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Abstract— With the increasing popularity of wireless networks and mobile computing, data
broadcasting has emerged as an efficient way of delivering data to mobile clients having a high
degree of commonality in their demand patterns. In many applications clients are grouped into
several groups, each one located in a different region, with the members of each group having
similar demands. In fixed bit rate wireless broadcast systems, transmission power is set at such
a level that guarantees the necessary level of received energy per bit for all clients in the service
area, so that they can operate under a predefined BER level. However, as in wireless cellular
environments the path loss of wireless signals is typically inverse to the fourth power of the trans-
mitter/receiver distance, there exists an increasing redundancy in the level of received energy per
bit for decreasing distances from the server’s antenna. This paper proposes a mechanism that
exploits locality of demand in order to increase the performance of wireless data dissemination
systems. Specifically, it trades the received energy per bit redundancy at distances smaller than
the radius of the service area for an increased bit rate for transmission of items demanded by
clients at such distances. This results in an increased transmission speed for many items. The bit
rate for an item transmission is dynamically determined from the distance between the server’s
antenna to the group of clients that demand this item. Knowledge of clients’ positions is conveyed
to the server via a simple feedback from the clients. Simulation results are presented that reveal
significant performance improvement over fixed bit rate broadcasting in environments charac-
terized by locality of client demands.
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I. Introduction

Data broadcasting has emerged as an efficient means for the dissemination of information
over asymmetric wireless networks [1]. Examples of data broadcasting applications are traffic
information, weather information and news distribution systems. In such applications, client
needs for data items are usually overlapping. Consequently, broadcasting stands to be an
efficient solution, as the broadcast of a single information item will likely satisfy a (possibly
large) number of client requests. Moreover, in many applications, such as weather information
and news distribution, the locations of clients determine their demands.

Communications asymmetry is due to a number of facts, such as asymmetry in equip-
ment (e.g. lack of client transmission capability, client power limitations), asymmetry in the
network system (e.g. small uplink/downlink bandwidth ratio) and application asymmetry (e.g.
traffic pattern of client-server applications).

The goal pursued in most of the proposed data delivery approaches is twofold: a) deter-
mination of an efficient sequence (broadcast program) for the transmission of the server’s data
items in a way that the average response time (overall mean access time among the clients) is
minimized and b) management and operation of client local memory (cache) so that a client’s
performance degradation is reduced when mismatches occur between the client’s demand pat-
tern and the server’s program. This paper focuses on minimization of response time under
dynamic and location dependent client demand patterns.

So far, three major approaches have appeared for the server’s broadcast program:

• In the pull-based approach (e.g. [2]), the server broadcasts information after explicit
requests made by the mobile clients via the uplink channel. This approach is able to
adapt to dynamic client demand patterns, however it is inefficient from the point of view
of scalability. This is because when the client population becomes too large, the client
requests will either collide with each other or saturate the server.

• In the push-based approach (e.g. [3, 4, 5]), the server is assumed to have an a-priori
estimate of the demand per-information item and makes item broadcasts according to
these estimates. Push systems provide high scalability and client hardware simplicity
since clients do not need to include data packet transmission capability. However push
systems are unable to operate efficiently in environments with dynamic demand pat-
terns. Nevertheless, with minimal changes to client and server hardware, [6] extends
the applicability of the push approach to environments characterized by a-priori un-
known and dynamic client demands and presents results that reveal efficient operation
in such environments.

• Hybrid approaches (e.g. [14]) try to combine the benefits of the pure-push and pure-
pull approaches. However they need to carefully strike a balance between push and
pull and manage a number of additional issues (determination and dynamic selection of
bandwidth available for push and pull, selection of items to be pushed and those to be
pulled, etc).

Information dissemination applications can be characterized by locality of client de-
mands. A possible example of this case could be the case of a museum possessing the nec-
essary infrastructure in order to deliver to the users information regarding the exhibits. Most
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museums contain several sectors with each sector containing exhibits of a different type (e.g.
Egyptian, Greek, etc.). It would be desirable for visitors within a sector to be aided in their
tour by receiving information regarding the contents of the sector in their native language.
Supposing that the information server broadcasts such information at several languages it can
be seen that locality of demand indeed exists, as groups of visitors (which are of the same na-
tionality) tend to be at the same place and many groups are usually present inside the museum
at the same time.

