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1. Introduction
The rapid growth in communication and informa-
tion technologies, as well as the increased interest
in just-in-time distribution systems, have recently led
researchers to focus on dynamic vehicle routing and
scheduling problems. In the static version of these
problems, the goal is to design a set of minimum-cost
routes to satisfy the demand while satisfying vari-
ous constraints. In a real-time setting, service requests
arise continuously and randomly over time and must
be assigned to vehicles. In this context, any decision
is based on incomplete information, given that some
requests have not arisen yet. Furthermore, the actual
demand or time to start service at customer locations
may be prone to random variations over time. In this
context, uncertainty is an inherent characteristic of the
problem.
Fortunately, future events often arise in a some-

what predictable way (e.g., probability distributions
can be derived from historical data). An important
issue that has seldom been investigated in the field
of dynamic vehicle routing and dispatching is how to
exploit probabilistic knowledge about future events to
improve decision making. Actually, exploiting infor-
mation about future events is likely to result in bet-
ter management of the resources at the current time,
which implies that future needs will be met more
efficiently.
The work reported in this paper is motivated from

the local operations of long-distance express mail

services (like Federal Express). Here, customers call
a central office when their mail is ready to be deliv-
ered abroad. These requests are collected by vehicles
and brought back to a central office for further pro-
cessing and shipping. With regard to this practical
problem, our contribution is the development, inte-
gration within a previously myopic approach, and
empirical evaluation of a threshold-based heuristic
that accounts for future customer requests, in a real-
istic context where multiple vehicles are involved.
The paper is organized as follows. First, §2 pro-

vides a brief literature review dedicated to stochastic
and dynamic vehicle routing problems, with a partic-
ular emphasis on the exploitation of knowledge about
future customer requests. In §3, a dynamic program-
ming framework is used to formally introduce our
problem. This is followed in §4 by a description of
a problem-solving strategy that accounts for future
requests. Section 5 briefly describes the original tabu
search heuristic of Gendreau et al. (1999) and explains
how it was modified to integrate the new strategy.
Computational results are reported in §6. Finally, §7
summarizes our major findings.

2. Literature Review
In the field of vehicle routing and scheduling, the
issue of exploiting knowledge about future demands
to improve decision making has sparked a lot of inter-
est in the last decade. This issue has been addressed
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in the literature under two different problem classes
(which are associated with two different ways of tack-
ling the uncertainty, one static, the other dynamic).
The existing work for each class is reported in the two
following subsections.

2.1. Static Stochastic Vehicle Routing Problems
In this problem class, the customers and/or their
demand are discrete or continuous random vari-
ables. Probabilistic information about future events
is used to construct an a priori solution that opti-
mizes the expected value of a given objective func-
tion. The probabilistic traveling salesman problem
(PTSP), the vehicle routing problem with stochastic
demands (VRPSD), the vehicle routing problem with
stochastic customers (VRPSC), and the vehicle rout-
ing problem with stochastic customers and demands
(VRPSCD) all belong to this class. A survey of these
problems can be found in Gendreau, Laporte, and
Séguin (1996a, b). In the following, these problems
are briefly described and an overview of some related
work is provided.
The PTSP is derived from the classical TSP by

assigning to each potential customer a probability that
this customer will require service. The goal is to find
a single tour of minimum expected length. This prob-
lem was first introduced by Jaillet (1985, 1988) and
investigated by many researchers (e.g., Jezequel 1985;
Bertsimas and Howell 1993; Laporte, Louveaux, and
Mercure 1994). In the VRPSD, vehicles of fixed capac-
ity must service customers with stochastic demands.
Some recent papers have been devoted to this prob-
lem (Bertsimas 1988; Dror, Laporte, and Trudeau 1989;
Séguin 1994; Gendreau, Laporte, and Séguin 1995;
Yang, Mathur, and Ballou 2000; Secomandi 1998, 2000).
In the VRPSC, each customer has some probability
of requiring service, but the demand is deterministic
(Bertsimas 1988; Waters 1989). The VRPSCD combines
the characteristics of the VRPSC and VRPSD, as both
customers and demands are stochastic. This prob-
lem has been investigated in Bertsimas, Jaillet, and
Odoni (1990), Bertsimas (1992), Gendreau, Laporte,
and Séguin (1995, 1996), and Séguin (1994).
Apart from the work of Secomandi (1998, 2000) on

the VRPSD, it is generally assumed that the prob-
ability distributions are known and are exploited
to construct a solution in two stages. In the first
stage, a planned (or “a priori”) route is constructed
that minimizes an objective function related to some
expectancy measure, like the expected length. When
the routes are actually executed in the second stage,
recourse actions are applied to the first-stage solu-
tion when needed to address the current realization
(e.g., “jumping over” a customer who does not show).
The interested reader will find more details about
this kind of solution approach in Dror, Laporte, and

Trudeau (1989) and Gendreau, Laporte, and Séguin
(1996).
Secomandi (1998, 2000) addressed a variant of the

VRPSD for a single vehicle. Here, customer demands
are assumed to follow a discrete probability distri-
bution. It is also assumed that the actual demand
is revealed on arrival at each customer location. In
the case of a route failure (i.e., the vehicle capac-
ity is exceeded at a customer location), a recourse
action is taken that consists of sending the vehicle
back to the depot before it resumes its tour. The
author presents a stochastic shortest path formula-
tion of the problem based on a Markov decision pro-
cess. Different dynamic programming formulations
are developed and analyzed. State-space decompo-
sitions, which can optimally solve small instances,
are also derived. For large instances, suboptimal poli-
cies are developed using different heuristics based
on a neurodynamic programming (NDP) approach—
which is aimed at approximately solving large or
complex dynamic programming problems; see Bert-
sekas and Tsitsiklis (1996), and Sutton and Barto
(1998) for more details on NDP. The heuristics devel-
oped by the author assume that a set of states and
“cost-to-go” values belonging to an initial policy can
be generated through simulation. The current pol-
icy is then iteratively improved until a given pol-
icy is reached or a prespecified number of iterations
is reached. At each iteration, the current policy is
applied to derive a least-square approximation of the
cost-to-go values. A simulation is then performed
to generate a new set of states and the least-square
approximation is used to evaluate the cost-to-go val-
ues of the next policy. Secomandi (2000) compared
two variants of these heuristics: the rollout policy
(RP) and the optimistic approximate policy iteration
(OAPI). The former is a simple, yet more robust, vari-
ant of NDP. In OAPI, the cardinality of the gener-
ated sets is smaller than what is typically found in
NDP, thus allowing more iterations to be performed.
Computational experiments on small instances with
5, 10, and 15 customers show, however, that RP out-
performs OAPI.

2.2. Dynamic Stochastic Vehicle Routing Problems
In this section, we consider problems where new
events occur over time. Thus, no solution is con-
structed “a priori” in this case. Assuming that some
probabilistic knowledge about future events is avail-
able, two different ways of exploiting this information
are reported in the literature. This is the subject of the
following subsections.

