
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression

Yuchao Li1#, Shaohui Lin1#, Baochang Zhang3, Jianzhuang Liu4,

David Doermann5, Yongjian Wu6, Feiyue Huang6, Rongrong Ji1,2∗

1Fujian Key Laboratory of Sensing and Computing for Smart City, Department of Cognitive Science,

School of Information Science and Engineering, Xiamen University, Xiamen, China
2Peng Cheng Laboratory, Shenzhen, China, 3Beihang University, China, 4Huawei Noah’s Ark Lab

5University at Buffalo, USA, 6BestImage, Tencent Technology (Shanghai) Co.,Ltd, China

xiamenlyc@gmail.com, shaohuilin007@gmail.com, bczhang@buaa.edu.cn, liu.jianzhuang@huawei.com,

doermann@buffalo.edu, littlekenwu@tencent.com, garyhuang@tencent.com, rrji@xmu.edu.cn

Abstract

Compressing convolutional neural networks (CNNs) has

received ever-increasing research focus. However, most ex-

isting CNN compression methods do not interpret their in-

herent structures to distinguish the implicit redundancy. In

this paper, we investigate the problem of CNN compression

from a novel interpretable perspective. The relationship be-

tween the input feature maps and 2D kernels is revealed

in a theoretical framework, based on which a kernel spar-

sity and entropy (KSE) indicator is proposed to quantitate

the feature map importance in a feature-agnostic manner

to guide model compression. Kernel clustering is further

conducted based on the KSE indicator to accomplish high-

precision CNN compression. KSE is capable of simultane-

ously compressing each layer in an efficient way, which is

significantly faster compared to previous data-driven fea-

ture map pruning methods. We comprehensively evaluate

the compression and speedup of the proposed method on

CIFAR-10, SVHN and ImageNet 2012. Our method demon-

strates superior performance gains over previous ones. In

particular, it achieves 4.7× FLOPs reduction and 2.9×
compression on ResNet-50 with only a Top-5 accuracy drop

of 0.35% on ImageNet 2012, which significantly outper-

forms state-of-the-art methods.

1. Introduction

Deep convolutional neural networks (CNNs) have

achieved great success in various computer vision tasks,

including object classification [5, 9, 12, 34], detection

[31, 32] and semantic segmentation [2, 23]. However,

deep CNNs typically require high computation overhead

#Equal contribution.
∗Corresponding author.

Sparsity

Information richness

Conv Layer

Sparsity

Entropy

2D kernelsFeature map

* =

Figure 1. The relationship between an input feature map and its

corresponding 2D kernels is investigated. We introduce the kernel

sparsity and entropy (KSE) to represent the sparsity and informa-

tion richness of the input feature maps.

and large memory footprint, which prevents them from be-

ing directly applied on mobile or embedded devices. As a

result, extensive efforts have been made for CNN compres-

sion and acceleration, including low-rank approximation

[13, 17, 18, 39], parameter quantization [11, 47] and bina-

rization [30]. One promising direction to reduce the redun-

dancy of CNNs is network pruning [3, 4, 7, 10, 20, 24, 43],

which can be applied to different elements of CNNs such as

the weights, the filters and the layers.

Early works in network pruning [3, 4] mainly resort to

removing less important weight connections independently

with precision loss as little as possible. However, these un-

structured pruning methods require specialized software or

hardware designs to store a large number of indices for ef-

ficient speedup. Among them, filter pruning has received

ever-increasing research attention, which can simultane-

ously reduce computation complexity and memory over-

head by directly pruning redundant filters, and is well sup-

ported by various off-the-shelf deep learning platforms. For

51202800

Sparsity

Entropy

2D kernels

Indicator

【 】

【 】

【 】

Kernel clustering

0.53

0.97

0.07

Input

feature maps

Output

feature maps

2D conv

result

Channel

addition
2D

kernels
Filters

* =

Input

feature maps

2D

kernels

* =

Output

feature maps

2D conv

result

Channel

addition

Sparsity

Entropy

Sparsity

Entropy

KSE

Original

convolutional layer

Compressed

convolutional layer

0.97

0.53

0.07

Figure 2. The framework of our method. The convolution operation is split into two parts, 2D convolution and channel fusion (addition).

The 2D convolution is used to extract features from each input feature map, and the channel addition is used to obtain an output feature

map by summing the intermediate results of the 2D convolution across all the input feature maps. In our KSE method, we first obtain the

2D kernels corresponding to an input feature map and calculate their sparsity and entropy as an indicator, which is further used to reduce

the number of the 2D kernels by kernel clustering and generate a compact network.

instance, Molchanov et al. [27] calculated the effect of

filters on the network loss based on a Taylor expansion.

Luo et al. [24] proposed to remove redundant filters based

on a greedy channel selection. Those methods directly

prune filters and their corresponding output feature maps

in each convolutional layer, which may lead to dimensional

mismatch in popular multi-branch networks, e.g., ResNets

[5]. For example, by removing the output feature maps

in the residual mapping, the “add” operator cannot be im-

plemented due to different output dimensions between the

identity mapping and the residual mapping in ResNets. In-

stead, several channel pruning methods [8, 22] focus on the

input feature maps in the convolutional layers, which do not

modify the network architecture and operator when reduc-

ing the network size and FLOPs1. However, through di-

rectly removing the input feature maps, this approach typi-

cally has limited compression and speedup with significant

accuracy drop.

