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Abstract

In this paper, we propose a new approach to speaker diariza-

tion based on the Total Variability approach to speaker verifica-

tion. Drawing on previous work done in applying factor anal-

ysis priors to the diarization problem, we arrive at a simplified

approach that exploits intra-conversation variability in the To-

tal Variability space through the use of Principal Component

Analysis (PCA). Using our proposed methods, we demonstrate

the ability to achieve state-of-the-art performance (0.9% DER)

in the diarization of summed-channel telephone data from the

NIST 2008 SRE.

Index Terms: speaker diarization, factor analysis, Total Vari-

ability, principal component analysis

1. Introduction

Audio diarization is defined as the task of marking and cate-

gorizing the different audio sources within an unmarked audio

sequence. The types and details of the audio sources are appli-

cation specific, but can include particular speakers, music, back-

ground noise sources, et cetera. This paper concerns speaker

diarization, or “who spoke when”, the problem of annotating

an unlabeled audio file where speaker changes occur (segmen-

tation) and then associating the different segments of speech

belonging to the same speaker (clustering). [1]

We develop an approach to diarization based on the suc-

cesses of factor analysis-based methods in speaker recognition

[2], as well as diarization [3], [4]. Inspired by the ability of the

Total Variability subspace to extract speaker-specific features on

short segments of speech [2], [5], we propose a method for per-

forming speaker clustering directly in the low-dimensional To-

tal Variability subspace. By evaluating the performance of our

system on the same summed-channel telephone data from the

2008 NIST Speaker Recognition Evaluation (SRE), we show

that our resulting work is not only simpler than the Variational

Bayes system formulated previously in [3], but can also achieve

the same state-of-the-art performance.

The rest of this paper is organized as follows: Section 2 re-

views the Total Variability approach as a factor analysis-based

front-end for extracting speaker-specific features. Section 3

then motivates the use of PCA to exploit intra-conversation vari-

abilities for speaker clustering before Section 4 outlines the re-

maining details of our system. The results of our experiments

are explained in Section 5, and Section 6 concludes with a dis-

cussion of possible directions for future work.

2. A Review of Total Variability

At the heart of speaker diarization lies the problem of speaker

modeling. In an effort to enhance the classical method of mod-

eling speakers using Gaussian Mixture Models (GMMs) [6], re-

cently developed methods apply factor analysis to supervectors

- a vector consisting of stacked mean vectors from a GMM -

in order to better represent speaker variabilities and compensate

for channel (or session) inconsistencies [2]. One such approach

is Total Variability, which decomposes a speaker- and session-

dependent supervector M as follows:

M = m + Tw + ǫ (1)

where m is the speaker- and session-independent supervector

commonly taken from a large GMM, known as the Universal

Background Model (UBM), trained to represent the speaker-

independent distribution of acoustic features [6]. T is a rectan-

gular matrix of low rank that defines the Total Variability sub-

space, w is a low-dimensional random vector with a standard

normal prior distribution N (0, I), and the residual noise term

ǫ ∼ N (0, Σ) covers the variabilities not captured by T [7].

The vector w will be referred to as a total factor vector or an

i-vector.

The cosine similarity metric has been applied successfully

in the Total Variability subspace to compare two i-vectors [2].

Given any two total factor vectors w1 and w2, the cosine simi-

larity score is given as

score (w1, w2) =
(w1)

t (w2)

‖w1‖ · ‖w2‖
(2)

By working within the Total Variability subspace instead of

projecting back into the GMM-supervector space, this scoring

function is considerably less complex than the log-likelihood

ratio scoring operations used in the past [6].

3. Intra-Conversation Variability

The Total Variability approach has achieved state of the art re-

sults in the task of speaker verification [2]; it is therefore natural

to try to adapt these methods for the problem of speaker diariza-

tion. We began by recognizing the shortcomings of standard

(speaker verification-based) inter-session compensation tech-

niques when applied to speaker diarization: the use of eigen-

channels was ineffective in [3], as was the rote application of

LDA+WCCN for the Total Variability-based i-vectors [2]. This

gave way to the realization that compensating for inter-session

variability was wholly unnecessary in the problem of diariza-

tion; because we were working on summed-channel telephone

conversations, there was really no inter-session. What we really

cared about were intra-session (or intra-conversation) variabil-

ities within each audio file. Such insight paved the way for the

rest of this work.