2.2.1. Analytical Studies. Here, the only source of
uncertainty is the occurrence of new requests and/or
the service (or dwell) times at customers. The prob-
ability distribution of these random variables is used
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to perform analytical studies aimed at examining the
robustness and asymptotic behavior of different deter-
ministic and myopic dispatching strategies. Bertsimas
and Simchi-Levi (1996) pointed out that this kind of
work also provides new insights into the solution
structure, thereby offering valuable guidelines for the
design of efficient deterministic algorithms. An exam-
ple is found in Bertsimas and van Ryzin (1991), where
the authors consider the dynamic traveling repair-
man problem (DTRP). In this problem, a vehicle is
used to service customer demands that occur accord-
ing to a Poisson process. The service time at each
customer is also a random variable. The goal is to
find a routing policy that minimizes the expected sys-
tem time, which is the time spent in the system by
each customer. Using results from geometrical prob-
ability, combinatorial optimization and queuing the-
ory, the authors provide an analytical study of the
problem in the case of light traffic and heavy traffic.
First, the authors derive lower bounds for the average
system time. Then they analyze several simple poli-
cies (e.g., first-come-first-served) and compare their
performance with these lower bounds. In 1993, the
same authors (Bertsimas and van Ryzin 1993) extend
their findings to the case of a homogeneous fleet of
vehicles where each vehicle cannot visit more than a
given number of customers before returning to the
depot. The uncapacitated version of this problem is
also investigated. The authors partition the given area
into subregions and use the results of the first paper
to propose and analyze new policies in case of light
and heavy traffic, respectively. The work in Larsen,
Madsen, and Solomon (2002) also focuses on routing
policies for the (partially dynamic) DTRP, where only
a subset of requests occurs in real time. Their study
indicates that the nearest neighbor (NN) policy, where
the repairman always goes to the nearest demand,
is superior to the other tested policies, including an
approach where the service area is first partitioned
into subregions and a first-come-first-served policy is
applied within each subregion.
Swihart and Papastavrou (1999) introduce a new

variant of the DTRP where each service request has
a pickup and a delivery location. The objective is
to minimize the expected system time. The authors
consider the unit-capacity case where the vehicle can
carry no more than one item, as well as the case
where the vehicle can carry an arbitrarily large num-
ber of items. In each of these two cases, lower bounds
are derived for the average system time in light and
heavy traffic conditions. Several policies are also pro-
posed and compared.
Thomas and White (2004) addressed a variant of

the vehicle routing problem with pickup and deliv-
ery, where a single vehicle travels from a known ori-
gin to a known destination. A penalty is incurred if

the destination is reached after a fixed deadline. It is
assumed that potential customers may request ser-
vice while the vehicle is in transit. The probability
that a customer will request a pickup before time t
is assumed to be known. The problem is to deter-
mine a policy for selecting the next destination that
minimizes the expected total cost (travel time plus
penalty for lateness). The problem is modeled as a
finite-horizon Markov decision process. Some funda-
mental structural features of the optimal policy are
established. These results are then used to charac-
terize the behavior of policies that optimally select
routes in anticipation of future service requests (for
one to three dynamic requests). Numerical experi-
ments compare these policies with a reactive strategy
that ignores potential customer requests. Experiments
were also performed in the case of a single dynamic
request. However, the results did not clearly show the
efficiency of the proposed anticipatory policies due to
significant data dependencies.
In his dissertation, Rubio Maqueo (1995) studied

the vehicle routing and inventory problem (VRIP).
In this problem, a single capacitated vehicle operates
out of a single warehouse and services a finite set of
retailers. The arrival of customer requests at a given
retailer is modeled as an independent renewal process
while the demand magnitude is stochastic. Further-
more, the travel times between retailers are random
variables. The objective is to minimize the expected
inventory and transportation costs. Assuming that the
system operates in heavy traffic, the author analyzes
two models. In the first one, the vehicle follows a pre-
defined routing scheme: deliver full loads to either a
single retailer (direct shipping (DS)), or along a pre-
specified TSP tour. In the second model, which is
based on the current inventory levels, the controller
dynamically chooses whether the vehicle should fol-
low a TSP or DS routing scheme. Using simulation
and queuing theory, the author fully characterizes a
dynamic control policy that is asymptotically opti-
mal for the fixed routing scheme. In addition, the
author investigates the importance of various oper-
ational decisions (e.g., TSP versus DS, fixed versus
dynamic routing), thereby giving insights into the
nature of the optimal solution to the VRIP.
Kleywegt (1996), Kleywegt and Papastavrou (1998,

2001), and Papastavrou, Rajagopalan, and Kleywegt
(1996) considered a problem called the dynamic and
stochastic knapsack problem (DSKP). In this prob-
lem, demands for a given resource occur according
to some stochastic process. Each demand requires
a random amount of resource and has a random
profit. Demands can be either accepted or rejected.
If a demand is accepted, an associated reward is
gained. Otherwise, a penalty is incurred. There is also
a deadline, possibly infinite, after which demands can
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no longer be accepted (although the process can be
stopped at any time before this deadline). The objec-
tive is to determine an optimal policy for accepting
the demands and for stopping the process while max-
imizing the expected reward value. The authors con-
sider both the infinite and finite-horizon cases. They
establish a number of theoretical characteristics for
the optimal accepting rule and for the optimal value
function, and use these characteristics to derive an
optimal policy for the problem. In the second part
of his thesis, Kleywegt (1996) formulates and ana-
lyzes the dynamic and stochastic distribution problem
(DSDP) with a network of terminals and a fleet of
vehicles. In this problem, customers call at random
times for the transportation of a set of loads from
given origins to given destinations. Each accepted
request generates a reward and each rejected request
incurs a penalty. There is also a holding cost per unit
of time that depends on the number of vehicles and
number of loads waiting at each terminal. The objec-
tive is to maximize the expected total value (rewards
minus costs). The problem is formulated as a Markov
decision process. Equations are derived for the opti-
mal expected value and some fundamental structural
characteristics of the solution are established. A two-
stage algorithm is also proposed. The first stage is
a threshold acceptance rule, which is shown to be
optimal, and the second stage is an optimal dispatch-
ing rule.

2.2.2. Stochastic Algorithms. This line of research
has sought to develop explicit stochastic and dynamic
algorithmic approaches that incorporate the current
information and probabilities of future events to pro-
duce more efficient solutions than those obtained
through myopic deterministic strategies. The only
work that we are aware of in this category is that
of Powell and his team (Powell 1988, 1996; Godfrey
and Powell 2002; Powell and Topaloglu 2003; Spivey
and Powell 2004) and a research done in Larsen
(2000) and Larsen, Madsen, and Solomon (2002). In
the following, we briefly discuss these studies.
The problem considered by Powell is motivated

from long-haul truckload trucking applications. In this
context, the problem consists of dynamically assign-
ing drivers to loads that arise randomly over time.
Each load is characterized by its origin, its destina-
tion, and its time window. At any time, a vehicle
can be either empty or carrying a single load. Fur-
thermore, a demand may be rejected if it cannot be
serviced within reasonable time. Powell (1988) first
addressed the issue of relocating vehicles in anticipa-
tion of future demands. He proposed a dynamic net-
work model based on a time-space graph where the
nodes correspond to known and forecasted demands
in different zones at different time periods. In addi-
tion to arcs that represent moves between regions, a

dummy arc from each origin to a super-sink captures
the impact of the current time period on the future.
The cost on this arc is the expected reward value of
having an additional vehicle in the associated region
at the beginning of the next time period. This model
has some limitations because a forecasted load may
be serviced even if it never materializes. To overcome
this weakness, the author then proposed a stochas-
tic, dynamic model where the demand between two
nodes at a given time period is a random variable.
Hence, the flows of loaded and empty vehicles mov-
ing between the two nodes are also random variables.
This model is written as a two-stage stochastic pro-
gram where the objective function combines a deter-
ministic cost that corresponds to the first time period
(the present) and the value of the recourse function
that represents the expected cost from the next time
period to the end of the time horizon (the future).
In Powell (1996), the author investigates in the same

context a hybrid model for solving a combined assign-
ment and fleet management problem. The model is
based on a dynamic-stochastic network with two
components. The first one is the assignment network
aimed at assigning drivers to loads during the cur-
rent time period. The second is the forecast network,
which represents the remainder of the time hori-
zon and includes all forecasted demands, as well as
known loads to be picked up in the future. Arcs in
this part of the network represent loaded and empty
moves or waiting times from one period to the next.
A set of links connecting the two parts of the net-
work represent empty relocation moves in anticipa-
tion of future loads. The expected recourse function is
represented by a cluster of “recourse links” that cap-
ture the expected marginal contribution of vehicles
located in a given region during a given time period.
An approximation of this function value is added to
the arc costs, and the resulting transportation prob-
lem is then solved with a network simplex algorithm
on a rolling horizon basis.
In Godfrey and Powell (2002) and Powell and