In this paper, we investigate the problem of CNN com-

pression from a novel interpretable perspective. We argue

that interpreting the inherent network structure provides a

novel and fundamental means to discover the implicit net-

work redundancy. As investigated in network explanation

[15, 28, 46], individual feature maps within and across dif-

ferent layers play different roles in the network. As an intu-

itive example, feature maps in different layers can be seen

as hierarchical features, e.g., features like simple structures

in the bottom layers, and semantic features in the top lay-

ers. Even in the same layer, the importance of feature maps

varies; the more information a feature map represents, the

more important it is for the network. To this end, interpret-

ing the network, especially the feature map importance, if

possible, can well guide the quantization and/or pruning of

the network elements.

We here have the first attempt to interpret the network

1FLOPs: The number of floating-point operations

structure towards fast and robust CNN compression. In par-

ticular, we first introduce the receptive field of a feature map

to reveal the sparsity and information richness, which are

the key elements to evaluate the feature map importance.

Then, as shown in Fig. 1, the relationship between an in-

put feature map and its corresponding 2D kernels is inves-

tigated, based on which we propose kernel sparsity and en-

tropy (KSE) as a new indicator to efficiently quantitate the

importance of the input feature maps in a feature-agnostic

manner. Compared to previous data-driven compression

methods [6, 7, 24], which need to compute all the feature

maps corresponding to the entire training dataset to achieve

a generalized result, and thus suffer from heavy computa-

tional cost for a large dataset, KSE can efficiently handle

every layer in parallel in a data-free manner. Finally, we

employ kernel clustering to quantize the kernels for CNN

compression, and fine-tune the network with a small num-

ber of epochs.

We demonstrate the advantages of KSE using two

widely-used models (ResNets and DenseNets) on three

datasets (CIFAR-10, SVHN and ImageNet 2012). Com-

pared to the state-of-the-art methods, KSE achieves supe-

rior performance. For ResNet-50, we obtain 4.7× FLOPs

reduction and 2.9× compression with only 0.35% Top-5

accuracy drop on ImageNet. The compressed DenseNets

achieve much better performance than other compact net-

works (e.g., MobileNet V2 and ShuffleNet V2) and auto-

searched networks (e.g., MNASNet and PNASNet).

The main contributions of our paper are three-fold:

• We investigate the problem of CNN compression from

a novel interpretable perspective, and discover that the

importance of a feature map depends on its sparsity

and information richness.

• Our method in Fig. 2 is feature-agnostic that only

needs the 2D kernels to calculate the importance of

the input feature maps, which differs from the exist-

51212801

ing data-driven methods based on directly evaluating

the feature maps [6, 7, 24]. It can thus simultaneously

handle all the layers efficiently in parallel.

• Kernel clustering is proposed to replace the common

kernel pruning methods [26, 38], which leads to a

higher compression ratio with only slight accuracy

degradation.

2. Related Work

In this section, we briefly review related work of net-

work pruning for CNN compression that removes redun-

dant parts, which can be divided into unstructured pruning

and structured pruning.

Unstructured pruning is to remove unimportant weights

independently. Han et al. [3, 4] proposed to prune the

weights with small absolute values, and store the sparse

structure in a compressed sparse row or column format.

Yang et al. [42] proposed an energy-aware pruning ap-

proach to prune the unimportant weights layer-by-layer by

minimizing the error reconstruction. Unfortunately, these

methods need a special format to store the network and the

speedup can only be achieved by using specific sparse ma-

trix multiplication in the special software or hardware.

By contrast, structured pruning directly removes struc-

tured parts (e.g., kernels, filters or layers) to simultane-

ously compress and speedup CNNs and is well supported

by various off-the-shelf deep learning libraries. Li et al.

[14] proposed to remove unimportant filters based on the

ℓ1-norm. Hu et al. [7] computed the Average Percent-

age of Zeros (APoZ) of each filter, which is equal to the

percentage of zero values in the output feature map cor-

responding to the filter. Recently, Yoon et al. [43] pro-

posed a group sparsity regularization that exploits correla-

tions among features in the network. He et al. [6] proposed

a LASSO regression based channel selection, which uses

least square reconstruction to prune filters. Differently, Lin

et al. [19] proposed a global and dynamic training algo-

rithm to prune unsalient filters. Although filter pruning ap-

proaches in [6, 7, 19, 24, 43] can reduce the memory foot-

print, they encounter a dimensional mismatch problem for

the popular multi-branch networks, e.g., ResNets [5]. Our

method differs from all the above ones, which reduces the

redundancy of 2D kernels corresponding to the input fea-

ture maps and do not modify the output of a convolutional

layer to avoid the dimensional mismatch.

Several channel pruning methods [8, 22] are more suit-

able for the widely-used ResNets and DenseNets. These

methods remove unimportant input feature maps of convo-

lutional layers, and can avoid dimensional mismatch. For

example, Liu et al. [22] imposed ℓ1-regularization on the

scaling factors on the batch normalization to select unim-

portant feature maps. Huang et al. [8] combined the weight

pruning and group convolution to sparsify networks. These

…
…

Conv-layer-1

Conv-layer-L’

Conv-layer-L

FC-layers

Output

Input image

Heat map Receptive fields of the feature maps

Figure 3. Visualization of the receptive fields (in the resolution of

the input image) of three feature maps in the network.

channel pruning methods obtain a sparse network based on

a complex training procedure that requires significant cost

of offline training. Unlike these methods, our approach de-

termines the importance of the feature maps in a novel in-

terpretable perspective and calculates them by their corre-

sponding kernels without extra training, which is signifi-

cantly faster to implement CNNs compression.

