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Abstract—In this paper, we describe a one-class classification
method based on Support Vector Data Description, which exploits
multiple graph structures in its optimization process. We derive in
a generic solution which can be employed for supervised one-class
classification tasks. The devised method can produce linear or
non-linear decision functions, depending on the adopted kernel
function. In our experiments, we simultaneously adopted two
graphs that describe local and global geometric training data
relationships, respectively. We evaluated the proposed classifier
in publicly available datasets, where its performance compared
favorably against closely related methods.

I. INTRODUCTION

Support Vector Data Description (SVDD) is a support
vector based one-class classifier, initially proposed in [1].
The training phase of this classifier involves determining the
minimum bounding hypersphere which encloses the target
class. Test patterns that fall inside this hypersphere belong
to the target class, or considered as outliers, otherwise. The
SVDD optimization problem attempts to minimize the ra-
dius of the hypersphere with respect to its center. Finally,
the hyperpshere center is expressed as a linear combination
of the determined support vectors. Applications of SVDD
have been found in several fields, including hyperspectral
image classification [2], [3], mechanical failure detection [4],
biomedical data classification [5], face recognition [6], video
summarization [7] and other outlier detection tasks [8], [9].

Despite being simple and effective, SVDD has drawbacks
related to its training speed and classification accuracy. In
terms of traing speed, a method that determines redundand
training vectors has been proposed in [10], exploiting the
fact that in support vector based classification, removing the
non support vectors from the training set does not affect
the classification model. Additionally, a method to determine
the appropriate gaussian kernel parameter (i.e., the sigma)
in a fast manner, have been proposed in [2]. Furthermore,
methods to improve the SVDD classification accuracy have
also been proposed. In [11], the authors perform the whitening
transform in the training data. That is, they minimize the
class variance within the SVDD optimization process. In [7],
an additional clustering step is performed in the training
data, in order to determine subclasses within the training
class. The subclass information is thereby employed in the
SVDD optimization process. In essence, both [7] and [11]
employ additional optimization criteria for the SVDD, such
that low-variance directions are overemphasized. In essence,

instead of hypersphere, the solutions of [7] and [11] resemble
hyperellipses that tightly enclose the target class.

Recently, a method that extends the SVDD in the context
of semi-supervised learning have been proposed in [12]. To
this end, relationships between labeled and unlabeled training
patterns expressed in Nearest Neighbourhood (kNN) graph
structures are employed in the SVDD optimization process.
The corresponding semi-supervised one-class classification
method based on One-Class Support Vector Machines have
been proposed in [13]. Besides local information described
in kNN graphs for the semi-supervised classification case,
generic graph-type regularization methods have also been
proposed for supervised classification [14], [15], [16], [17].
Depending on the adopted graph type (either kNN or fully
connected graph), local or global data relationships are ex-
pressed in the optimization process of a multiclass classifier,
leading to more accurate solutions. In order to obtain optimal
solutions, it is important to select the appropriate graph type
which describes the underlying data distribution accurately.
As have been shown in multiclass classification problems
[15], [16], optimal classification models are obtained when
advanced graph settings are employed (i.e., both positive and
penalty graphs, describing opposite data relationships), in the
classifier optimization process. To the best of our knowledge,
in the one-class classification case, employing advanced graph
settings in the SVDD optimization process had never been
attempted.

In this paper, we describe a one-class classification method
based on SVDD, which can exploit multiple graph structures in
its optimization process. Diverse information encoded in kNN
or fully connected graphs can be employed simultaneously, so
that the solution emphasizes on unified diverse criteria. The
derived solution can be employed for supervised one-class
classification tasks. The devised method produces linear or
non-linear decision functions, depending on the adopted kernel
function. From our derivations, the solution of the proposed
method resembles the standard SVDD solution, in a regular-
ized modified space. In order to evaluate the performance of
the proposed classifier, we have employed publicly available
datasets, related to human action recognition, as well as face
recognition applications.