In a wireless data dissemination system, the transmission power of the broadcast server
determines the service area. Thus, if one wants to provide data dissemination services in an
area of radius R, transmission power must be set at such a level that guarantees the necessary
energy per bit to noise density per Hz (Eb/N0) ratio for clients located at the border of the
service area. However, in wireless cellular environments the path loss of wireless signals at
a distance d is a 1/dn type loss with a typical n ≥ 4 [15]. This fact creates an increasing
redundancy in the Eb/N0 figure for clients at distances d < R from the antenna.

This paper proposes a mechanism that exploits locality of demand in order to increase the
performance of wireless data dissemination systems. Locality of demand means that clients
are grouped into groups, each one located at a different place and members of each group have
similar demands for information items, different from the demands of clients at other groups.
The proposed approach can trade the Eb/N0 redundancy at clients in groups at distances d < R
for an increased bit rate for the broadcasts of the items demanded by these groups. Knowledge
of client positions is conveyed to the server via a simple feedback pulse from the clients, a
mechanism that was used in [6] in order to provide adaptivity to dynamic client demands.
Thus, the proposed approach is presented in the context of the adaptive wireless push system
of [6]. It is worth mentioning here that another alternative to transmission bit rate variation
could be the use of adaptive modulation. Using adaptive modulation the Eb/N0 redundancy
at client groups close to the antenna could allow a more efficient modulation technique that
would carry more bits per symbol than the modulation scheme used for client groups further
away. However, changes in the modulation technique would result in discrete changes in
transmission speed. On the other hand the bit rate variation will allow for a smooth change
in transmission speed that can better match the different distances of various groups of clients
from the antenna.

The remainder of this paper is organized as follows: Section II describes research related
to the proposed approach. A brief introduction to Learning Automata, which are used in
the adaptive wireless push system of [6] on which the proposed method builds, is made in
Section III. Section III then presents the proposed variable bit rate adaptive wireless push
system. Simulation results, which reveal the performance superiority of the proposed approach
to that of the fixed rate adaptive wireless push scheme of [6] in environments with locality of
demands, are presented in Section IV. Finally, Section V concludes the paper and highlights
our future research in the area.
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II. Related research

A. Push systems

Some of the early work relevant to data broadcasting used the flat approach [16], which sched-
ules all items with the same frequency. However, in order to minimize mean access time,
research showed that schedules must be periodic [17] and the variance of spacing between
consecutive instances of the same item must be reduced [18].

A..1 Broadcast Disks

A method that satisfied both the above constraints was the Broadcast Disks model [3]. It pro-
posed a way of superposition of multiple disks spinning at different frequencies on a single
broadcast channel. The most popular data are placed on the faster disks and as a result pe-
riodic schedules are produced, with the most popular data being broadcast more frequently.
This work also proposed some cache management techniques aiming to reduce performance
degradation of those clients with demands largely deviating from the overall demands of the
client population. It also proposed prefetching data items in the client’s cache to accommodate
future client needs. This work was augmented later by dealing with the impact of changes at
the values of the data items between successive server broadcasts of the same items [19] and
the addition of a backchannel to allow clients to send requests to the server [20].

A drawback of Broadcast Disks is the fact that it is constrained to fixed sized data items
and does not present a way of determining neither the optimal number of disks to use nor
their relative frequencies. Those numbers are selected empirically and as a result, the server
may not broadcast data items with optimal frequencies, even in cases of static client demands.
Furthermore, the rigid enforcement of the constraint for minimization of the variance of spac-
ing between consecutive instances of the same item leads to schedules where instances of the
same item are equally spaced. This fact can lead to schedules that possibly include empty and
thus unused periods (holes). Finally, the Broadcast Disks approach is not adaptive to dynamic
client demands, since it is based on the server’s a-priori knowledge of static client demands,
resulting in pre-determined broadcast schedules.

An interesting paper that builds on the method of Broadcast Disks is [21]. It tries to satisfy
client requests in a low time while at the same time achieving a low energy consumption by
the client. The contribution of this approach is threefold: a) determination of a method to
assign the data items to be broadcast to the various disks so that overall mean access time is
reduced, b) determination of the number of disks to use, c) integration of indexing in order to
provide energy efficiency.