Assuming we have some initial segmentation in place, we

can extract an i-vector for each segment. Then to associate
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each i-vector with a corresponding speaker, we generate clus-

ters from them. For our experiments, we assume that there are

exactly two speakers in the given conversation. Of course, it is

not known a priori where our two respective speakers lie in the

Total Variability space, but because i-vectors were designed to

contain primarily speaker-specific information, the most promi-

nent source of variability between these i-vectors ought to be

attributed to differences between the speakers’ voices.

We can find the directions of maximum variability within

our Total Variability space by using simple Principal Com-

ponent Analysis (PCA). Figure 1 shows the first two prin-

cipal components of a set of Total Factors extracted from a

male/female conversation The plot also includes, in black x’s,

the i-vectors corresponding to overlapped speech segments. To

be sure, the PCA projection was calculated on all i-vectors

including these overlapped speech segments, as we have not

yet explored ways to distinguish between overlapped and non-

overlapped speech.

Figure 1: Plot of the first two dimensions (principal compo-

nents) of PCA-projected speaker i-vectors. The triangles in red

represent i-vectors of a male speaker, while the blue circles rep-

resent i-vectors of a female speaker in the same conversation.

The black x’s correspond to i-vectors representing overlapped

speech.

Though this is a visualization of only the first two principal

components from an initial i-vector dimension of 400, we can

already see a distinct separation between the sets of total fac-

tor vectors corresponding to different speakers. Furthermore,

it can be observed that the separation between the two clusters

is primarily directional; this is because a PCA projection cen-

ters the mean of the dataset at the origin and also because each

i-vector has a standard normal prior distribution. This suggests

that the most important information may be contained not in the

magnitude of the i-vector, but in its relative orientation. Figure

2 shows a length-normalized version of the first two principal

components for the same two speakers seen in Figure 1. Notice

how the majority of each cluster can be found in distinctly dif-

ferent regions along the unit circle. This further motivates the

use of the cosine similarity as a metric for comparing i-vectors.

To even further emphasize the importance of the PCA direc-

tions with the most variability (i.e. largest eigenvalues), we in-

troduce the following weighted modification to our cosine sim-

Figure 2: Plot of the length-normalized speaker i-vectors after

applying a two dimensional PCA-projection across the entire

conversation. Notice also the random scatter of the black x’s

corresponding to overlapped speech segments.
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where w′

i is the PCA-projected i-vector and Λ is the correspond-

ing diagonal matrix of the eigenvalues. Additionally scaling

our PCA-projected i-vector components by the square root of

the eigenvalues Λ
1

2 gives us added emphasis on the directions

of higher variability (i.e. the “most” principal components).

Though PCA naturally gives more scoring weight to the larger

principal components, our experiments showed that increasing

this effect artificially had a positive impact on performance.

4. The Speaker Diarization System

This section describes the various parts of our proposed diariza-

tion system.

4.1. Segmentation

To obtain an initial segmentation on the summed-channel tele-

phone data, we use a Harmonicity and Modulation Frequency-

based Voice Activity Detector (VAD) described in [8]. Its out-

put gives us the start/stop times for segments that are classified

as speech. Over the entire test set, the average length of these

segments is 1.09s with a standard deviation of 0.648s. Though

the segment lengths range widely between 0.03s and 11.31s, we

chose to use this VAD without any additional refinements.

4.2. PCA-based Dimensionality Reduction

After extracting an i-vector for each speech segment in our

conversation, we apply PCA-based projection as described in

Section 3. Rather than forcing the system to adhere to a spe-

cific number of principal components (dimensions), however,

we specified a proportion p of eigenvalue mass to use instead.

That is, we use the dimensions corresponding to the n largest

eigenvalues such that

min
n

Pn

i=1
λi

PD

j=1
λj

≥ p (4)
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where we assume that our set of eigenvalues {λi} is indexed in

decreasing order and D is the initial i-vector dimension. For

some additional insight, Table 1 provides some statistics re-

garding the number of dimensions used for different values of p

given an initial i-vector dimension of D = 400. Ultimately, the

proportion that provided the best empirical results was p = 0.5
(i.e. 50% eigenvalue mass), which we will use for our subse-

quent experiments.