Besides the network pruning, our work is also related to

some other methods [35, 37, 40]. Wu et al. [40] quanti-

fied filters in convolutional layers and weight matrices in

fully-connected layers by minimizing the reconstruction er-

ror. However, they do not consider the different importance

of input feature maps, and instead the same number of quan-

tification centroids. Wu et al. [41] applied k-means cluster-

ing on the weights to compress CNN, which needs to set

the different number of cluster centroids. Son et al. [35]

compressed the network by using a small amount of spatial

convolutional kernels to minimize the reconstruction error.

However, it is mainly used for 3× 3 kernels and difficult to

compress 1 × 1 kernels. In contrast, our KSE method can

be applied to all layers.

Note that our approach can be further integrated with

other strategies to obtain more compact networks, such as

low-rank approximation [16, 17, 18, 39] and compact archi-

tecture design [25, 33].

3. Interpretation of Feature Maps

Towards identifying feature map importance on the net-

work, the work in [1] uses bilinear interpolation to scale

the feature maps up to the resolution of the input image.

Then, a threshold determined by a top quantile level is used

to obtain the receptive field of the feature maps, which can

be regarded as a binary mask. Following this principle, as

shown in Fig. 3, for the input feature maps from the same

convolutional layer, we compute their corresponding recep-

tive fields on the original input image. These receptive fields

indicate the different information contained in these feature

maps. The visualization results in the lower part of the red

box in Fig. 3 can be interpreted as an indicator of the feature

map importance, where the left one is the most important

51222802

among the three while the right one is unimportant.

To quantify such an interpretation, we first compute the

heat map of the original input image, which represents the

information distribution [45]. We use the output feature

maps of the last convolutional layer in the network, and add

them together on the channel dimension. Then we scale the

sumed feature map to the resolution of the input image by

bilinear interpolation. Each pixel value Hi,j in the heat map

H represents the importance of this pixel in the input image.

Finally, we compute the receptive field of a feature map on

the heat map. As shown in Fig. 3, the red part in a recep-

tive field can quantify the interpretation of the correspond-

ing feature map. To this end, the information contained in

a feature map can be viewed as the sum of the products be-

tween the elements of the mask and the heat map:

Him
∑

i=1

Wim
∑

j=1

Hi,jMi,j , (1)

where Him and Wim denote the resolution (height and

width) of the input image, and M is the binary mask gener-

ated by the feature map. Eq. 1 can be rewritten as:

I{M = 1}H, (2)

where I{M = 1} is the number of the elements in M with

value 1, which can be viewed as the area of the receptive

field that depends on the sparsity of the feature map, and

H is the average of all entry Hi,j whose corresponding el-

ement in M is 1. The heat map represents the information

distribution in the input image. The higher the value of an

element in Hi,j is, the more information this element con-

tains. Therefore, H can represent the information richness

in the feature map. Eq. 2 indicates that the importance of

a feature map depends on its sparsity and information rich-

ness. However, if we simply use Eq. 2 to compute the im-

portance of each feature map, it suffers from heavy compu-

tation cost, since we need to compute all the feature maps

with respect to the entire training dataset to obtain a com-

parative generalized result.

4. Proposed Method

To handle the above issue, we introduce the kernel spar-

sity and entropy (KSE), which serves as an indicator to rep-

resent the sparsity and information richness of input feature

maps in a feature-agnostic manner. It is generic, and can be

used to compress fully-connected layers by treating them as

1× 1 convolutional layers.

Generally, a convolutional layer transforms an input

tensor X ∈ R
C×Hin×Win into an output tensor Y ∈

R
N×Hout×Wout by using the filters W ∈ R

N×C×Kh×Kw .

Here, C is the number of the input feature maps, N is the

number of the filters, and Kh and Kw are the height and

width of a filter, respectively. The convolution operation

can be formulated as follows:

Yn =

C
∑

c=1

Wn,c ∗Xc, (3)

where ∗ represents the convolution operation, and Xc and

Yc are the channels (feature maps) of X and Y , respectively.

For simplicity, the biases are omitted for easy presentation.

For an input feature map Xc, we call the set {Wn,c}
N
n=1 the

corresponding 2D kernels of Xc.

4.1. Kernel Sparsity

We measure the sparsity of an input feature map (i.e.

I{M = 1}) by calculating the sparsity of its correspond-

ing 2D kernels, i.e., the sum of their ℓ1-norms
∑

n |Wn,c|.
Although these kernels do not participate in generating the

input feature map, the sparsity between input feature map

and its corresponding 2D kernels is closely related.