A..2 The Vaidya-Hameed method

Push-based systems are also proposed in [4]. This method also produces periodic schedules
as stated in [22]. According to it the construction of the broadcast when all users are tuned to
the same channel is based on the following two arguments:

Argument 1: Broadcast schedules with minimum overall mean access time are produced
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when the intervals between successive instances of the same item are equal [18].

Argument 2: Under the assumption of equally-spaced instances of the same items, the mini-
mum overall mean access time occurs when the server broadcasts an item i with the spacing
between consecutive instances of i being proportional to the factor

√
li
pi

, where pi is the de-
mand probability for item i and li is the item’s length.

The algorithm operates as follows: Assuming that T is the current time and R(i) is
the time when item i was last broadcast, the broadcast scheduler selects to broadcast item i
having the largest value of the cost function G(i) = (T − R(i))

2 pi

li
. For items that haven’t

been previously broadcast, R(i) is initialized to -1 and if the maximum value of G(i) is given
by more than one item, the algorithm selects one of them arbitrarily.

As stated by its authors, the method in [4] has the advantage of automatically using the
optimal frequencies for item broadcasts in contrast to [3]. Furthermore, the constraint of
equally-spaced instances of the same item is not rigidly enforced, a fact that leads to elimi-
nation of empty periods in the broadcast. Finally [4] works with items of different sizes too.
This assumption is obviously more realistic compared to that of fixed-length items made in
the Broadcast Disks approach. However, the main drawback of the method in [4] remains its
lack of adaptivity and therefore its inefficiency in environments with dynamic client demands.

A..3 The Adaptive Push System

The method in [6] proposes a push-based system that is adaptive to dynamic client demands.
The system uses a Learning Automaton at the broadcast server in order to provide adaptivity
to [4] while maintaining its computational complexity. Using a simple feedback from the
clients, the automaton continuously adapts to the overall client population demands in order
to reflect the overall popularity of each data item. It is shown in [6] that contrary to the non-
adaptive method of [4], the adaptive system provides superior performance in an environment
where client demands change over time with the nature of these changes being unknown to
the broadcast server. The operation of the adaptive system of [6] is described in the Section
III due to the fact that the proposed method builds on top of [6].

B. Pull and hybrid systems

Pull systems have the advantage of being adaptable to dynamic client demands due to extrac-
tion of knowledge of these demands via client requests. A representative pull system is that
of [2]. This method is shown via simulations to provide close performance to the optimal
but not scalable Longest Wait First (LWF) algorithm which selects to transmit the item with
the largest aggregate waiting time (the sum of waiting times for all pending requests for that
item). A recently proposed pull system is that of [7]. This work also considers the effect on
performance of access time, tuning time (the time a client must actively listen to the broad-
cast before receiving the desired item) and the cost of handling request failures. It proposes a
self-adaptive scheduling algorithm which computes a cost function affected by the above three
parameters for each data item and uses it for schedule construction. However, in the context of
push systems the proposed approach is evaluated by making the assumption that either a) each
information item is demanded by the same probability or b) the demand for each information
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item is known in advance.
In hybrid methods clients can use a backchannel to submit requests for information items

to the server. A recent work on such systems is that of [8], which proposes a hybrid system
which takes into account user retrials. As far as adaptivity to client demand is concerned, this
is made via the actual requests made by the clients. The authors state that even in a hybrid
system estimation of items’ demands is not a trivial task. A reason that explains this is the fact
that in the effort to serve more users via the push mode the system manages to increase the
number of such users. Thus, fewer users submit item requests via the pull-mode, resulting to
an increasing possibility for less accurate estimation of item demands in the near future.

Another hybrid system recently proposed is that of [9]. It proposes an estimation mech-
anism and tries to balance the push and pull access times. To estimate item demands, [9]
exploits clients’ impatience. Periodically, it deliberately generates item misses from the push
mode in order to force clients to explicitly demand these items via requests. Thus, by counting
requests for each item in the push mode, the server has a measure of item demands among the
client population. A similar approach with that of [9] is taken by [10]. It estimates the demand
for each item via incoming requests for items that will not appear in the broadcast in the near
future and states that without requests for such broadcast missed item demand estimation is
impossible.