Topaloglu (2003), a new approach is proposed for solv-
ing large-scale stochastic and dynamic problems, such
as integer multicommodity flow problems. In these
problems, new decisions are made continuously over
time in response to new information. The approach
is first presented within a general framework. Then,
the authors report its application in different con-
texts, like vehicle dispatching. The proposed approach
combines techniques from dynamic programming and
multistage stochastic programming. More precisely, it
uses the forward dynamic programming techniques
of Bertsekas and Tsitsiklis (1996), which step forward
in time to avoid an evaluation of all possible states.
In Spivey and Powell (2004), the authors provide a
mathematical model for a general class of dynamic
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assignment problems that integrate an explicit repre-
sentation of the exogenous information process. They
propose adaptive dynamic programming algorithms
for solving these problems, where sequences of assign-
ment problems are iteratively solved, using linear
approximations to evaluate future states.
The issue of relocating an empty vehicle in antic-

ipation of future demands through exploitation of
probabilistic knowledge is addressed in Larsen (2000)
and Larsen, Madsen, and Solomon (2004). The prob-
lem studied is a dynamic TSP where the goal is to
find a minimum-cost tour through a set of dynamic
requests. The requests, each with a soft time window,
unfold over time in a number of subregions according
to a Poisson process with different arrival rates. Each
subregion may have one or more resting locations
(idle points) for the vehicles. Moreover, all requests
must be serviced, even if some vehicles arrive late
at the depot. The objective function is a weighted
sum of total travel time and total lateness over all
requests. Whenever a new service request occurs, the
current tour is reoptimized using a simple heuristic
based on an exchange procedure. Once the vehicle has
finished serving its current customer, the algorithm
determines the best resting location for the vehicle if
the time window at its next destination does not allow
immediate service (and assuming that the probability
of having at least one request in the chosen location
is high enough). This is achieved using the following
online policies: (i) the vehicle goes to the nearest rest-
ing location; (ii) the vehicle goes to the busiest resting
location (i.e., in the subregion with the largest arrival
rate); (iii) the vehicle goes to the resting location that
belongs to the subregion with the highest expected
number of customers. Simulations on problems with
about 40 customers were used to compare the dif-
ferent relocation policies, including a “no-rest” policy
where the vehicle systematically waits at its current
position.

3. Problem Definition
A static and deterministic version of our problem can
be stated as follows. Let G = �� ��� be a complete
directed graph where � =� ∪ �0� is the set of nodes,
with � = �1� � � � �L� the set of customers, 0 the depot,
and � the set of arcs �i� j�, i� j ∈� , i �= j , with associ-
ated travel times tij . Each customer i ∈ � has a time
window �i = 
wi� �wi� where wi is the earliest time and
�wi the latest time to start service. These time windows
are “soft,” as a vehicle can arrive before wi or after �wi.
If the vehicle is too early, it must wait to start its ser-
vice; if the vehicle is too late, a penalty for lateness
is included into the objective. The time window at
the depot is �0 = 
w0� �w0�= 
0�T �, where T is a hard
deadline for the return of all vehicles to the depot.

Let � = �1� � � � �K� be the set of identical, uncapac-
itated vehicles to be routed and scheduled to service
the customers. The goal is to design a set of routes of
minimum cost such that:
• each vehicle serves one route;
• each vehicle route originates from and terminates

at the depot;
• each customer is served at most once by one

vehicle;
• the feasibility of the time schedule is satisfied.
The solution cost typically relates to the number of

unserved customers, total travel time, and lateness at
customer locations. Mathematical programming for-
mulations for this type of problem can be found, for
example, in Toth and Vigo (2002).
In the dynamic version of the problem, which is the

problem of interest here, new customer requests con-
tinuously unfold over time and must be dispatched
in real time to vehicles. A dynamic programming
formulation for this problem is proposed in the fol-
lowing (mathematical models for related dynamic
and stochastic problems, like vehicle assignment and
inventory routing, can be found in Adelman 2003,
2004; Kleywegt, Nori, and Savelsbergh 2004; Spivey
and Powell 2004). Although intractable, the formula-
tion is useful as it provides a formal setting for our
study. The underlying system is clearly continuous,
but to simplify the presentation we assume a discrete-
time model where the time intervals are sufficiently
small. We also assume the following:
• the distribution area is partitioned into a number

of geographic zones;
• the time windows for the customers are grouped

into a number of (possibly overlapping) time periods
(e.g., all customers with a time window from 8:00 to
10:00 AM are in one group, all customers with a time
window from 9:00 to 9:30 AM are in another group,
etc.);
• a geographic zone plus a time period defines a

customer type;
• request arrivals for each customer type are inde-

pendent and follow a known distribution;
• a fixed number of vehicles is available and, at

any given instant, they may be free or busy (traveling
to or serving a customer);
• a vehicle is committed to a given customer when

it departs from its current location to serve that cus-
tomer. Accordingly,

—at any time before departure, the vehicle can
be dispatched otherwise,

—after departure, the vehicle cannot be redi-
rected elsewhere;
• a vehicle is not allowed to arrive at a given cus-

tomer before the earliest time to start service. Instead,
the vehicle must wait at its current location. As a vehi-
cle is not committed to a customer until it departs to
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serve it, this allows the vehicle to be dispatched oth-
erwise, if the system changes in the mean time (due
to new customer request arrivals).
The discrete model is now formally introduced in

the following subsections.

3.1. Notation
� set of vehicles indexed from 1 to K;
�t

f set of free vehicles at instant t;
�t

b set of busy vehicles at instant t;
� set of geographic locations or zones;

�+ set of geographic locations, including the depot
location;

� set of periods for time windows, with � =
�w� �w� ∈� ;

� set of customer types indexed from 1 to L, where
type l ∈� corresponds to ��l��l� ∈�×� ;

�+ set of customer types, including the depot;
ctkl cost of assigning a customer of type l ∈ �+ to

vehicle k ∈� at instant t;
pl penalty for unassigned customer of type l ∈�;
T deadline at the depot; all vehicles should be back

at the depot by that time.
In our case, the cost ctkl, k ∈ �, l ∈ � is the travel

time from the current location of vehicle k, denoted
�t
k, to a customer of type l plus any lateness at the
customer. That is,

ctkl = t�tk�l +max
{
0�

(
t+ t�tk�l

)− �wl

}
� l ∈�� (1)

When the depot is assigned to a vehicle, the latter is
simply sent back to the depot to end its workday. In
this case, we have

ctk0 = t�tk�0 � (2)

3.2. States
A state St at instant t is described through the follow-
ing state vectors:

St = ��t� st� bt� qt�

where
�t = ��t

k�k∈� ∈ �+K contains the current destination
of each vehicle (or current position if free).

st = �stk�k∈� ∈ 
t� T �K contains the time of end-of-
service of each vehicle at the current destination. The
dummy value −1 is used when the vehicle is free.

bt = �btk�k∈� ∈ �0�1�K is a Boolean vector that indi-
cates the status, committed (0) or free (1), of each
vehicle.

qt = �qt
l �l∈� ∈ NL is the number of unassigned re-

quests for each customer type.

3.3. Decisions
At every instant t, free vehicles are considered for
commitment to unassigned requests, including the
depot. When the depot is involved, the corresponding

vehicle is simply sent back to the depot to end its
workday. Given a decision policy �, the decision vec-
tor at time t is noted X�t , although it should really
be X�t�St� due to its dependency on state St ; this is
implicitly assumed in the following. We thus have
X�t = �x�t

kl �k∈�� l∈�+ with

x�t
kl = 1� if vehicle k is committed to a

request of type l�

= 0� otherwise.