Pct. Eig. Mass (p) Avg Dim (n) Min n Max n

30% 10.3 5 10

50% 25.5 16 33

80% 70.1 52 84

Table 1: Comparison of the number of PCA-dimensions needed

for different proportions of eigenvalue mass. These statistics

were computed over 200 randomly selected test files from the

NIST 2008 SRE.

4.3. First Pass Clustering

To perform the clustering step with our new set of PCA-

projected and dimensionality-reduced i-vectors, we simply use

K-means (K = 2) clustering based on the cosine distance. The

iterative nature of this algorithm allows it to self-correct poor

initializations, whereas other methods such as the bottom-up

approach of agglomerative hierarchical clustering used in [3]

uses only one iteration to make hard decisions.

4.4. Re-segmentation

After an initial clustering, we refine our initial segmentation

boundaries using a Viterbi re-segmentation and Baum-Welch

soft speaker clustering algorithm detailed in [3]. At the acous-

tic feature level, this stage initializes a 32-mixture GMM for

each of the clusters (Speaker A, Speaker B, and non-speech N)

defined by the First Pass Clustering. Posterior probabilities for

each cluster are then calculated given each feature vector xt

(i.e. P (A|xt), P (B|xt), P (N |xt)) and pooled across the en-

tire conversation, providing a set of Baum-Welch statistics from

which we can re-estimate each respective speaker’s GMM. In

order to prevent this unsupervised procedure from going out of

control, the non-speech GMM is never retrained. In the Viterbi

stage, each frame is assigned to the speaker/non-speech model

with the highest posterior probability. This algorithm runs un-

til convergence but is capped at 20 Viterbi iterations, each of

which involves 5 iterations of Baum-Welch re-estimation [3].

4.5. Second Pass Refinements

We further refine the diarization results of the Re-segmentation

stage by extracting a single i-vector for each respective speaker

using the (newly-defined) re-segmentation assignments. Each

segment i-vector (also newly extracted) is then reassigned to

the speaker whose i-vector is closer in cosine similarity. We

iterate this procedure until convergence - when the segment as-

signments no longer change. This can be seen as another pass of

K-means clustering, where the “means” are computed accord-

ing to the process of i-vector estimation detailed in [2].

5. Experiments

We used a gender-independent UBM of 1024 Gaussians built

solely on 20-dimensional MFCC feature vectors without deriva-

tives to train a gender-independent Total Variability matrix of

rank 400. This configuration was chosen to be somewhat con-

sistent with that of the Variational Bayesian (VB) system de-

scribed in [3], though we will also report later on the results of

using Total Variability matrices of different rank.

5.1. Evaluation Protocol

Set up by NIST, the Diarization Error Rate (DER) is the pri-

mary performance measure for the evaluation of diarization sys-

tems and is given as the time-weighted sum of the following

three error types: Miss (M) - classifying speech as non-speech,

False Alarm (FA) - classifying non-speech as speech, and Con-

fusion (C) - confusing one speaker’s speech as from another

[9]. In evaluating DER’s, we first obtain a reference by apply-

ing a speech activity detector to each separate channel of the

telephone conversation. Then the evaluation code ignores inter-

vals containing overlapped speech as well as errors of less than

250ms in the locations of segment boundaries. Although over-

lapped speech intervals do not count in evaluating DER’s, the

diarization systems do have to contend with overlapped speech

in performing the speaker segmentation and clustering.

It is clear that the Miss and False Alarm errors are solely

caused by a mismatch between the reference speech activity de-

tector and the diarization system’s VAD and Re-segmentation

output. A more straightforward metric for the effectiveness of

our speaker modeling and clustering methods is in the measure-

ment of Confusion error. In order to focus solely on this type of

error, the results reported in [3] were based on the use of refer-

ence boundaries as the initial speech/non-speech segmentation,

thus driving both miss and false alarm error rates to zero. On

our end, we will first report on the detailed results achieved us-

ing our own VAD to provide an initial segmentation. Then, for

proper comparison, we will also report on a final experiment

done using the reference boundaries as the initial speech/non-

speech segmentation.

5.2. Results

Following the work in [3], we evaluate the performance of our

diarization system on the summed-channel telephone data from

the NIST 2008 SRE. This consists of 2215 two-speaker tele-

phone conversations, each approximately five minutes in length

(≈ 200 total hours). Table 2 shows the results obtained from

our system at each stage described in Section 4.