In [11] a system for dynamic data broadcasting that combines different means of retrieval
of items (cache, broadcast channels, pull requests) is proposed. The server is able to work
under dynamic client demands which are not a-priori known to it. Every client uses a bit vector
in which each bit corresponds to a data item in the broadcast program. At the beginning of each
broadcast program the server broadcasts the complete schedule. When clients receive a new
program they reset their bit vectors. A bit in the vector of a client is set if the corresponding
item will appear in the broadcast. Thus, items that are retrieved either from the client’s cache
or via pull requests have no influence on the bit vector of the client. When a certain item is
not found both in the cache and the broadcast program then a pull request is made for it by
the client via the uplink channel and the bit vector of the client is piggybacked at this request.
After the pull request the bit vector is reset. At the server, each data item is associated with a
counter whose value is increased by one every time this item is either explicitly demanded via a
pull request or a bit vector is received with the corresponding bit set. With this mechanism the
broadcast server is able to estimate the access patterns of the client population and dynamically
determine the broadcast program according to these patterns.

Another interesting approach is that of [12]. This work proposes a system where client
requests do not target specific items but can rather be satisfied by items containing information
sufficiently close to their demands. Each client maintains a bit vector with each bit in place
w in the vector set by a client if an item with a high metric of similarity to the one demanded
appears in the w-th position in the broadcast. At any given time, each client sends with a small
probability to the server a feedback message that contains its vector. If a client is not satisfied
by the broadcast program its feedback will be an explicit request. The frequency of sampling
the clients for their demands is determined by statistical techniques. Two such techniques
are proposed with one of them being superior as it leads to a smaller proportion of sampled
clients.

Another work that targets adaptive data broadcasting is that of [13]. Clients with interests
either in the same items with static demands or the same broadcast services form groups. In
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the beginning of each broadcast cycle each group is assigned a quota of time slots within the
cycle’s duration. Furthermore, when a group has used its quota, the server can dynamically
allocate more slots to the group via loaning of slots from other groups during the broadcast
cycle. This loaning mechanism takes place when some slots become available before a broad-
cast cycle ends. When loaning is not possible due to lack of remaining slots in the broadcast
program the server can transmit excess items either via the pull way or via preempting the
push mode in the next broadcast cycle. At the end of each cycle the feedback that is available
at the server and concerns slot loaning is used in combination with group popularities to adapt
the system to the current client demands for the next broadcast cycle.

C. Critique on adaptivity to client demands

The pull and hybrid systems described above share the requirement that clients are able to
submit actual packet requests to the server via an uplink channel. In order for these approaches
to work in a push environment item demands must be a-priori known ([7], [8]) since in push
systems there does not exist the possibility of relaying actual packet requests from the clients
to the server. Even in the case of pull and hybrid systems however, a large number of clients
can a) congest the uplink channel due to the need to coordinate packet requests with few
collisions, b) generate an excessive request arrival rate at the server and thus saturate it.

On the contrary, [6] and the proposed system which builds on it, do not relay actual
requests to the server via the uplink channel; rather what the simple uplink channel carries is
the sum of clients’ feedback pulses. Thus:

• since there is no need to coordinate client responses (pulses) so as not to collide, a large
number of clients does not limit the system’s scalability by congesting the simple uplink
channel,

• what the server receives is not a number of individual packet requests that it must exam-
ine and possibly serve; rather it receives the sum of clients’ feedback pulses that is used
to estimate the demands of the various items.

III. The Variable Bit Rate Adaptive Wireless Push System

A. Learning Automata

The aim of many intelligent systems is to be able to efficiently work in environments with
unknown and varying characteristics. A solution to this problem is Learning Automata [23,
24, 25, 26], which are structures that can acquire knowledge regarding the behavior of the
environment in which they operate.

A Learning Automaton is an automaton that improves its performance by interacting with
the random environment in which it operates. The goal of a Learning Automaton is to find
among a set of actions a1, a2, ..., aM the optimal one, such that the average penalty received by
the environment is minimized. The operation of a Learning Automaton constitutes a sequence
of repetitive cycles which eventually lead to the target of average penalty minimization. The
automaton maintains p1(n), p2(n), ..., pM(n), which is a vector representing the probability
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of selecting action i at cycle n. Obviously,
∑M

i=1 pi(n) = 1. For each cycle, the automaton
chooses an action and receives the environmental response triggered by the selected action.
Based on this response the automaton updates the probability vector p(n) to p(n + 1)and uses
it determine the selection of the next action.