For a decision vector X�t to be feasible, the follow-
ing constraints must hold:

x�t
kl = 0� k ∈�t

b� l ∈�+�

x�t
kl = 0� k ∈�t

f � l ∈�+t

ok�∑
l∈�+

x�t
kl ≤ 1� k ∈�t

f �

∑
k∈�

x�t
kl ≤ qt

l � l ∈��

where �+t
ok ��

+t

ok� is the set of customer types, includ-
ing the depot, that are open (not open) for vehicle k
at instant t. A customer type is open for a vehicle
if there is at least one unassigned customer of that
type and if the vehicle, by traveling immediately and
directly from its current location to a customer of that
type, reaches it at or after the earliest time to start
service. A customer type is said to be closed other-
wise. In the case of the depot, it opens for a vehi-
cle if the latter, by traveling immediately and directly
to the depot, reaches it at instant T . The first two
constraints set decision variables associated with for-
bidden commitments to 0. The third constraint spec-
ifies that a free vehicle can be committed to at most
one customer, including the depot. The last constraint
specifies that the number of newly committed vehi-
cles to customers of a particular type cannot exceed
the number of unassigned requests of that type.

3.4. Transitions
A transition occurs when decision vector X�t is
applied to state St to obtain the postdecision state

St+ = ��t+� st+� bt+� qt+��

where

�t+
k = �l� if k ∈�t

f and x�t
kl = 1, l ∈�+;

�t
k otherwise�

st+k = max
{
wl� t+ t�tk�l

}
� if k∈�t

f and x�t
kl =1, l∈�+;

stk otherwise�

bt+k = 1− ∑
l∈�+

x�t
kl � if k ∈�t

f ! 0 otherwise�

qt+
l = qt

l −
∑
k∈�t

f

x�t
kl � l ∈��
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Now, let ot+1l , l ∈ �, be the number of new request
arrivals for each customer type in �t� t+1� and �t+1

bf be
the subset of busy vehicles that become free at instant
t + 1. Then state St+ is updated at instant t + 1 to
become state

St+1 = ��t+1� st+1� bt+1� qt+1��

where

�t+1
k = �t+

k � k ∈��

st+1k = −1� if k ∈�t+1
bf ! st+k otherwise�

bt+1k = 1� if k ∈�t+1
bf ! bt+k otherwise�

qt+1
l = qt+

l + ot+1l � l ∈��

Note that when �t+
b = �, it is possible to move

directly from instant t to instant mink∈� st+k , given
that no commitments can be made when all vehicles
are busy.

3.5. Objective
In the initial state S0, all vehicles are located at the
depot, and there might already be a number of unas-
signed customer requests. A feasible decision policy �
leads from S0 to an admissible final state ST� where
all vehicles are back at the depot. The policy is then
evaluated through the following expression:

T−1∑
t=0

∑
k∈�

∑
l∈�+

cklx
�t
kl +

∑
l∈�

plq
T
l � (3)

Given a family of decision policies ", we are inter-
ested in

min
�∈"

E

[T−1∑
t=0

∑
k∈�

∑
l∈�+

cklx
�t
kl +

∑
l∈�

plq
T
l

]
� (4)

where E
X� denotes the expected value of random
variable X. In practice, a policy is evaluated according
to (3), on the basis of a particular realization (or an
average over a number of realizations). This is what
we have done with the policy introduced in §4.
In the following, we assume that the penalty pl is

set to the same large value for every customer type
l ∈ �. The goal is thus to maximize the number of
served customers and, for the same number of served
customers, to minimize travel time plus lateness.

3.6. Optimality Equations
Although intractable in practice, the optimality equa-
tions associated with our dynamic programming
framework provide a way to compute an optimal pol-
icy. This is illustrated for a particular distribution of
request arrivals, where each customer type l is asso-
ciated with a distinct nonstationary Poisson process,

based on a continuous arrival rate function $l�t� (con-
tinuity is assumed here to facilitate the mathematical
developments). Let � be the set of all possible cus-
tomer arrivals in �t� t+ 1�; that is,

� = �o= �o1� � � � � oL� � oi = 0�1�2� � � � ! i= 1� � � � �L��

For every customer type l, the probability of observ-
ing exactly ol arrivals is given by

P�Yl = ol�=
e−

∫ t+1
t+ $l�t

′� dt′(∫ t+1
t+ $l�t

′� dt′
)ol

ol!
� l ∈��

Arrivals for all customer types being independent, the
optimality equation associated with state St , 0 ≤ t ≤
T − 1, is

f ∗
t �S

t� = min
Xt∈� t �St �

{∑
k∈�

∑
l∈�+

cklx
t
kl +

∑
o∈�

( L∏
l=1

P�Yl = ol�

)

· f ∗
t+1�S

t+1�St�Xt� o��

}
�

where � t�St� is the set of feasible decision vectors
in state St , f ∗

t �S
t� is the optimal value from state St ,

and f ∗
t+1�S

t+1�St�Xt� o�� is the optimal value from
state St+1. Note that the latter depends on the deci-
sion Xt taken in state St and the particular occur-
rence o of request arrivals in �t� t+ 1�.
For t = T , we have

f ∗
T �S

T �=∑
l∈�

plq
T
l � ST ∈)T �

f ∗
T �S

T �=�� ST �)T �

where )T is the set of admissible final states at in-
stant T , where all vehicles are back at the depot.
Clearly, we are interested in f ∗

0 �S
0�, the optimal value

from state S0.

4. A Vehicle-Waiting Heuristic
The problem-solving approach described in the fol-
lowing solves the dynamic version of our problem
approximately. In particular, unassigned customer
requests are included into planned routes that are
generated with a tabu search heuristic. These planned
routes can be considered as an “algorithmic feature”
used to (heuristically) decide about the next destina-
tion of each vehicle. The original contribution here
is the inclusion of a threshold-based vehicle-waiting
heuristic that takes into account future customer
requests. The proposed approach exploits probabilis-
tic knowledge about those future requests to better
manage the fleet of vehicles and provide good cover-
age of the territory.
Here, a restricted case of the general formulation

of §3 is considered. A customer type is defined by its
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geographic location only, and each customer type is
associated with a Poisson process, where the arrival
rate is a step function of a number of time periods
defined over the horizon. These choices come from
practical considerations related to the development
of the simulator, which dynamically generates new
requests over time (see §6).

4.1. Basic Assumptions
We assume that the distribution area is partitioned
into J geographic zones �1��2� � � � � �J and that the
time horizon is divided into M time periods �1��2�
� � � ��M . Furthermore, the probabilities that (at least)
one request will occur in a zone �j , j = 1� � � � � J
during time period �m, m = 1� � � � �M can be cal-
culated by assuming independent Poisson processes
with arrival rates $jm, j = 1� � � � � J , m= 1� � � � �M . With
this information, it might be better to require a vehi-
cle to wait in its current zone instead of directing it
towards its next planned destination (in another zone)
if it appears that new customer requests are likely
to unfold in the near future. In the following, the
various elements of our vehicle-waiting strategy are
discussed.

4.2. Waiting Time
Actually, it can be useless for the vehicle to wait at
its current location if the probability of occurrence
of a new request in its neighborhood in the near
future is not high enough. Moreover, while the vehi-
cle is forced to wait, some “real” requests might suffer
important service delays. To overcome this problem,
a vehicle k is kept at its current location only for some
amount of time -tk. The value of -k is important. If it
is too small, there may not be enough time for fore-
casted requests to materialize. If it is too large, the
vehicle may wait for a long time for nothing, while
allowing service requests to build up in other areas.
In our implementation, -tk =min�.� t̄k − t� �

=
tk − t�

+/�. The first component . is a fixed parameter that
is simply aimed at avoiding too-large values. The
second component is the difference between the lat-
est feasible departure time t̄k (which allows vehicle k
to return before the upper bound of the time win-
dow at the depot) and the current time t. The third
component is the difference between the latest depar-
ture time that does not induce any additional lateness
on the vehicle route

=
tk and the current time t, plus

a given parameter /. This last parameter represents
some tolerance to additional lateness.

