
Exploiting Locality in Distributed SDN Control

1

Stefan Schmid (TU Berlin & T-Labs)

Jukka Suomela (Uni Helsinki)

My view of SDN before I met Marco and Dan…

2 Stefan Schmid (T-Labs)

Logically Centralized, but Distributed!

3 Stefan Schmid (T-Labs)

Vision:
 Control becomes distributed

 Controllers become near-sighted
(control part of network or flow space)

Why:
 Enables wide-area SDN networks

 Administrative: Alice and Bob
 Admin. domains, local provider footprint …

 Optimization: Latency and load-balancing
 Latency e.g., FIBIUM

 Handling certain events close to datapath and shield/load-balance
more global controllers (e.g., Kandoo)

Alice

vs

Bob

Logically Centralized, but Distributed!

4 Stefan Schmid (T-Labs)

Vision:
 Control becomes distributed

 Controllers become near-sighted
(control part of network or flow space)

Why:
 Enables wide-area SDN networks

 Administrative: Alice and Bob
 Admin. domains, local provider footprint …

 Optimization: Latency and load-balancing
 Latency e.g., FIBIUM

 Handling certain events close to datapath and shield/load-balance
more global controllers (e.g., Kandoo)

Alice

vs

Bob

Distributed control in two dimensions!

1st Dimension of Distribution: Flat SDN Control (“Divide Network”)

5 Stefan Schmid (T-Labs)

fully central fully local SPECTRUM

e.g., small network e.g., routing control

platform
e.g., SDN router

(FIBIUM)

2nd Dimension of Distribution: Hierarchical SDN Control (“Flow Space”)

6 Stefan Schmid (T-Labs)

e.g., handle frequent
events close to data
path, shield global
controllers (Kandoo)

lo
c
a
l

g
lo

b
a
l

S
P

E
C

T
R

U
M

Questions Raised

7 Stefan Schmid (T-Labs)

 How to control a network if I have “local view” only?

 How to design distributed control plane (if I can), and how to
divide it among controllers?

 Where to place controllers? (see Brandon!)
 Which tasks can be solved locally, which tasks need global control?
 …

Our paper:

- Review and apply lessons to SDN from distributed
computing and local algorithms* (emulation
framework to make some results applicable)

- Study of case studies: (1) a load balancing
application and (2) ensuring loop-free forwarding set

- First insights on what can be computed and verified
locally (and how), and what cannot

* Local algorithms = distributed algorithms with constant radius
(“control infinite graphs in finite time”)

Generic SDN Tasks: Load-Balancing and Ensuring Loop-free Paths

Stefan Schmid (T-Labs)

SDN for TE and Load-Balancing: Re-Route Flows

Compute and Ensure Loop-Free Forwarding Set

OK

not OK

Concrete Tasks

Stefan Schmid (T-Labs)

SDN Task 1: Link Assignment („Semi-Matching Problem“)

SDN Task 2: Spanning Tree Verification

operator’s backbone network

redundant links

OK

not OK

PoPs

customer sites

 Bipartite: customer to access routers
 How to assign?

 Quick and balanced?

Both tasks are trivial under global control...!

… but not for distributed control plane!

10 Stefan Schmid (T-Labs)

 Hierarchical control:

 Flat control:

root controller

local controller

local controller

Local vs Global: Minimize Interactions Between Controllers

11 Stefan Schmid (T-Labs)

Global task: inherently need to

respond to events occurring at

all devices.

u

u

Local task: sufficient to respond to events
occurring in vicinity!

Objective: minimize interactions (number of
involved controllers and communication)

Useful abstraction and terminology: The “controllers graph”

Take-home 1: Go for Local Approximations!

12 Stefan Schmid (T-Labs)

backbone

V

A semi-matching problem:
Semi-matching

If a customer u connects to a
POP with c clients connected
to it, the customer u costs c.

Minimize the average cost of
customers!

The bad news: Generally the problem is inherently global e.g.,

The good news: Near-optimal semi-matchings can be found
efficiently and locally! Runtime independent of graph size and local
communication only. (How? Paper!)

U

= 6 = 5 ??

Take-home 2: Verification is Easier than Computation

13 Stefan Schmid (T-Labs)

Bad news: Spanning tree computation (and even verification!) is an
inherently global task.

u

OK

u

not OK

v

OK

2-hop local views of contrullers u and v: in the three examples, cannot distinguish the
local view of a good instance from the local view of the bad instance.