There exist different automata types according to the nature of the environmental re-
sponse. If this takes only the values 0 and 1, indicating only reward or penalty respectively,
the automaton is known as a P -model one. However, due to the fact that in many cases a
P -model gives only a gross estimation of the environment, schemes where environmental re-
sponse can be neither completely rewarding or penalizing have been devised. These kind of
Learning Automata work with environmental responses which, after normalization, lie in the
interval [0..1]. In a Q-model, the environmental response can have more than two, still finite
however, possible values in the interval [0..1]. In an S-model environment, the environmental
response can take continuous values in [0..1].

Learning Automata have been found to be useful in systems where incomplete knowl-
edge regarding the environment in which those systems operate exists. In the area of data
networking Learning Automata have been applied to several problems, including the design
of self-adaptive MAC protocols, both for wired and wireless platforms, which efficiently op-
erate in networks with dynamic workloads [27, 28, 29, 30]. Other applications of Learning
Automata include queueing systems, task scheduling, image compression, pattern recognition
and telephone-traffic routing.

B. The Learning Automaton-based Broadcast Server

In the variable bit rate adaptive wireless push system the server is equipped with an S-model
Learning Automaton, which contains the server’s estimate p′

i of the demand probability pi for
each data item i among the set of the items the server broadcasts. Clearly,

∑M
i=1 p′i = 1, where

M is the number of items in the server’s database.
For each item broadcast, the server selects to transmit the item i that maximizes the cost

function G(i) = (T − R(i))
2 p′i

li
, 1 ≤ i ≤ M , where T is the current time, R(i) the time

when item i was last broadcast and li is the length of item i. As mentioned earlier, for items
that haven’t been previously broadcast, R(i) is initialized to -1 and if the maximum value of
G(i) is given by more than one item, the algorithm selects one of them arbitrarily. Upon the
broadcast of item i at time T , R(i) is changed so that R(i) = T . After broadcasting item i,
the algorithm proceeds to select the next item to broadcast. At the adaptive system, after the
transmission of item i, the broadcast server awaits for acknowledgment from every client that
was waiting item i. Such clients acknowledge reception and each one transmits a feedback
pulse. Acknowledging clients’ pulses, which are of fixed length, are added at the server, which
uses the aggregate received pulse to update the automaton. As far as the feedback pulses are
concerned, we assume that the channel is symmetric, meaning that the path loss from the
server to a certain client is the same with that from the same client to the server. Moreover, the
server and all the clients clients have an agreement on what signal power should be received
as a feedback. A feedback pulse of a client, used also in [6], is a simple pulse of very short
duration that upon its arrival at the server signifies item reception at the client. The probability
distribution vector p′ maintained by the automaton estimates the demand probability p ′

i (and
thus the popularity) of each information item i, 1 ≤ i ≤ M . For the next broadcast, the server
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chooses which item to transmit by using the updated vector p ′.

C. The probability updating scheme

When the transmission of an item i does not satisfy any waiting client, the probabilities of the
items do not change. However, following a transmission that satisfies clients, the probability
of item i is increased. A Liner Reward-Inaction (LR−I ) probability updating scheme [24]
is employed after the transmission of each item. Thus, assuming item i is the server’s k th

transmission, the following probability updating scheme is used:

p′j(k + 1) = p′j(k) − L(1 − b(k))(p′j(k) − a), ∀j �= i

(1)

p′i(k + 1) = p′i(k) + L(1 − b(k))
∑

i�=j(p
′
j(k) − a)

It holds that L, a ∈ (0, 1) and p′
i(k) ∈ (a, 1) ∀k and ∀i ∈ [1..M ], where M is the number

of the information items. L is a parameter that governs the speed of the automaton conver-
gence. The selection procedure for a value of L reflects the classic speed versus accuracy
problem. The lower the value of L the more accurate the estimation made by the automaton,
a fact however that comes at expense over convergence speed. If the probability estimate p′

i

of an item i approaches zero, then G(i) would be very close to zero as well. However, item
i, even if unpopular, still needs to be seldomly transmitted since some clients may request
it. Additionally, the dynamic nature of client demands might make this item popular in the
future. Parameter a prevents the probabilities of non-popular items from taking values in the
neighborhood of zero and thus increases the adaptivity of the automaton.