4.3. Probability of Occurrence of a New Request
In our strategy, a given vehicle k may be forced
to wait at its current position for some amount of
time -tk. However, due to the probabilistic nature
of the available information, the requests may never

εj

Nk

Njk

Figure 1 Vehicle Neighborhood

materialize. In this case, the vehicle will wait for noth-
ing. Thus, waiting is allowed only if the probability
for a request to occur in the vehicle neighborhood
during time interval 
t� t+-tk� is greater than or equal
to a given threshold. In the following, the probability
calculation is explained.
Let us assume that vehicle k has just finished serv-

ing its current customer in some geographic zone at
time t. Then, the neighborhood �Nk of vehicle k is
defined as a square centered at the current vehicle
location. In our experiments, �Nk has the same dimen-
sion as a geographic zone, although it does not need
to be in general. This is illustrated in Figure 1 for a
distribution area divided into nine zones. In this fig-
ure, the current vehicle location is represented by the
large dot.
Let us also assume that vehicle k is ready to leave

its current location at instant t. Then, the probability
p-tk that at least one request will occur in time inter-
val 
t� t+-tk� in the neighborhood �Nk is p-tk = 1− p

-tk
0 ,

where p
-tk
0 is the probability that no new request

occurs in time interval 
t� t+-tk� in �Nk. If we suppose
that t belongs to time interval �m1

and �t + -tk� to
time interval �m2

, 1≤m1 ≤m2 ≤M , then the interval

t� t+ -tk� can be partitioned into �m2 −m1 + 1� inter-
vals, each belonging to time period �r with length -trk,
r = m1� � � � �m2. This is illustrated in Figure 2, where
the time horizon is partitioned into three time peri-
ods. In this figure, t belongs to time period �1 and
�t+ -tk� belongs to time period �3.

ω1 ω2 ω3

t + δtk timet

δtk
2δtk

1 δtk
3

Figure 2 Partitioning �tk
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1. if �dk ≤ 1 �d�, go to the next planned customer location (and exit).
2. if ((prob[at least one request in �Nk during -tk]> s) and �vj ≤ V ��,

wait for -tk time units,
else go to the next planned customer location.

Figure 3 Pseudocode of the Proposed Waiting Strategy

Now we have p
-tk
0 = ∏m2

r=m1
p
-trk
0 , where p

-trk
0 =

exp�−$�Nkr
-trk� is the probability that no new request

occurs during -trk time units in �Nk, and $�Nkr
is the

arrival rate in �Nk during time period �r . Because
the J Poisson processes associated with the geo-
graphic zones are assumed to be independent, $�Nkr

=∑J
j=1 $jr �S�Njk

/S�, where �Njk = �j ∩ �Nk, S�Njk
is the area

of �Njk, and S is the area of a zone.

4.4. Coverage of the Territory
While applying the waiting heuristic, vehicles will
tend to cluster in a few zones with large request
arrival rates. Thereby, new requests that appear in
other zones might incur excessive service delays (or
no service at all). To prevent too many vehicles from
clustering in the same zone, an upper bound on the
number of vehicles is associated with each zone.

4.5. Summary
Figure 3 provides a pseudocode description of the
proposed approach for some vehicle k that has just
completed its service in some zone �j and is now
ready to leave for its next destination.
In the pseudocode, �d is the average distance

between two consecutive customer locations and dk

is the distance between the current location of vehi-
cle k and its next destination. Also, vj is the number
of vehicles in the current zone j and V is an upper
bound on the number of vehicles in each zone. Finally,
1 and s are user-defined parameters. Thus, a vehicle
waits at its current location if its next destination is
far enough, the probability of a request arrival in the
vehicle’s neighborhood in the next -tk time units is
high enough, and there are not too many vehicles in
the current zone.
The effectiveness of this strategy is assessed using

a parallel tabu search heuristic, previously reported
in Gendreau et al. (1999). The next section will briefly
describe the original algorithm and explain how it
was modified to integrate the proposed approach.

5. A Parallel Tabu Search Algorithm
5.1. The Original Algorithm
In a dynamic context, a solution at any instant t is a
set of planned routes, each beginning with the cur-
rent destination of the associated vehicle. This cur-
rent destination is fixed and cannot be modified (i.e.,
the vehicle must reach it). The algorithm proposed in

Gendreau et al. (1999) is a parallel tabu search heuris-
tic with an adaptive memory (Rochat and Taillard
1995). The tabu search is an iterative local search tech-
nique where a neighborhood is generated around the
current solution and the best solution in this neigh-
borhood becomes the new current solution, even if a
degradation is observed. By allowing such degrada-
tion, it is possible to escape from bad local optima,
as opposed to pure descent methods. The interested
reader will find more details about this approach in
Glover and Laguna (1997). The algorithm used in
Gendreau et al. (1999) can be summarized as follows.
• Construct H different initial solutions with a

stochastic insertion heuristic (where the choice of the
next customer to be inserted is randomized).
• Apply tabu search to each solution and store the

resulting routes in the adaptive memory.
• While a stopping criterion is not met, do:
—Combine routes stored in the adaptive mem-

ory to create an initial solution.
—Decompose the problem into subproblems

through a geographic decomposition procedure.
—Apply tabu search to each subproblem.
—Add the routes of the resulting solution in the

adaptive memory.
The procedure for generating the neighborhood of

the current solution is based on CROSS exchanges
(Taillard et al. 1997). Basically, two segments of vari-
able lengths are taken from two different routes and
are swapped, as illustrated in Figure 4.
To speed up the algorithm, a parallel implemen-

tation on a network of workstations was developed.
The parallelization of the procedure was achieved at
two levels:
• Different tabu search threads run in parallel, each

starting from a different initial solution.
• Within each search thread, many tabu searches

run independently on the subproblems obtained
through the decomposition procedure.

X1 X2

Y1 Y2

Before

Y2
′Y1

′

X1
′ X2

′

X1 X2

Y1 Y2

After

Y2
′Y1

′

X1
′ X2

′

Figure 4 A CROSS Exchange
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Whenever a new event occurs, the tabu search
threads are interrupted. Then, after an appropriate
update of the adaptive memory to reflect the current
state of the system, the search is restarted with new
solutions obtained from the updated memory. Thus,
the tabu search improves the current planned routes
between the occurrence of new events. An event may
be either the occurrence of a new request, in which
case the request must first be inserted in the current
solution, or the completion of service at a given cus-
tomer (as a new destination must be indicated to the
driver).
During schedule generation, a vehicle never de-

parts from its current location if, by doing so, a wait-
ing time at its next destination is incurred. Instead, the
vehicle waits at its current location to exploit poten-
tial opportunities offered by new request arrivals. In
a sense, this implementation is not totally myopic,
given that this waiting strategy can be viewed as an
implicit way of accounting for future arrivals. Other
ways to implicitly account for future arrivals through
the definition of different objectives or waiting strate-
gies can be found in Mitrović-Minić and Laporte
(2004) and Mitrović-Minić, Krishnamurti, and Laporte
(2004).
With regard to the objective, the number of served

customers is maximized as the algorithm always
inserts a customer when it is feasible to do so. For
a given number of customers, the sum of total travel
time and total lateness over all customers is mini-
mized.

5.2. Implementing the Vehicle-Waiting Heuristic
The waiting approach described in §4.5 basically
modifies the way new events are handled. This is
explained in the following.
(a) When vehicle k has finished serving a customer,

the new strategy is used to decide whether or not to
wait. In the latter case, the vehicle is directed toward
its next destination, as in the original algorithm. In
the former case, a dummy customer D-tk

is created
at the current vehicle location. The intent is to force
the vehicle to wait at its current location during time
interval 
t� t + -tk�, where t is the current time and
-tk is calculated as in §4.2, based on the best solution
in adaptive memory. Then, the dummy customer D-tk

is inserted at the beginning of the planned route of
vehicle k in every solution in adaptive memory, and
solutions that become infeasible are discarded (due to
the hard time window at the depot, it may not be pos-
sible to wait for -tk time units at the current vehicle
location). Finally, the search threads are restarted with
new solutions constructed from the updated memory
and the optimization is performed with the assump-
tion that vehicle k restarts at time t+ -tk.