During training, the update of the 2D kernel Wn,c de-

pends on the gradient ∂L
∂Wn,c

and the weight decay R(Wn,c):

W
(t+1)
n,c = W

(t)
n,c − η

∂L

∂W
(t)
n,c

−
∂R(W

(t)
n,c)

∂W
(t)
n,c

= W
(t)
n,c − η

∂L

∂Y
(t)
n

X
(t)
c −

∂R(W
(t)
n,c)

∂W
(t)
n,c

,

(4)

where L represents the loss function and η is the learning

rate. If the input feature map X
(t)
c is sparse, the kernel’s gra-

dient is relatively small, and the update formula becomes:

W
(t+1)
n,c ≈ W

(t)
n,c −

∂R(W
(t)
n,c)

∂W
(t)
n,c

. (5)

Note that |W
(t+1)
n,c | → 0 with the iterations if R(W

(t)
n,c) is

defined based on the ℓ2-regularization, which may make the

kernel being sparse [44]. Thus, the kernel corresponding to

the sparse input feature map may be sparse during training.

Therefore, for the c-th input feature map, we define its spar-

sity as:

sc =

N
∑

n=1

|Wn,c|. (6)

To the best of our knowledge, we are the first to build

the relationship between the input feature maps (rather than

the output feature maps) and the kernels in terms of spar-

sity. Note that this sparsity relation has been verified in our

experiments shown in Section 5.2.

4.2. Kernel Entropy

For a convolutional layer, if the convolutional results

from a single input feature map are more diversified, this

feature map contains more information and should be main-

tained in the compressed network. In this case, the distribu-

tion of the corresponding 2D kernels is more complicated.

Therefore, we propose a new concept called kernel entropy

to measure the information richness of an input feature map.

51232803

We first construct a nearest neighbor distance matrix Ac

for the 2D kernels corresponding to the c-th input feature

map. For each row i and col j, if Wi,c and Wj,c are “close”2,

i.e., Wj,c is among the k nearest neighbours of Wi,c, then

Aci,j = ‖Wi,c −Wj,c‖, and Aci,j = 0 otherwise. We set k

to 5 empirically, which can achieve good results. Then we

calculate the density metric of each kernel by the number of

instances located in the neighborhood of this kernel:

dm(Wi,c) =

N
∑

j=1

Aci,j . (7)

The larger the density metric of Wi,c is, the smaller the den-

sity of Wi,c is, i.e., the kernel is away from the others, and

the convolutional result using Wi,c becomes more different.

Hence, we define the kernel entropy to measure the com-

plexity of the distribution of the 2D kernels:

ec = −

N
∑

i=1

dm(Wi,c)

dc
log2

dm(Wi,c)

dc
, (8)

where dc =
∑N

i=1 dm(Wi,c). The smaller the kernel en-

tropy is, the more complicated the distribution of the 2D

kernels is, and the more diverse the kernels are. In this case,

the features extracted by these kernels have greater differ-

ence. Therefore, the corresponding input feature map pro-

vides more information to the network.

4.3. Definition of the KSE Indicator

As discussed in Section 3, the feature map importance

depends on two parts, the sparsity and the information rich-

ness. Upon this discovery, we first use the min-max nor-

malization sc and ec into [0, 1] to make them in the same

scale. Then we combine the kernel sparsity and entropy to

measure the overall importance of an input feature map by:

vc =

√

sc

1 + αec
, (9)

where α is a parameter to control the balance between the

sparsity and entropy, which is set to 1 in this work. We

call vc the KSE indicator that measures the interpretabil-

ity and importance of the input feature map. We further

use the min-max normalization to rescale the indicators to

[0, 1] based on all the input feature maps in one convolu-

tional layer.

4.4. Kernel Clustering

To compress kernels, previous channel pruning methods

divide channels into two categories based on their impor-

tance, i.e., important or unimportant ones. Thus, for an in-

put feature map, its corresponding 2D kernels are either all

kept or all deleted, which is a coarse compression. In our

2Let W
′

i,c and W
′

j,c be two vectors formed by the elements of Wi,c

and Wj,c, respectively. Then the distance between Wi,c and Wj,c is de-

fined as the distance between W
′

i,c and W
′

j,c.

work, through clustering, we develop a fine-grained com-

pression scheme to reduce the number of the kernels where

after pruning, the number is an integer between 0 and N

(but not just 0 or N as in the previous methods).

First, we decide the number of kernels required for their

corresponding c-th input feature map as:

qc =

0, ⌊vcG⌋ = 0,
N, ⌈vcG⌉ = G,
⌈

N
2G−⌈vcG⌉+T

⌉

, otherwise,

(10)

where G controls the level of compression granularity. A

larger G results in a finer granularity. N is the number of the

original 2D kernels and T is a hyper-parameter to control

the compression and acceleration ratios.

Second, to guarantee each output feature map contains

the information from most input feature maps, we choose

to cluster, rather than pruning, the 2D kernels to reduce

the kernel number. It is achieved simply by the k-means

algorithm with the number of cluster centroids equal to

qc. Thus, the c-th input feature map generates qc centroids

(new 2D kernels) {Bi,c ∈ R
Kh×Kw}qci=1 and an index set

{

In,c ∈ {1, 2, ..., qc}
}N

n=1
to replace the original 2D ker-

nels {Wn,c ∈ R
Kh×Kw}Nn=1. For example, I1,c = 2 de-

notes that the first original kernel is classified to the second

cluster B2,c. When qc = 0, the c-th input feature map is

considered as unimportant, it and all its corresponding ker-

nels are pruned. In the other extreme case where qc = N ,

this feature map is considered as most important for the con-

volutional layer, and all its corresponding kernels are kept.