The rest of the paper is structured as follows. In Section
II, we briefly describe the standard SVDD classifier. In Sec-
tion III, we analytically describe the proposed classification
method, which exploits local and global geometric data rela-



tionships in the SVDD optimization process. Next, in Section
IV, we provide an extension of the proposed method, in order
to exploit non-linear decision functions. Experimental results
are presented in Section V, and finally, conclusions are drawn
in Section VI.

II. SUPPORT VECTOR DATA DESCRIPTION

Let the vectors xi ∈ RD, i = 1, . . . , N form the target class,
from which we wish to generate a one-class classification
model, by employing the SVDD method. SVDD aims at
modeling this target class through a hypersphere, with center
a ∈ RD and radius R, which encloses the training vectors onto
a bounded, spherically shaped, area. The optimal hypersphere
can be found by solving the following optimization problem:

minimize:
R,ξi,a

R2 + c

N∑
i=1

ξi (1)

subject to : ‖xi − a‖2 ≤ R2 + ξi, (2)
ξi ≥ 0, i = 1, . . . , N, (3)

where ξi, i = 1, . . . , N are the slack variables and c > 0
is a free parameter that allows some training error (i.e., soft
margin formulation), in order to increase the generalization
performance. This optimization problem can be solved through
Lagrange optimization, generating the following hypersphere
center:

a =

N∑
i=1

γixi, (4)

where γi is the Lagrange multiplier corresponding to each
constraint (2). The hypersphere radius R can be calculated by
using any support vector xk whose coefficient satisfies λk > 0
[1], as follows:

R2 = (xk ·xk)−
N∑
i=1

γi(xi,xk)−
N∑
i=1

N∑
j=1

γiγj(xi,xj). (5)

In order to obtain non-linear solutions, any kernel function
κ(·, ·), which expresses data similarity in a space of increased
dimensionality can be employed, leading to the following
optimization problem:

maximize:
γi

N∑
i=1

γi κ(xixi)−
N∑
i=1

N∑
j=1

γiγjκ(xixj) (6)

subject to :0 ≤ γi ≤ c,
N∑
i=1

γi = 1, (7)

where the contraints in (7) ensure that the corresponding
constraints in (3) are also satisfied.

For a given test sample x ∈ RD, we decide that it belongs
to the target class, if it satisfies the following inequality:

κ(x,x)−2

N∑
i=1

γiκ(x,xi)+

N∑
i=1

N∑
j=1

γiγjκ(xi,xj) 6 R2. (8)

III. SVDD EXPLOITING LOCAL AND GLOBAL GEOMETRIC
DATA INFORMATION

Let X = [x1, . . . ,xN ] be a datamatrix consisting of vectors
xi ∈ RD, corresponding to the training data samples. The
geometry of this dataset can be expressed with an undirected
weighted graph, i.e., G = {X,W }, where the graph vertex
set is formed with the training data and W is the graph weight
matrix.

Global geometric data relationships between the training
data can be expressed using a fully-connected graph. As
have been shown in [18], a fully connected graph with equal
weights, i.e.,:

WG
ij = 1/N, i, j = 1, . . . , N, (9)

can be employed to express the total scatter of the class, as
follows:

C =
1

N

N∑
i

(xi− x̄)(xi− x̄)T =
1

N
X(I−WG)XT , (10)

where x̄ is the mean vector and I is a N ×N identity matrix.
If we observe (10) from a graph embedding point of view, the
identity matrix can be considered as the corresponding degree
matrix DG = I , where Dii =

∑N
i 6=jW

G
ij , j = 1, . . . , N .

Additionally, global geometric data relationships can also
be expressed with a fully connected weighted graph, having
graph weights initiated with a heat kernel function, i.e.:

WG
ij = exp

(
−||xi − xj ||

2
2

2σ2

)
, (11)

where σ is a free parameter that scales the Euclidean distances
between the graph vertices xi and xj .