(b) When a new request occurs, we first see if it is
included in the neighborhood of some waiting vehi-
cles. Among all such vehicles, only those that can
start service as soon as they reach the new request are
kept. Then, among the remaining vehicles, we choose
the one for which the inclusion of the new request
leads to the smallest additional cost. The new request
then replaces the dummy customer associated with
the chosen vehicle route. If no vehicle qualifies for the
new request, the latter is handled as in the original
algorithm. Note that the new strategy offers addi-
tional insertion points for a new incoming request.
These are located between the current vehicle location
and its next destination for each waiting vehicle.
If vehicle k was not used to service any incom-

ing request when time �t + -tk� is reached (either
because no new request occurred in its neighborhood
or because it was never chosen), the dummy cus-
tomer D-tk

is removed from its route and the vehicle
is sent to its next planned destination, as indicated by
the best solution in adaptive memory.

6. Computational Results
In this section, we empirically demonstrate the value
of the vehicle-waiting heuristic, when integrated
within our previous tabu search implementation. To
this end, we first briefly describe the simulator used
to generate problem instances, before reporting the
results obtained under different operating scenarios.

6.1. Simulation Framework
A simulator was developed to produce different oper-
ating scenarios that reflect as closely as possible what
is observed in the real world. In the following, we
describe the components of this simulator.

6.1.1. Time Horizon. The simulator first sets up a
time horizon that represents the entire labor day. For
example, a labor day running from 10h00 to 15h00
is represented by a time horizon of 300 minutes.
Within this horizon, the simulator produces discrete
time events that correspond to either a request arrival
or the end of service at a given customer location.
The new request arrivals take place only in the first
240 minutes of the time horizon, to allow vehicles to
service their planned routes before returning to the
depot.

6.1.2. Generation of New Service Requests. Typ-
ically, the arrival rate of new requests varies over
time (e.g., peak hours) and space (e.g., densely popu-
lated areas). Hence, time-space Poisson processes are
used. We recall that the distribution area is partitioned
into J zones �1��2� � � � � �J and that the time horizon
is divided into M time intervals �1��2� � � � ��M . Also,
$jm denotes the request arrival rate in zone �j during
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time period �m, j = 1� � � � � J ; m= 1� � � � �M . The char-
acteristics of a new service request are generated as
follows. Given the current time interval �m, the arrival
rate $m =∑J

j=1 $jm in the whole distribution area over
time interval �m is used to determine the arrival time
of the next request. Then the zone �j , where the new
request will appear, is determined using the following
cumulative probabilities �Pm

j �0≤j≤J :

Pm
j =



0� if j = 0�
j∑

l=0
plm� otherwise�

where plm = $lm/
∑J

j=1 $jm.
The selected zone �j is such that Pm

j−1 ≤ u < Pm
j ,

where u is drawn from a uniform distribution U
0�1�.
To generate the time window associated with a new
request i, the earliest time to start service wi is first
generated in the interval 
t� t + .T1�, where t is the
current time and .T1 is a constant. Then wi is possibly
adjusted to avoid exceeding t̄i = T − ti0, where T is the
deadline at the depot (i.e., the end of the day) and ti0
is the travel time from i to the depot. Clearly, it is not
possible to return to the depot on time if the service
at request i starts after t̄i. Once the earliest time wi is
determined, the latest time �wi is set to wi+.T2, where
.T2 is a constant. The value �wi is adjusted like wi if
necessary.

6.2. Testing Scenarios
Different sets of problems were generated to perform
numerical tests. In these problems, the fleet size is
set to four or six vehicles with all vehicles moving
at a constant average speed of 30 kms/hour. Parame-
ters .T1 and .T2 are both set to 30 minutes. The time
horizon is set to 300 minutes (i.e., five hours) and is
divided into three time periods: morning ��1�, lunch
time ��2�, and afternoon ��3�. The lunch-time period
is one hour long and the two others are two hours
long. The distribution area is a 5 kms× 5 kms square
area and the depot is located at (3.3 kms, 4.5 kms).
Nine “active” zones are considered in the distribu-
tion area and are divided into two categories: Cat-
egory 1 contains the intense central zone where the
request arrival rate is high, while Category 2 con-
tains the remaining peripheral zones where the arrival
rate is low. Moreover, in each problem the set of
requests is divided into two subsets. The first subset
contains requests that are known at the beginning of
the day (i.e., 25% of the total number of requests). The
second subset contains requests that unfold in real
time. In this case, the arrival time of each request is
calculated using a 3× 2 time-dependent arrival rate
matrix �$c��1≤c≤2�1≤�≤3, where $c� is the arrival rate in
a zone of category c during time period �. The entries

Table 1 Arrival Rate Matrix in Scenario 1

�1 �2 �3

Intense zone 16�50 0�000 33�00
Peripheral zones 2�04 2�04 2�04

are adjusted to create two different types of scenar-
ios: Scenario 1 where the total number of requests is
about 180 (27 requests per hour, on average), and Sce-
nario 2 where the total number of requests is about
240 (36 requests per hour, on average).
The arrival rate matrices for the two scenarios, in

number of requests per hour, are reported in Tables 1
and 2, respectively. It is worth noting that in real life,
new requests rarely unfold in the intense zone (asso-
ciated with downtown) during lunch time. Therefore,
the corresponding rate is set to 0 for the two scenarios
during that time period.

6.3. Experiments
The experiments reported in this section were per-
formed on a network of three SUN UltraSparc-IIi
workstations (300 MHz). Each process is programmed
in C++, and communication between the processes
is handled by the Parallel Virtual Machine Software.
The parameter values in the original tabu search algo-
rithm are kept as in Gendreau et al. (1999). Parameters
related to our vehicle-waiting heuristic are examined
in the following.

6.3.1. Preliminary Tests. To determine the best
values for parameters 1, s, /, V , and . (see Figure 3),
tests were performed with four vehicles over a sam-
ple of four problems. Several values had to be tested
for every problem in the sample. Therefore, a signif-
icant amount of computation time is required if the
size of the sample is too large. On the other hand,
this size has to be large enough to get a correct cali-
bration. Because Scenarios 1 and 2 are different, sep-
arate tests were conducted for both of them. Tables 3
and 4 present a sample of results obtained with dif-
ferent combinations of values using Scenario 1 and
Scenario 2, respectively. We show only the best com-
binations of values in these tables (i.e., fewer than
5 unserved customers on average for Scenario 1 and
fewer than 23 unserved customers on average for Sce-
nario 2). In these tests, parameter V was set to 1
for the peripheral zones, while different values were
tested for the intense central zone. The four numbers

Table 2 Arrival Rate Matrix in Scenario 2

�1 �2 �3

Intense zone 19�98 0�000 39�96
Peripheral zones 2�52 4�98 2�52
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Table 3 Best Parameter Values with Four Vehicles for
Scenario 1

�1 = 0�20 �1 = 0�20 �1 = 0�20 �1 = 0�20
s1 = 0�60 s1 = 0�80 s1 = 0�80 s1 = 0�80
�1 = 200 �1 = 100 �1 = 200 �1 = 300
V1 = 1 V1 = 1 V1 = 1 V1 = 1


1 = 300 
1 = 180 
1 = 300 
1 = 600

4�00a 4.66 4.00 4.66
227�813b 224.70 229.550 223.936
234�413c 244.67 179.980 207.950
462�226d 469.46 409.530 431.890

�1 = 0�20 �1 = 0�20 �1 = 0�30 �1 = 0�40
s1 = 0�90 s1 = 0�90 s1 = 0�90 s1 = 0�80
�1 = 200 �1 = 300 �1 = 200 �1 = 100
V1 = 1 V1 = 2 V1 = 2 V1 = 1


1 = 300 
1 = 600 
1 = 300 
1 = 180

4.00 4.66 4.33 4.66
225.810 225.353 229.623 235.08
223.780 271.556 244.913 248.92
449.590 496.909 474.536 484.01

�1 = 0�50 �1 = 0�50 �1 = 1�00 �1 = 1�00 �1 = 1�00
s1 = 0�60 s1 = 0�90 s1 = 0�80 s1 = 0�80 s1 = 0�90
�1 = 200 �1 = 200 �1 = 200 �1 = 200 �1 = 200
V1 = 1 V1 = 1 V1 = 1 V1 = 2 V1 = 1


1 = 300 
1 = 300 
1 = 300 
1 = 300 
1 = 300

4.33 4.66 4.66 4.33 4.33
229.588 226.335 230.051 223.710 222.15
204.350 209.080 173.428 223.000 218.16
433.940 435.415 403.480 446.710 440.310

aNb. of unserved customers.
bTravel time.
cLateness.
dSum of travel time and lateness.

in each entry in Tables 3 and 4 are the average num-
ber of unserved customers, travel time, lateness, and
sum of travel time and lateness, respectively. Based
on the results obtained, the values 11 = 0�20, s1 = 0�80,
/1 = 200 sec., .1 = 300 sec., and V1 = 1 for Scenario 1,
and 12 = 0�40, s2 = 0�80, /2 = 100 sec., .2 = 180 sec.,
and V2 = 1 for Scenario 2 were finally kept for fur-
ther investigations (they are shown in boldface in the
tables). In these experiments, we also found that -tk
is about 4.50 minutes for Scenario 1 and 2.90 minutes
for Scenario 2.