There are three steps in our training procedure. (i) Pre-

train a network on a dataset. (ii) Compress the network (in

all the convolutional and fully-connected layers) using the

method proposed above and obtain qc, Bi,c and In,c. (iii)

Fine-tune the compressed network for a small number of

epochs. During the fine-tuning, we only update the cluster

centroids.

In inference, our method accelerates the network by

sharing the 2D activation maps extracted from the input fea-

ture maps to reduce the computation complexity of convolu-

tion operations. Note that here the activation maps (yellow

planes in Fig. 2) are not the output feature maps (orange

planes in Fig. 2). As shown in Fig. 2, we split the convolu-

tional operation into two parts, 2D convolution and channel

fusion. In 2D convolution, the responses from each input

feature map are computed simultaneously to generate the

2D activation maps. The c-th input feature map corresponds

to the qc 2D kernels, which generates qc 2D activation maps

Zi,c = Bi,c∗Xc. Then, in the channel addition, we compute

Yn by summing their corresponding 2D activation maps:

Yn =

C
∑

c=1

ZIn,c,c. (11)

51242804

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Kernel Sparsity

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
p
u
t

Fe
a
tu

re
 M

a
p
 S

p
a
rs

it
y

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Kernel Entropy

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
p
u
t

Fe
a
tu

re
 M

a
p

 I
n
fo

rm
a
ti

o
n
 R

ic
h
n
e
ss

Figure 4. Left: Relationship between the sparsity of the input fea-

ture maps and their corresponding kernel sparsity. Right: Re-

lationship between the information richness of the input feature

maps and their corresponding kernel entropy.

5. Experiments

We have implemented our method using Pytorch [29].

The effectiveness validation is performed on three datasets,

CIFAR-10, Street View House Numbers (SVHN), and Ima-

geNet ILSVRC 2012. CIFAR-10 has 32 × 32 images from

10 classes. The training set contains 50,000 images and

the test set contains 10,000 images. The SVHN dataset has

73,257 32 × 32 color digit images in the training set and

26,032 images in the test set. ImageNet ILSVRC 2012 con-

sists of 1.28 million images for training and 50,000 images

for validation over 1,000 classes.

All networks are trained using stochastic gradient de-

scent (SGD) with momentum set to 0.9. On CIFAR-10 and

SVHN, we respectively train the networks for 200 and 20

epochs using the mini-batch size of 128. The initial learn-

ing rate is 0.01 and is multiplied by 0.1 at 50% of the total

number of epochs. On ImageNet, we train the networks

for 21 epochs with the mini-batch size of 64, and the initial

learning rate is 0.001 which is divided by 10 at epoch 7 and

14. Because the first layer has only three input channels and

the last layer is a classifier in ResNet and DenseNet, we do

not compress the first and the last layers of the networks.

In our method, we use T to control the compression and

acceleration ratios, which determines the number of 2D ker-

nels after compression. In experiments, we set T to 0 for

ResNet-56, DenseNet-40-12 and DenseNet-100-12 on both

CIFAR-10 and SVHN to achieve better accuracies, and set

T to 1 for ResNet-50 and all the DenseNets on ImageNet

2012 to achieve lower compression ratios.

5.1. Compression and Acceleration Ratios

In this section, we analyze the compression and accelera-

tion ratios. For a convolutional layer, the size of the original

parameters is N × C × Kh × Kw and each weight is as-

sumed to require 32 bits. We store qc cluster centroids, each

weight of which again requires 32 bits. Besides, each index

per input feature map takes log2qc bits. The size of each

centroid is Kh ×Kw, and each input feature map needs N

indices for the correspondence. Therefore, we can calculate

the compression ratio rcomp for each layer by:

rcomp =
NCKhKw

∑

c

(qcKhKw +N log2qc
32

)
.

(12)

We can also accelerate the compressed network based on

the sharing of the convolution results. As mentioned in Sec-

tion 4.4, we compute all the intermediate features from the

input feature maps, and then add the corresponding features

for each output feature map. The computation is mainly

consumed by convolution operations. Thus, the theoretical

acceleration ratio racce of each convolutional layer is com-

puted by:

racce ≃
NCHoutWoutKhKw
∑

c

qcHoutWoutKhKw

=
NC
∑

c

qc
. (13)

We can also calculate the compression and acceleration

ratios on fully-connected layers by treating them as 1 × 1
convolutional layers.

5.2. Relationship between Input Feature Maps and
their Corresponding Kernels

We calculate the sparsity I{M = 1} and information

richness H of the input feature maps, and their correspond-

ing kernel sparsity and entropy. The relationships are shown

in Fig. 4 where the feature maps are a random subset of all

the feature maps from ResNet-56 on CIFAR-10. We can

see that the sparsity of the input feature maps and the ker-

nel sparsity increase simultaneously, while the information

richness of the input feature maps decreases as the kernel

entropy increases.

We can further use the Spearman correlation coefficient

ρ to quantify these relationships:

ρ =

∑

i
(xi − x)(yi − y)

√
∑

i
(xi − x)2

∑

i
(yi − y)2

, (14)

where x and y are the averages of the random variables x

and y, respectively. The correlation coefficient for the re-

lationship on the left of Fig. 4 is 0.833, while the correla-

tion coefficient for the relationship on the right of Fig. 4 is

−0.826. These values confirm the positive correlation for

the first and the negative correlation for the second.