In order to express local geometric data relationships, we
can construct kNN graphs. That is, we define a neighborhood
Ni for each vertex, containing the k most similar vectors to
xi. Then, the corresponding weight matrix is given by:

WL
ij =

{
WG
ij , if xj ∈ Ni

0, otherwise.
(12)

Inspired by dimensionality reduction applications [18], if
would like to create a representation that includes both local
and global geometric data information for our dataset, we
should minimize the following objective function:

F =µ
∑
ij

‖xi − xj‖2WG
ij + (1− µ)

∑
ij

‖xi − xj‖2WL
ij =

=2X(µLG + (1− µ)LL)XT = 2M , (13)

where LG ∈ RN×N is the Laplacian matrix of the global
geometric data relationships graph, LL ∈ RN×N the Lapla-
cian matrix describing the local geometric data relationships
and µ ∈ (0, 1) is a weighting parameter, in order to balance
the adopted information contained in the two graphs. In order
to extend the proposed method to exploit more graphs, i.e.,
M graphs, we should work as follows. First, in order to
control the membership of each graph in the process, we
define a parameter vector µ ∈ RM , such that

∑M
i=1 µi = 1.



Next, we calculate the weighted sum of each graph Laplacian
matrices. Finally, the optimal parameters µi can be determined
by employing multiple kernel learning techniques [19].

In the supervised classification case, we wish to find the
optimal hypersphere in a regularized space, where the train-
ing data are enclosed and geometric data relationships are
expressed at the same time. To this end, we employ the matrix
M ∈ RD×D, which encodes the local and global geometric
data relationships, in the proposed optimization problem:

minimize:
R,ξi,a

R2 + c

N∑
i=1

ξi (14)

subject to : (xi − a)
T
M−1 (xi − a) ≤ R2 + ξi, (15)

ξi ≥ 0, i = 1, . . . , N, (16)

where a is the hypersphere center, R is the hypersphere radius,
ξi are the slack variables and c is a trade-off parameter between
training error and generalization performance. By employing
a vector u = M

1
2a, the optimization problem can be solved

by determining the saddle points of the Lagrangian:

L = R2 + c

N∑
i=1

ξi −
N∑
i=1

βiξi−

−
N∑
i=1

γi

(
R2 + ξi − ‖M− 1

2xi − u‖2
)
, (17)

which lead to the following optimality conditions:

ϑL
ϑR

= 0⇒
N∑
i=1

λi = 1., (18)

ϑL
ϑξi

= 0⇒ βi = c− γi, (19)

ϑL
ϑu

= 0⇒ u =

N∑
i=1

γiM
− 1

2xi. (20)

The condition (19) can always be met if we demand 0 ≤ γi ≤
c, thus the Lagrange multipliers βi can be removed. From (20),
the hypersphere center a can be found as follows:

a = M−1Xγ, (21)

where γ ∈ RN is a vector containing the Lagrange multipliers.
Every training pattern xi which satisfies (15) (i.e., ξi = 0),
falls inside the hypersphere and, thus, its corresponding La-
grange multiplier is equal to zero.

In any other case, γi > 0 and xi is a support vector. The
optimal radius can be recovered from any support vector xk
as follows:

R2 = ‖xk − a‖2 = ‖xk −M−1Xγ‖2. (22)

Having calculated the optimal center and radius, in order to
make a decision whether a test pattern x ∈ RD falls inside
the hypersphere, we calculate the following decision value:

f(x) = R2 − ‖x− a‖2, (23)

where the test pattern is classified to the target class when
f(x) ≥ 0, or considered an outlier otherwise.

By expressing the radius and the center in terms of support
vectors, using the equations (21) and (22), we obtain the
following solution:

f(x) = ‖xk −M−1Xγ‖2 − ‖x−M−1Xγ‖2. (24)

Next, in order to obtain the support vector coefficient vector
γ, we reformulate the Lagrangian defined in (17), exploiting
(18), (19) and (20), as follows:

L =

N∑
i=1

γixiM
−1xi −

N∑
i=1

N∑
j=1

γiγjxiM
−1xj (25)

Finally, the solution is obtained by solving the following
optimization problem:

maximize:
γi

N∑
i=1

γixiM
−1xi −

N∑
i=1

N∑
j=1

γiγjxiM
−1xj (26)

subject to :0 ≤ γi ≤ c,
N∑
i=1

γi = 1. (27)

Here, it should be noted that the parameter c can take any
positive value. However, setting a value c = 0, eliminates the
chance of convergence, since the constraints in (27) will never
be met. Moreover, setting any value c ≥ 1, leads to the same
solution for c = 1, since the support vectors coefficients should
satisfy

∑N
i=1 γi = 1. Thus, the parameter c should be limited

to values of (0, 1].