b(k) is the system environmental response that is triggered after the server’s k th transmis-
sion. Essentially, it is the normalized sum of the received feedback pulses after the server’s
kth transmission. Thus, there must exist a mechanism that enables the server to possess an
estimate of the number of clients under its coverage so as to perform the normalization pro-
cedure on the sum of feedback pulses. This can be achieved by the broadcasting of a control
packet that notifies all clients to respond with a pulse. The server will use this aggregate re-
ceived pulse strength to estimate how many clients are within its coverage area and use this
value to perform the normalization. The estimation process occurs at regular time intervals
[6] after the broadcast of several hundreds of items, with its overhead being the broadcast of a
unit-length item. The simulation results in [6] show that such an overhead is negligible due to
the superior performance of the proposed approach. A value of b(k) that equals 1 represents
the case where no client acknowledgment is received. Consequently, the lower the value of
b(k), the more clients were satisfied by the server’s kth transmission.

However, the signal strength of each client’s pulse at the server depends on its distance
from the server’s antenna. Moreover, it is of dynamic nature due to the mobility of the clients.
Since the path loss is a 1/dn type loss with a typical n = 4, the feedback pulse of clients
located close to the broadcast server will be orders of magnitude stronger than the pulses of
clients further away. In order to prevent those clients that are closer to the server’s antenna
from dominating the voting, we use a power control mechanism on the returning pulses. Thus,
every information item will be broadcast including information regarding the signal power
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used for its transmission. Due to path loss, clients far from the base station will receive the
item and measure a low signal power. Based on the received signal power of the item and
the piggybacked information regarding the signal power at which the item was originally
transmitted, the client will accordingly set the power of its feedback pulse. Thus, clients
acknowledging the receipt of an item will measure the item’s signal power and set the power
of their feedback pulse to be the inverse of the ratio (power of the received item) / power of
the item transmission). For example, assume that the server broadcasts all items with signal
power 1. Upon reception by a client of a item with power k (k ≤ 1), the client will set the
power of its feedback pulse at 1/k. Using this form of power control, the contribution of each
client’s feedback pulse at the server will be the same order of magnitude and will not depend
on client-server distance. For the broadcast of each item, the received feedback signals at
the server pass through an operational amplifier [31, 32] that integrates the energy received
during a time interval tp after the broadcast of the item. This time interval is equal to the sum
of the feedback duration and the maximum round-trip propagation delay (the round-trip delay
from the server to a client located at the border of the coverage area). From the total energy
received during this interval the server can conclude about how many stations have transmitted
a feedback pulse [32, 33]. Then, the operational amplifier is being reset in order to begin a
new integration of duration tp after the broadcast of the next item.

Using the re-enforcement scheme of Equation (1), the item probabilities estimated by
the automaton converge to the actual demand probabilities for each information item. Via
simulation, this convergence is shown in Figure 1. Overall client demands for the item are
initially unknown to the server. It can also be seen that they are of a dynamic nature as well:
At some time instant, the initial overall demand probability for the selected item (solid line)
changes to a new one (dashed line). It can be seen that the higher the value of L, the more
faster the convergence is at the expense however of estimation accuracy. Estimation accuracy
for each value of L is computed in this Figure as the mean distance of the automaton estimates
p′i of the demand probability from the actual demand probability pi. Its computation starts after
the automaton estimates have converged to the actual demand probability and ends when the
demand probability for the item changes and thus the automaton estimates begin to converge
to the new overall demand probability. To this end we identified convergence as the point
where the mean value of p′i does not differ from pi by more than 5%. Simulation results in [6]
and [34] have demonstrated efficient operation in environments characterized by dynamic and
a-priori unknown to the server, client demands.