5.3. Comparison with StateoftheArt Methods

CIFAR-10. We compare our method with [6, 14] on

ResNet-56, and with [8, 22, 35] on DenseNet. For ResNet-

56, we set G to two values (4 and 5) to compress the net-

work. For DenseNet-40-12 and DenseNet-BC-100-12, we

set G to another two values (3 and 6). As shown in Table 1

and Table 2, our method achieves the best results, compared

to the filter pruning methods [6, 14] on ResNet-56 and the

channel pruning methods [8, 22] on DenseNet. Moreover,

our method also achieves better results than other kernel

clustering methods [35] on DenseNet-BC-100-12. Com-

pared to Son et al. [35], our KSE method can not only

51252805

Model
FLOPs

(racce)

#Param.

(rcomp)

Top-1

Acc%

ResNet-56baseline 125M(1.0×) 0.85M(1.0×) 93.03

ResNet-56-pruned-A [14] 112M(1.1×) 0.77M(1.1×) 93.10

ResNet-56-pruned-B [14] 90M(1.4×) 0.73M(1.2×) 93.06

ResNet-56-pruned [6] 62M(2.0×) - 91.80

KSE (G=4) 60M(2.1×) 0.43M(2.0×) 93.23

KSE (G=5) 50M((2.5×) 0.36M(2.4×) 92.88

Table 1. Results of ResNet-56 on CIFAR-10. In all tables and

figures, M/B means million/billion.

Model
FLOPs

(racce)

#Param.

(rcomp)

Top-1

Acc%

DenseNet-40baseline 283M(1.0×) 1.04M(1.0×) 94.81

DenseNet-40 (40%) [22] 190M(1.5×) 0.66M(1.6×) 94.81

DenseNet-40 (70%) [22] 120M(2.4×) 0.35M(3.0×) 94.35

KSE (G=3) 170M(1.7×) 0.63M(1.7×) 94.81

KSE (G=6) 115M(2.5×) 0.39M(2.7×) 94.70

DenseNet-BC-100baseline 288M(1.0×) 0.75M(1.0×) 95.45

DenseNet-PC128N [35] 212M(1.4×) 0.50M(1.5×) 95.43

CondenseNetlight-94 [8] 122M(2.4×) 0.33M(2.3×) 95.00

KSE (G=3) 159M(1.8×) 0.45M(1.7×) 95.49

KSE (G=6) 103M(2.8×) 0.31M(2.4×) 95.08

Table 2. Results of DenseNet on CIFAR-10.

Model
FLOPs

(racce)

#Param.

(rcomp)

Top-1

Acc%

DenseNet-40baseline 283M(1.0×) 1.04M(1.0×) 98.17

DenseNet-40 (40%) [22] 185M(1.5×) 0.65M(1.6×) 98.21

DenseNet-40 (60%) [22] 134M(2.1×) 0.44M(2.4×) 98.19

KSE (G=4) 147M(1.9×) 0.49M(2.1×) 98.27

KSE (G=5) 130M(2.2×) 0.42M(2.5×) 98.25

Table 3. Results of DenseNet-40-12 on SVHN.

compress the 3× 3 convolutional layers, but also the 1× 1
convolutional layers to obtain a more compact network.

SVHN. We also evaluate the performance of KSE on

DenseNet-40-12 on SVHN. We set G to two values, 4 and

5. As shown in Table 3, our method achieves better perfor-

mance than the channel pruning method [22]. For example,

compared to He et al. [22], we obtain 0.06% increase in

Top-1 accuracy (98.25% vs. 98.19%) with higher compres-

sion and acceleration ratios (2.5× and 2.2× vs. 2.4× and

2.1×).

ImageNet 2012. We set G to 4 and 5, and compare our

KSE method with three state-of-the-art methods [6, 19, 24].

As show in Table 4, Our method achieves the best perfor-

mance with only a decrease of 0.35% in Top-5 accuracy by a

factor of 2.9× compression and 4.7× speedup. These state-

of-the-art methods perform worse mainly because they use

dichotomy to compress networks, i.e., prune or keep the fil-

ters/channels, which leads to the loss of some important in-

formation in the network. Besides, filter pruning methods

like [19, 24] cannot be applied to some convolutional layers

due to the dimensional mismatch problem on ResNets with

a multi-branch architecture.

Model
FLOPs

(racce)

#Param.

(rcomp)

Top-1

Acc%

Top-5

Acc%

ResNet-50baseline 4.10B(1.0×) 25.56M(1.0×) 76.15 92.87

GDP-0.6 [19] 1.88B(2.2×) - 71.89 90.71

ResNet-50(2×) [6] 2.73B(1.5×) - 72.30 90.80

ThiNet-50 [24] 1.71B(2.4×) 12.38M(2.0×) 71.01 90.02

ThiNet-30 [24] 1.10B(3.7×) 8.66M(3.0×) 68.42 88.30

KSE (G=5) 1.09B(3.8×) 10.00M(2.6×) 75.51 92.69

KSE (G=6) 0.88B(4.7×) 8.73M(2.9×) 75.31 92.52

Table 4. Results of ResNet-50 on ImageNet2012.

74 75 76 77
Top-1 Acc(%)

2

3

4

FL
OP

s.(
B)

DenseNet
KSE

121
169
201

74 75 76 77
Top-1 Acc(%)

5

10

15

20

#P
ar
am

.(M
)

DenseNet
KSE

121
169
201

Figure 5. Parameter and FLOPs amount comparison between the

original DenseNets and the compressed DenseNets by our KSE.