IV. KERNEL SVDD EXPLOITING LOCAL AND GLOBAL
GEOMETRIC DATA INFORMATION

In the previous section, we have described the linear SVDD
case, exploiting local and global geometric data information
in its optimization process. In this section, we describe the
kernel extension of the proposed method.

In order to obtain non linear solutions for the SVDD, it is
required that we employ a mapping function φ(·) : RD 7→ H,
such that we obtain data representations in the feature space
H. The dimensionality of H depends on the adopted kernel
function choice, e.g., it can be even infinite when the RBF
kernel function is used.

By employing the RBF kernel function, the matrix M that
contains the combination of local and global geometric data
relationships, becomes of arbitrary dimensionality, i.e.:

M = Φ(µLG + (1− µ)LL)ΦT , (28)

where Φ is a matrix that contains the training data represen-
tation in the feature space H, such that:

Φ = [φ(x1), . . . , φ(xN )] . (29)

The matrix M may be singular in such feature spaces. Thus,
a regularized version of M should be employed, such that:

M̃ = M + ρI, (30)



where ρ is a regularization parameter allowing the matrix M
to be invertible, and I is an identity matrix of appropriate
dimensions. By exploiting the Woodbury identity, the inverse
of M̃ is given by:

M̃−1 =
1

ρ
I− 1

ρ2
Φ

(
[µLG + (1− µ)LL]

−1
+

1

ρ
ΦTΦ

)−1
ΦT .

(31)
The calculation of the term ΦTΦ = K is possible and K ∈
RN×N is the kernel matrix expressing data similarity in H. In
what follows, we employ a matrix V for notation simplicity,
where:

V =
1

ρ2

(
[µLG + (1− µ)LL]

−1
+

1

ρ
K

)
. (32)

By replacing (31) in (26), we obtain an optimization problem,
where we wish to maximize:

N∑
i=1

γiφ(xi)

(
1

ρ
I −ΦV ΦT

)
φ(xi)−

−
N∑
i=1

N∑
j=1

γiγjφ(xi)

(
1

ρ
I −ΦV ΦT

)
φ(xj) =

=

N∑
i=1

γi

(
1

ρ
κ(xi,xi)− κTi V κi

)
−

−γT
(

1

ρ
K −KVK

)
γ, (33)

subject to the contraints in (27). The function κ(xi,xj) is the
kernel function, expressing data similarity between training
samples xi,xj , and κi is the i-th column of the kernel matrix
K.

By observing (33), it is of the same form as the standard
kernel SVDD [1], solved with a modified kernel:

K̃ =
1

ρ
K −KVK. (34)

Thus, the solution of the proposed method lies in a different
space (i.e., H′ 6= H), where global and local geometric
data relationships have been expressed. Finally, in order to
determine whether a test sample x ∈ RD, falls inside the
hypersphere, we can employ the standard SVDD solution (8),
using the modified kernel presented in (34).

V. EXPERIMENTAL EVALUATION

In this section, we describe the conducted experiments in
order to evaluate the performance of the proposed SVDD clas-
sifier, exploiting local and global geometric data relationships
in the optimization process. In what follows, the performance
of the proposed method is reported with the acronym SVDD-
GL, where global geometric data relationships were expressed
through (9). Since the kernel version consistently outper-
formed the linear alternative, we only report the obtained
performance of the kernel version. For comparison reasons,
we have also trained standard SVDD classifier [1], along with
the SVDD exploiting the whitening transform [11] (SVDD-
W). Here we should note that SVDD-W, is a variant of

the proposed method when employing µ = 1 and WG is
calculated through (9). Additionally, we have employed the
proposed method for a value of µ = 1, exploiting only
global information in its optimization process (SVDD-G), by
calculating WG through (11). Finally, we trained a variant of
the proposed algorithm, exploiting only local geometric data
information (SVDD-L) in its optimization process. That is, we
have employed the proposed method, fixing the value of the
parameter µ = 0. This variant can be considered as a modified
version of the semi-supervised SVDD method, proposed in
[12].