Error Breakdown

DER (%) M FA C σ (%)

First Pass 13.8 7.7 2.0 4.0 9.6

Re-segmentation 5.6 0.3 2.3 2.9 8.6

Second Pass 4.2 0.3 2.3 1.5 7.0

Table 2: Results obtained after each stage of the diarization

procedure described so far. The configuration for the First Pass

Clustering uses 400-dimensional i-vectors as input to a PCA-

projection involving 50% of the eigenvalue mass.

The helpfulness of the Re-segmentation step is readily ap-

parent, both for correcting the mismatch between the initial and

reference VAD’s as well as for improving on Speaker Confu-

sion error. Because it does not change the speech/nonspeech

boundaries, the Second Pass Refinement stage does not affect

the Miss/False-Alarm errors, but is rather effective in driving

down Speaker Confusion error. We can also see in the break-

down that the reason for a seemingly high DER in the First Pass
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Clustering is primarily due to missed speech in the initial seg-

mentation itself.

These results can be further improved by optimizing over

different initial ranks of the Total Variability (TV) matrix. Table

3 shows the statistics obtained from the various i-vector dimen-

sions attempted. Note that PCA (50% eigenvalue mass) is still

applied to the set of i-vectors corresponding to each individual

test file.

TV40 TV100 TV200 TV400 TV600

Avg Dim 7 14 20 26 28

DER (%) 3.9 3.7 3.8 4.2 4.0

σ (%) 6.6 6.4 6.4 7.0 6.9

Table 3: Overall diarization performance of Total Variability

matrices of varying rank. The second row lists the average num-

ber of dimenisions that resulted after the PCA projection (50%)

was estimated.

We settled on the TV100 configuration, which gave the best

results despite a relatively low dimensionality, for our final ex-

periment. Table 4 compares our final results to those of the sys-

tems described in [3]. The BIC-based system served as a base-

line for the FA/VB-based work. Both of those systems were ini-

tialized using the reference speech detection boundaries; thus,

they incurred no Miss (M) or False Alarm (FA) error, and all

of their error is attributed to Speaker Confusion (C). For a valid

comparison, we report the results of our system (TV100, 50%

PCA) using the reference boundaries as an initial segmentation,

denoted “Ref VAD.” And finally, we also report the results ob-

tained using our “Own VAD” as described in 4.1.

Speaker Confusion (%) σC (%)

BIC-based Baseline 3.5 8.0

VB-based FA 1.0 3.5

Ref VAD + TV100 0.9 3.2

Own VAD + TV100 1.1 3.3

Table 4: Comparison of diarization results on the NIST SRE

2008 Summed-Channel Telephone Data. (BIC - Bayesian In-

formation Criterion; FA - Factor Analysis; VB - Variational

Bayes; VAD - Voice Activity Detector; TV - Total Variability)

We can see that our “Ref VAD” system - which follows

the exact same evaluation protocol as the BIC and VB systems

- slightly outperforms the VB system, while the performance

of our “Own VAD” system degrades slightly as a result of a

mismatched initial segmentation. At the end of the day, how-

ever, the difference in performance between these three systems

(VB, “Ref VAD”, “Own VAD”) is minimal. Nevertheless, what

is clear is that these approaches are both very successful in the

two-speaker telephone diarization task at hand.

6. Conclusions

Inspired by the success of factor analysis and Total Variabil-

ity for the speaker modeling, we have developed a system

that achieves state-of-the-art results on the two-speaker tele-

phone diarization task. Our previous benchmark, the VB sys-

tem described in [3], elegantly integrates the factor analysis

paradigm with the prior work on Variational Bayesian methods

for speaker diarization described in [10]. In a search for added

simplicity, we utilized the effectiveness of the cosine similarity

metric in the Total Variability subspace.

There are still many ways in which we can improve and re-

fine this initial approach. For one, there is a need to address the

problem of overlapped speech detection. Finding a good way to

robustly detect and remove corrupted segments would be help-

ful for our PCA initialization and subsequent clustering [11].

Additionally, our reported results have been restricted to two-

speaker telephone conversations; we have not yet addressed the

issue of applying our system to a conversation setting involving

an unknown number of speakers. To that end, we see poten-

tial in extending our approach to diarization by applying Vari-

ational Bayesian methods for model selection (i.e. determining

the number of speakers) and clustering in the Total Variability

space [12].
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