Good news: However, at least verification can be made local, with
minimal additional information / local communication between
controllers (proof labels)!

v

f() = No

Proof Labeling Schemes

14 Stefan Schmid (T-Labs)

Idea: For verification, it is often sufficient if at least one controller
notices local inconsistency: it can then trigger global re-computation!

Requirements:

 Controllers exchange minimal amount of information (“proofs labels”)
 Proof labels are small (an “SMS”)
 Communicate only with controllers with incident domains

 Verification: if property not true, at least one controller will notice…

 … and raise alarm (re-compute labels)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Examples

15 Stefan Schmid (T-Labs)

Euler Property: Hard to compute Euler

tour (“each edge exactly once”), but
easy to verify! 0-bits (= no communication) :

output whether degree is even.

(r,1)

r

(r,1)

(r,2)

(r,2)

(r,3)

(r,3)

(r,4)

(r,4)

Neighbor with
same distance
alert!

No

No

Spanning Tree Property: Label encodes root node
plus distance & direction to root. At least one node
notices that root/distance not consistent! Requires
O(log n) bits.

No

Any (Topological) Property: O(n2) bits.

Maybe also known from databases: efficient ancestor query! Given two log(n) labels.

Take-home 3: Not Purely Local, Pre-Processing Can Help!

16

Example: Local Matchings

 (M1) Maximal matching (only because of symm!)

(M2) Maximal matching on bicolored graph

(M3) Maximum matching (symm+opt!)

(M4) Maximum matching on bicolored graph

(M5) Fractional maximum matching

Optimization:

(M1, M2): only need to find feasible solution!

(M1, M2, M3): need to find optimal solution!

Symmetry breaking:

(M1, M3): require symmetry breaking

(M2, M4): symmetry already broken

(M5): symmetry trivial

Idea: If network changes happen at different time scales (e.g.,
topology vs traffic), pre-processing “(relatively) static state” (e.g.,
topology) can improve the performance of local algorithms (e.g., no
need for symmetry breaking)!

Local problems often face two challenges: optimization and symmetry breaking.

The latter may be overcome by pre-processing.

E.g., (M1) is simpler if graph can be pre-colored! Or Dominating Set (1. distance-2 coloring
then 2. greedy [5]) , MaxCut, … The “supported locality model”.

bipartite (like PoP

assignment)

packing LP

* impossible, approx ok, easy

Stefan Schmid (T-Labs)

Take-home >3: How to Design Control Plane

17 Stefan Schmid (T-Labs)

 Make your controller graph low-degree if you can!

 …

Conclusion

18 Stefan Schmid (T-Labs)

 Local algorithms provide insights on how to design and operate distributed
control plane. Not always literally, requires emulation! (No communication
over customer site!)

 Take-home message 1: Some tasks like matching are inherently global if
they need to be solved optimally. But efficient almost-optimal, local
solutions exist.

 Take-home message 2: Some tasks like spanning tree computations are
inherently global but they can be locally verified efficiently with minimal
additional communication!

 Take-home message 3: If network changes happen at different time scales,
some pre-processing can speed up other tasks as well. A new non-purely
local model.

 More in paper…

 And there are other distributed computing techniques that may be useful for
SDN! See e.g., the upcoming talk on “Software Transactional Networking”

Backup: Locality Preserving Simulation

19 Stefan Schmid (T-Labs)

Controllers simulate execution on graph:

local controllers
at PoPs

backbone

backbone

Algorithmic view:

distributed computation of the best
matching

Reality:

controllers V simulate execution;
each node v in V simulates its
incident nodes in U

U U

V V

Locality: Controllers only need to communicate with
controllers within 2-hop distance in matching graph.

Backup: From Local Algorithms to SDN: Link Assignment

20 Stefan Schmid (T-Labs)

backbone

U

V

A semi-matching problem:
Semi-matching

Connect all customers U:
exactly one incident edge. If
a customer u connects to a
POP with c clients connected
to it, the customer u costs c
(not one: quadratic!).

Minimize the average cost of
customers!

The bad news: Generally the problem is inherently global (e.g.,
a long path that would allow a perfect matching).

The good news: Near-optimal solutions can be found efficiently
and locally! E.g., Czygrinow (DISC 2012): runtime independent
of graph size and local communication only.

1 1 1
1+2+3=6

