaluation results of the segmentation meth-
ods.

Methods
DSC values

Mean Maximum Median

UR-Net 0.9361 0.9772 0.9413

Modi�ed FCNs 0.9047 0.9428 0.9143

V-Net 0.9180 0.9642 0.9380

U-Net 0.9197 0.9684 0.9402

FCNs 0.8489 0.9128 0.8571

can alleviate features lost. Experimental results on extensive
MRI prostate image datasets demonstrate that the proposed
model achieves better performance than the state-of-the-art
convolutional neural networks.
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