For each dataset, we have determined the optimal set
of parameters for each method, by employing a cross
validation approach. We have set the values of c =
(0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8), values of ρ = 10(−3,...,3) and
finally, we have set the values of µ = (0.2, 0.4, 0.6, 0.8). We
have employed the same values for all competing methods.

TABLE I
DATASET INFORMATION

Dataset Name Problem Dimensions Dataset Size (most populated class)
Olympic Sports HAR 500 640 (54)
Hollywood2 HAR 4000 823 (135)
Hollywood3D HAR 4000 643 (51)
PubFig+LFW FR 1536 8720 (231)

We conducted experiments in publicly available datasets.
Information for each employed dataset is summarized in Table
I. Since all employed datasets are involve multiclass classifi-
cation problems, we have tranformed them into imbalanced
binary problems. That is, we have trained the classifiers in
each class separately, and then tested on the test portion of
the datasets, containing all classes. In imbalanced classification
problems, a commonly employed metric is the g-mean metric
[20], which combines both precision and recall measurements
as follows:

g =
√
Precision×Recall. (35)

In our first set of experiments, we employed the compet-
ing methods in human action recognition (HAR). We have
employed the Olympic Sports [21], the Hollywood2 [22] and
Hollywood3D [23] datasets. In order to obtain vectorial video
representation for the HAR datasets, we have employed the
dense trajectories video description [24]. This video descrip-
tion calculates five descriptor types, namely the Histogram
of Oriented Gradients, Histogram of Optical Flow, Motion
Boundary Histogram along direction x, Motion Boundary
Histogram along direction y and the normalized trajectory co-
ordinates, on the trajectories of densely-sampled video frame
interest points. Afterwards, we have employed the Bag-of-
Words model [25] in order to obtain five histograms for each
video, one for each descriptor type. Finally, the descriptor
types are combined using a late fusion approach.

In our second set of experiments, we have employed the
competing algorithms in face recognition (FR). We have
employed the PubFig+LFW dataset [26]. We have employed
the feature vectors (Histogram of Oriented Gradients, Local
Binary Patterns, and Gabor wavelet features, reduced to 2048



dimensions with PCA), which were extracted from 13, 002
facial images representing 83 individuals from PubFig83,
divided into 2/3 training (8720 faces) and 1/3 testing set
(4, 282 faces), as well as 12, 066 images representing over
5, 000 faces which were used as a distractor set from LFW.
We have employed the first 1536 dimensions from the 2048,
as suggested in [26]. For each of the 83 individuals, we have
employed the training images for each class and tested on the
respective test set of this class, as well the 500 first images of
the distractor set.

TABLE II
AVERAGE G-MEANS RATES

Dataset Name SVDD SVDD-W SVDD-L SVDD-G SVDD-GL
Olympic Sports 61.14 63.14 64.97 65.33 73.18
Hollywood2 58.29 59.54 59.37 60.12 60.74
Hollywood3D 56.79 58.18 58.52 58.54 62.59
PubFig+LFW 76.55 77.46 77.15 77.20 77.95

Finally, we report the average obtained g-mean metric for
each dataset in Table II. As can be seen, the proposed method
outperformed the competition, in every case. From the con-
ducted experiments, we can conclude that employing multiple
graph types in the SVDD optimization process, improves the
generalization performance.

VI. CONCLUSION

In this paper, we have described a one-class classification
method, exploiting multiple graph structures in the SVDD op-
timization process. Our experiments denote that kNN and fully
connected graphs can increase the generalization performance
of SVDD when used simultaneously. This can be explained
by the fact that kNN graphs provide local geometric infor-
mation, and fully connected graphs provide global geometric
information about the training class. Future work could include
extending the present work in other classifiers. Moreover, the
proposed method could exploit multiple graph types, thus
evolving methods to automatically determine the appropriate
combination of multiple graph types could be developed.
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