6.3.2. Numerical Results. We performed 10 dif-
ferent simulation runs with each scenario, using a
fleet of four vehicles. Then we repeated the experi-
ments, but with a fleet of six vehicles. The results are
reported below.

Scenario 1. Tables 5 and 7 report the results of each
simulation run with the original algorithm (Gendreau
et al. 1999), using four and six vehicles, respectively;
Tables 6 and 8 report the same results, but with the
new algorithm. These tables show that the new algo-
rithm performs well against the original one. More
precisely:

Table 4 Best Parameter Values with Four Vehicles for
Scenario 2

�2 = 0�20 �2 = 0�20 �2 = 0�20 �2 = 0�20 �2 = 0�20
s2 = 0�65 s2 = 0�65 s2 = 0�80 s2 = 0�80 s2 = 0�80
�2 = 60 �2 = 200 �2 = 100 �2 = 180 �2 = 200
V2 = 1 V2 = 1 V2 = 1 V2 = 1 V2 = 2


2 = 100 
2 = 300 
2 = 300 
2 = 300 
2 = 300

21�33a 22.66 22.66 22 22.66
210�30b 211.48 217.03 214.01 213.08
2423�00c 2385.84 2357.01 2344.13 2420.80
2633�20d 2597.34 2574.10 2558.02 2633.89

�2 = 0�40 �2 = 0�40 �2 = 0�40 �2 = 0�40 �2 = 0�40
s2 = 0�60 s2 = 0�80 s2 = 0�80 s2 = 0�80 s2 = 0�80
�2 = 60 �2 = 60 �2 = 60 �2 = 100 �2 = 100
V2 = 1 V2 = 1 V2 = 1 V2 = 1 V2 = 1


2 = 100 
2 = 100 
2 = 180 
2 = 180 
2 = 300

21.66 21.66 21.66 21 22
217.00 212.20 216.72 217.10 214.64
2345.50 2346.00 2489.40 2345.90 2371.58
2562.40 2558.14 2706.01 2563.13 2586.22

�2 = 0�40 �2 = 0�40 �2 = 0�40 �2 = 0�40 �2 = 0�40
s2 = 0�80 s2 = 0�80 s2 = 0�80 s2 = 0�85 s2 = 0�90
�2 = 180 �2 = 200 �2 = 200 �2 = 60 �2 = 100
V2 = 1 V2 = 1 V2 = 2 V2 = 1 V2 = 1


2 = 300 
2 = 300 
2 = 300 
2 = 100 
2 = 180

22.66 22.66 22.66 21.33 22
217.30 215.42 215.24 216.50 213.30
2429.01 2424.14 2397.37 2357.50 2573.00
2646.10 2639.57 2612.62 2574.05 2786.30

aNb. of unserved customers.
bTravel time.
cLateness.
dSum of travel time and lateness.

Experiments with four vehicles. The new algorithm
leads to an improvement in 8 out of 10 runs. In the
two other runs, the results obtained with the new
algorithm are very close to those obtained with the
original algorithm. Note that among the eight runs
where an improvement is observed, the original algo-
rithm succeeds in serving all customers in five cases.

Table 5 Original Algorithm Under Scenario 1: Simulation of Five Hours
with Four Vehicles and 27 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 152 12 243�24 167�67 410�91
2 140 1 244�58 229�06 473�65
3 127 0 200�84 143�21 344�05
4 144 0 240�81 281�25 522�06
5 132 0 230�15 119�24 349�39
6 120 0 207�83 221�58 429�41
7 126 0 233�27 57�97 291�24
8 155 3 243�96 801�50 1045�47
9 153 3 243�99 436�17 680�16

10 132 0 232�95 89�88 322�84

Average 138�1 1�9 232�16 254�75 486�92
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Table 6 New Algorithm Under Scenario 1: Simulation of Five Hours
with Four Vehicles and 27 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 152 11 233�59 196�43 430�09
2 140 1 243�74 230�13 473�87
3 127 0 202�67 137�67 340�35
4 144 0 227�30 247�09 474�40
5 132 0 219�55 120�24 339�69
6 120 0 201�78 231�42 433�20
7 126 0 224�81 52�09 276�91
8 155 2 239�43 753�19 992�62
9 153 1 240�78 459�54 700�20

10 132 0 238�67 44�49 283�17

Average 138�1 1�5 227�23 247�93 474�48

In these cases, the new algorithm reduces the sum
of total travel time and lateness by 1.1% to 12.2%. In
the three other cases, the number of unserved cus-
tomers is reduced and, in two cases, this reduction is
achieved at the cost of a marginal increase in the sum
of total travel time and lateness. Overall, the latter is
improved by 4.1% on average.
Experiments with six vehicles. Because these problems

are easier to solve, the original algorithm succeeds in
serving all customers in 9 runs out of 10; the new
one succeeds in all runs. The results obtained with
the original algorithm are slightly better than those
obtained with the new algorithm in two cases only.
Overall, the new algorithm improves the sum of total
travel time and lateness in seven cases and the num-
ber of served customers in one case. The sum of total
travel time and lateness is reduced by 2.3% on aver-
age over the 10 runs.

Scenario 2. These instances are harder than those
of Scenario 1 due to higher arrival rates. Tables 9
and 11 report results obtained with the original algo-
rithm, with four and six vehicles, respectively, while

Table 7 Original Algorithm Under Scenario 1: Simulation of Five Hours
with Six Vehicles and 27 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 152 3 248�11 25�84 273�98
2 140 0 232�64 85�79 318�43
3 127 0 218�84 90�70 309�50
4 144 0 233�54 93�37 327�91
5 132 0 226�65 29�47 256�13
6 120 0 198�02 107�32 305�34
7 126 0 217�74 29�93 247�67
8 155 0 255�32 52�53 307�85
9 153 0 235�88 40�82 276�71

10 132 0 221�48 21�69 243�18

Average 138�1 0�3 228�83 57�85 286�60

Table 8 New Algorithm Under Scenario 1: Simulation of Five Hours
with Six Vehicles and 27 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 152 0 240�24 54�57 294�82
2 140 0 236�13 83�99 320�12
3 127 0 219�57 67�48 287�06
4 144 0 224�68 91�90 316�58
5 132 0 208�29 40�21 248�51
6 120 0 198�49 103�53 302�02
7 126 0 199�25 28�88 228�14
8 155 0 243�26 42�44 285�71
9 153 0 223�01 48�26 271�30