For DenseNets, we set G to 4, and compress them

with three different numbers of layers, DenseNet-121,

DenseNet-169, and DenseNet-201. As shown in Fig. 5, the

compressed networks by KSE is on par with the original

networks, but achieves almost 2× parameter compression

and speedup.

Recently, many compact networks [25, 33] have been

proposed to be used on mobile and embedded devices. In

addition, auto-search algorithms [21, 36] have been pro-

posed to search the best network architecture by reinforce-

ment learning. We compare the compressed DenseNet-121

and DenseNet-169 by KSE with these methods [8, 21, 25,

33, 36]. In Fig. 6. ‘A’ represents G = 4 and ‘B’ rep-

resents G = 3. We use KSE to compress DenseNets,

which achieves more compact results. For example, we

obtain 73.03% Top-1 accuracy with only 3.37M parame-

ters on ImageNet 2012. Our KSE uses different numbers

of 2D kernels for different input feature maps to do con-

volution, which reduces more redundant kernels, compared

to the complicated auto-search algorithms which only use

the traditional convolutional layer. Besides, the widely-

used depth-wise convolution on MobileNet or ShuffleNet

may cause significant information loss, due to only one 2D

kernel is used to extract features from each feature map.

5.4. Ablation Study

The effective use of KSE, is related to G. We select

ResNet-56 and DenseNet-40 on CIFAR-10, and ResNet-50

and DenseNet-121 on ImageNet2012 to evaluate G. More-

over, we analyze three different indicators.

5.4.1 Effect of the Compression Granularity G

In our kernel clustering, we use G to control the level of

compression granularity. The results of different G are

51262806

3 4 5 6 7 8 9
#Param. (M)

72.0
72.5
73.0
73.5
74.0
74.5
75.0
75.5

To
p-
1
Ac
c
(%

)

DenseNet121-B

DenseNet121-A

DenseNet169-A

MobileNetV2-1[]

MobileNetV2-1.4[]

MnasNet-65[]

CondenseNet[]
PNASNet[]

ShuffleNetV2-1.5[]

ShuffleNetV2-2.0[]

33

33

36

8

21

25

25

Figure 6. Comparison of the compressed DenseNets (red circles)

by our KSE and other compact networks (blue circles).

0.200.250.300.350.400.450.500.55
#Param. (M)

91.5

92.0

92.5

93.0

93.5

To
p-
1
Ac

c
(%

)

Sparsity
Entropy
KSE

G=2
G=3
G=4
G=5
G=6

30 40 50 60 70
FLOPs (M)

90.0
90.5
91.0
91.5
92.0
92.5
93.0
93.5

To
p-
1
Ac
c
(%

)

Sparsity
Entropy
KSE

G=2
G=3
G=4
G=5
G=6

Figure 7. Compression granularity and indicator analysis with

ResNet-56 on CIFAR-10.

shown in Fig. 7. Note that in this sub-section, only the red

solid circles in Fig. 7 are concerned. When G = 2, the 2D

kernels corresponding to the c-th feature map are divided

into two categories: qc = 0 or qc = N for pruning or keep-

ing all the kernels. It is a coarse-grained pruning method.

As G increases, qc achieves various different values, which

means to compress the 2D kernels in a fine-grained man-

ner. In addition, the compression and acceleration ratios are

also increased. Compared to the coarse-grained pruning,

the fine-grained pruning achieves much better results. For

example, when G = 4, it achieves the same compression

ratio as G = 2 with 0.52% Top-1 accuracy increase.

5.4.2 Indicator Analysis

In this paper, we have proposed three concepts, kernel spar-

sity, kernel entropy, and KSE indicator. In fact, all of them

can be used as an indicator to judge the importance of the

feature maps. We next evaluate these three indicators on

ResNet-56, with the proposed kernel clustering for com-

pression. As shown in Fig. 7, compared to the indicators

of kernel sparsity and kernel entropy, the KSE indicator

achieves the best results for different compression granu-

larities. This is due to the fact that the kernel sparsity only

represents the area of the receptive field of a feature map,

and the density entropy of the 2D kernels only expresses

the position information of a receptive field, which alone

are not as effective as KSE to evaluate the importance of a

feature map.

Figure 8. Visualization of the input feature maps and their KSE

indicator values at the Block1-Unit1-Conv2 layer of ResNet-50.

5.5. Visualization Analysis

We visualize the input feature maps and the correspond-

ing KSE indicator values at the Block1-Unit1-Conv2 layer

of ResNet-50 to reveal their connection. As shown in Fig.

8, the input image contains a bird. When the value of the

indicator is smaller, its corresponding feature map provides

less information of the bird. On the contrary, when the value

is close to 1, the feature map has both the bird and the back-

ground information. Therefore, our KSE method can accu-

rately discriminate the feature maps, and effectively judge

their importance.

6. Conclusion

In this paper, we first investigate the problem of CNN

compression from a novel interpretable perspective and dis-

cover that the sparsity and information richness are the key

elements to evaluate the importance of the feature maps.

Then we propose kernel sparsity and entropy (KSE) and

combine them as an indicator to measure this importance

in a feature-agnostic manner. Finally, we employ kernel

clustering to reduce the number of kernels based on the

KSE indicator and fine-tune the compressed network in

a few epochs. The networks compressed using our ap-

proach achieve better results than state-of-the-art methods.

For future work, we will explore a more rigorous theoreti-

cal proof with bounds/conditions to prove the relationship

between feature map and kernels. The code available at

https://github.com/yuchaoli/KSE.

Acknowledgments

This work is supported by the National Key R&D Pro-

gram (No.2017YFC0113000, and No.2016YFB1001503),

the Natural Science Foundation of China (No.U1705262,

No.61772443, No.61402388 and No.61572410), the Post

Doctoral Innovative Talent Support Program under Grant

BX201600094, the China Post-Doctoral Science Founda-

tion under Grant 2017M612134, Scientific Research Project

of National Language Committee of China (Grant No.

YB135-49), and Natural Science Foundation of Fujian

Province, China (No. 2017J01125 and No. 2018J01106).

51272807

References

[1] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Network dissection: Quantifying inter-

pretability of deep visual representations. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. Eu-

ropean Conference on Computer Vision (ECCV), 2018.

[3] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. International Con-

ference on Learning Representations (ICLR), 2016.

[4] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network.

Advances in Neural Information Processing Systems (NIPS),

2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2016.

[6] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. International

Conference on Computer Vision (ICCV), 2017.

[7] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning ap-

proach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250, 2016.

[8] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[10] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. European Confer-

ence on Computer Vision (ECCV), 2018.

[11] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2017.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. Advances in Neural Information Processing Systems

(NIPS), 2012.

[13] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-

eledets, and Victor Lempitsky. Speeding-up convolutional

neural networks using fine-tuned cp-decomposition. Inter-

national Conference on Learning Representations (ICLR),

2014.

[14] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In-

ternational Conference on Learning Representations (ICLR),

2016.

[15] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and

John E Hopcroft. Convergent learning: Do different neu-

ral networks learn the same representations? Advances in

Neural Information Processing Systems (NIPS), 2015.

[16] Shaohui Lin, Rongrong Ji, Chao Chen, and Feiyue Huang.

Espace: Accelerating convolutional neural networks via

eliminating spatial and channel redundancy. In AAAI Con-

ference on Artificial Intelligence AAAI, 2017.

[17] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and

Jiebo Luo. Holistic cnn compression via low-rank decompo-

sition with knowledge transfer. IEEE transactions on pattern

analysis and machine intelligence, 2018.

[18] Shaohui Lin, Rongrong Ji, Xiaowei Guo, Xuelong Li, et al.

Towards convolutional neural networks compression via

global error reconstruction. International Joint Conference

on Artificial Intelligence (IJCAI), 2018.

[19] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue

Huang, and Baochang Zhang. Accelerating convolutional

networks via global & dynamic filter pruning. International

Joint Conference on Artificial Intelligence (IJCAI), 2018.

[20] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019.

[21] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia

Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Mur-

phy. Progressive neural architecture search. European Con-

ference on Computer Vision (ECCV), 2018.

[22] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. Interna-

tional Conference on Computer Vision (ICCV), 2017.

[23] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.

[24] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

International Conference on Computer Vision (ICCV), 2017.

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn archi-

tecture design. European Conference on Computer Vision

(ECCV), 2018.

[26] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu,

Yu Wang, and William J Dally. Exploring the regularity of

sparse structure in convolutional neural networks. Advances

in Neural Information Processing Systems (NIPS), 2017.

[27] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for

resource efficient transfer learning. CoRR, abs/1611.06440,

2016.

[28] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and

Matthew Botvinick. On the importance of single directions

for generalization. International Conference on Learning

Representations (ICLR), 2018.

51282808

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. Advances in Neural Information

Processing Systems (NIPS) Workshop, 2017.

[30] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. European Conference

on Computer Vision (ECCV), 2016.

[31] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,

stronger. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: towards real-time object detection with region

proposal networks. Advances in Neural Information Pro-

cessing Systems (NIPS), 2015.

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018.

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[35] Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Cluster-

ing convolutional kernels to compress deep neural networks.

European Conference on Computer Vision (ECCV), 2018.

[36] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018.

[37] Frederick Tung and Greg Mori. Clip-q: Deep network com-

pression learning by in-parallel pruning-quantization. IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[38] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

Advances in Neural Information Processing Systems (NIPS),

2016.

[39] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. Coordinating filters for faster deep neu-

ral networks. International Conference on Computer Vision

(ICCV), 2017.

[40] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[41] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok

Veeraraghavan, and Yingyan Lin. Deep k-means: Re-

training and parameter sharing with harder cluster assign-

ments for compressing deep convolutions. International

Conference on Machine Learning (ICML), 2018.

[42] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing

energy-efficient convolutional neural networks using energy-

aware pruning. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[43] Jaehong Yoon and Sung Ju Hwang. Combined group and

exclusive sparsity for deep neural networks. International

Conference on Machine Learning (ICML), 2017.

[44] Baochang Zhang, Alessandro Perina, Vittorio Murino, and

Alessio Del Bue. Sparse representation classification with

manifold constraints transfer. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[45] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrim-

inative localization. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[46] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba.

Revisiting the importance of individual units in cnns via ab-

lation. arXiv preprint arXiv:1806.02891, 2018.

[47] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He

Wen, and Yuheng Zou. Dorefa-net: Training low bitwidth

convolutional neural networks with low bitwidth gradients.

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2016.

51292809