10 132 0 220�61 24�84 245�45

Average 138�1 0 221�35 58�61 279�97

Tables 10 and 12 report the results obtained with
the new algorithm. As expected, the new approach
clearly improves the results obtained with the original
algorithm.
Experiments with four vehicles. In three cases, the

two algorithms lead to the same number of unserved
customers, but the new algorithm improves the sum
of total travel time and lateness. Conversely, in two
cases, an increase in the sum of total travel time
and lateness is observed, but this is rather marginal
when compared with the improvement observed in
the number of unserved customers (cf. 0.2% versus
3.0% and 0.4% versus 6.3%, respectively). In the five
remaining cases, the new algorithm improves the
original algorithm on both accounts. The reduction
ranges from 3.4% to 29.0% for the number of unserved
customers, and from 2.0% to 16.0% for the sum of
total travel time and lateness. Over the 10 runs, the
average improvement is 9.0% and 4.2%, respectively.
Experiments with six vehicles. Here also, the new

algorithm leads to larger improvements when com-
pared to Scenario 1. While the two algorithms both
succeed in serving all customers, the new algorithm

Table 9 Original Algorithm Under Scenario 2: Simulation of Five Hours
with Four Vehicles and 36 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 168 7 236�80 1258�40 1495�13
2 196 25 231�80 3077�60 3309�30
3 197 36 192�25 3249�91 3442�20
4 177 17 231�50 2158�10 2389�53
5 182 21 207�00 2732�53 2939�50
6 198 32 214�10 3395�54 3609�62
7 195 38 180�34 3284�86 3465�20
8 164 7 223�92 1391�63 1615�55
9 187 29 188�70 3275�00 3464�00

10 193 29 209�65 2374�30 2584�00

Average 187�00 24�10 211�60 2620�00 2831�40
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Table 10 New Algorithm Under Scenario 2: Simulation of Five Hours
with Four Vehicles and 36 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 168 7 241�40 1201�76 1443�24
2 196 21 218�72 2578�63 2797�35
3 197 35 191�40 3257�40 3448�82
4 177 14 206�70 2119�40 2326�11
5 182 21 203�01 2518�18 2721�20
6 198 30 204�55 3419�40 3623�96
7 195 38 181�90 3178�28 3360�19
8 164 6 232�00 1277�83 1509�85
9 187 27 192�85 3206�80 3399�66

10 193 28 205�63 2286�77 2492�41

Average 187�00 22�07 207�82 2504�44 2712�28

reduces the sum of total travel time and lateness in
9 runs out of 10. The reduction ranges from 2.0% to
11.0%, with an average of 3.0%.
In conclusion, the experiments show that the pro-

posed vehicle-waiting heuristic is effective, even if it
is incorporated into a powerful algorithm, and even
if it is enforced only a few times over the schedul-
ing horizon, namely, one to four times per run for
Scenario 1, and one to six times per run for Scenario 2.
This strategy is also more effective when it is applied
on harder problems (i.e., smaller fleet size or higher
request arrival rates).

7. Conclusion
In this paper, a new strategy that exploits probabilis-
tic knowledge about future request arrivals to better
manage a fleet of vehicles is proposed. Some issues
related to this strategy were addressed and investi-
gated. Then, experiments were performed to assess

Table 11 Original Algorithm Under Scenario 2: Simulation of Five
Hours with Six Vehicles and 36 Requests per Hour on
Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 168 0 251�00 283�55 534�55
2 196 0 301�10 577�42 878�50
3 197 0 274�93 1194�33 1469�30
4 177 0 262�10 567�40 829�43
5 182 0 270�54 440�02 710�60
6 198 0 265�32 560�43 825�80
7 195 0 295�90 679�10 974�96
8 164 0 256�40 364�43 621�00
9 187 0 273�80 665�00 940�00

10 193 0 246�30 557�01 803�30

Average 187�00 0 270�00 589�01 859�04

Table 12 New Algorithm Under Scenario 2: Simulation of Five Hours
with Six Vehicles and 36 Requests per Hour on Average

Number of
Instance Number of unserved Travel
number customers customers time Lateness Sum

1 168 0 265�00 259�21 524�02
2 196 0 280�78 570�55 851�33
3 197 0 269�19 1377�41 1646�61
4 177 0 253�80 519�20 773�01
5 182 0 282�27 371�80 654�07
6 198 0 274�25 521�44 795�70
7 195 0 294�88 650�37 945�25
8 164 0 239�67 345�90 585�57
9 187 0 265�76 601�46 867�23

10 193 0 245�12 470�71 715�84

Average 187�00 0 267�07 568�80 835�86

its effectiveness within a previously reported tabu
search heuristic. The results show that the proposed
approach provides significant improvements over the
original algorithm, especially in some “critical” situ-
ations involving a small fleet size and high request
arrival rates.
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Mitrović-Minić, S., R. Krishnamurti, G. Laporte. 2004. Double-
horizon based heuristics for the dynamic pickup and deliv-
ery problem with time windows. Transportation Res. Part B 38
669–685.

Papastavrou, J. D., S. Rajagopalan, A. J. Kleywegt. 1996. The
dynamic and stochastic knapsack problem with deadlines.
Management Sci. 42 1706–1718.

Powell, W. B. 1988. A comparative review of alternative algorithms
for the dynamic vehicle allocation problem. B. L. Golden,
A. A. Assad, eds. Vehicle Routing: Methods and Studies. North
Holland, Amsterdam, The Netherlands, 249–291.

Powell, W. B. 1996. A stochastic formulation of the dynamic assign-
ment problem, with an application to truckload motor carriers.
Transportation Sci. 30 195–219.

Powell, W. B., H. Topaloglu. 2003. Stochastic programming in
transportation and logistics. Stochastic Programming, Hand-
book in Operations and Management Sciences, Vol. 10. Elsevier,
Amsterdam, The Netherlands, 555–635.

Powell, W. B., P. Jaillet, A. Odoni. 1995. Stochastic and dynamic net-
works and routing. M. O. Ball, T. L. Magnanti, C. L. Monma,
G. L. Nemhauser, eds. Network Routing, Handbooks in Opera-
tions Research and Management Science, Vol. 8. North-Holland,
Amsterdam, The Netherlands, 141–295.

Rochat, Y., É. D. Taillard. 1995. Probabilistic diversification and
intensification in local search for vehicle routing. J. Heuristics 1
147–167.

Rubio Maqueo, R. 1995. Dynamic-stochastic vehicle routing and
inventory problem. Ph.D. dissertation, Massachusetts Institute
of Technology, Boston, MA.

Secomandi, N. 1998. Exact and heuristic dynamic programming
algorithms for the vehicle routing problem with stochastic
demands. Ph.D. dissertation, College of Business Administra-
tion, University of Houston, Houston, TX.

Secomandi, N. 2000. Comparing neuro-dynamic programming
algorithms for the vehicle routing problem with stochastic
demands. Comput. Oper. Res. 27 1201–1225.

Séguin, R. 1994. Problèmes stochastiques de tournées de véhi-
cules. Ph.D. dissertation, Département d’Informatique et de
Recherche Opérationnelle, Université de Montréal, Montréal,
Québec.

Spivey, M., W. B. Powell. 2004. The dynamic assignment problem.
Transportation Sci. 38 399–419.

Sutton, R. S., A. G. Barto. 1998. Reinforcement Learning. MIT Press,
Cambridge, MA.

Swihart, M. R., J. D. Papastavrou. 1999. A stochastic and dynamic
model for the single-vehicle pick-up and delivery problem.
Eur. J. Oper. Res. 114 447–464.

Taillard, É. D., P. Badeau, M. Gendreau, F. Guertin, J.-Y.
Potvin. 1997. A tabu search heuristic for the vehicle rout-
ing problem with soft time windows. Transportation Sci. 31
170–186.

Thomas, B. W., C. C. White. 2004. Anticipatory route selection.
Transportation Sci. 38 473–487.

Toth, P., D. Vigo, eds. 2002. The Vehicle Routing Problem. SIAM
Monographs on Discrete Mathematics and Applications,
SIAM, Philadelphia, PA.

Waters, C. D. J. 1989. Vehicle routing problems with uncertainty
and omitted customers. J. Oper. Res. Soc. 40 1099–1108.

Yang, W. H., K. Mathur, R. H. Ballou. 2000. Stochastic vehicle rout-
ing problem with restocking. Transportation Sci. 34(1)