As far as system complexity is concerned, it can be easily seen that the probability updat-
ing scheme of Equation (1) is of O(M) complexity and thus the system maintains the O(M)
complexity of the non-adaptive system ([4]). Furthermore, due to the fact that a large num-
ber of clients does not overload the server or the uplink channel (since what is carried via
the uplink channel is just the sum of the clients’ feedback pulses), the system is scalable and
maintains its efficiency regardless of the number of clients.

D. The Bit Rate Variation Mechanism

To the authors’ knowledge, locality of demand has not been taken into account in related
research so far; on the contrary, clients are assumed to be uniformly distributed inside the
service area and generally make item requests using the same or similar patterns (e.g. [3, 4, 6]).

10



In certain cases however, clients are grouped into several groups located at different places
with the clients of each group having similar demands, different from those of clients at other
groups. In the following discussion all clients are assumed to be positioned outside the near
field of the server’s antenna.

In a typical data broadcasting application (and generally in wireless cellular systems),
service area is an area of certain radius R inside which mobile clients are able to receive
information items while experiencing a Bit Error Rate (BER) below or equal to a certain
requirement value. The size of the service area depends on a number of parameters, such as
the type of modulation that is used, the bit rate, the server’s transmission power and noise
density per Hz and is determined by a simple rule stating that its border is where the received
energy per bit Eb divided by the noise density per Hz N0 equals a certain constant A. The
value of A is determined so that the Eb/N0 ratio results in a BER below or equal to a set
requirement. Thus at the border of the service area it stands that:

Eb

N0
= A ⇒ Eb = A′ (2)

where A′ = AN0.
Since Eb = TbSR, where SR is the received power at distance R from the antenna and Tb

is the bit duration, we can rewrite the above relation as:

TbSR = A′ (3)

Finally, since in wireless cellular environments the path loss of wireless signals at dis-
tance d is a 1/dn type loss (with a typical value of n ≥ 4 ), (3) can be expressed as:

R−nTb = A′ (4)

In fixed bit rate systems, clients inside the service area (at distance d < R) experience
even lower BERs than those required due to smaller distance from the antenna. Thus, for such
clients it holds that Eb > A′ and therefore:

d−nTb > A′, ∀d < R. (5)

Assume that there exists locality of demand, as defined earlier. Then we can exploit the
above mentioned redundancy in the received BER by dynamically reducing the Tb parameter
for each information item i so that it always holds that d−nTb(d) = A′, where d is the distance
of the group of clients that access item i.

The proposed approach works as follows: Each information item comprises a header
that contains information (e.g a sequence number) that uniquely identifies the item. All item
headers are always broadcast with the default Tb value, while the Tb value for the main item
payload can be altered by the server. After the transmission of item i, the server waits for
acknowledgment pulses from all mobile clients that were satisfied by this transmission. Since
we consider groups of clients having the same interests, acknowledgment pulses for a certain
item will be from a group of collocated clients and therefore arrive together at the server. The
server monitors the time elapsed from the broadcast of item i until these pulses are received
and uses this information to calculate the distance d of the group of clients from the antenna.
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The server will use this information to broadcast the payload of the next instance of item i via
a bit duration of Tb(d) that satisfies the requirement that:

d−nTb(d) = A′,⇔ Tb(d) = A′dn (6)

Change of the bit duration is not a problem for the mobile client, as it can be informed
of this via piggybacking of the new bit duration in the item header, which is always broadcast
with the default Tb value.

We now argue use of Equation 6 minimizes overall mean access time. As shown in [4],
the minimum overall mean access time t is given by the following equation:

t =
1

2

(
M∑
i=1

√
pili

)2

(7)

where li and pi are the length and the demand for item i respectively. However, in the
variable rate system the length li of i demanded by a group at distance di depends on the bit
time Tb(di) for that item and is thus equal to Tb(di)li. Thus, Equation 7 now becomes:

t =
1

2

(
M∑
i=1

√
piliTb(di)

)2

=
1

2

(
M∑
i=1

√
piliA′dn

i

)2

(8)

We have the following possibilities for selecting a distance d according to which we will
set the bit time Tb(di) for each item i demanded by a group at distance di from the antenna:

• d < di. However, in this case, since d−n
i Tb(d) = A′ dn

dn
i

< A′ we have no reception
of item i due to an extremely decreased bit time. Thus we cannot use a lower bit time
(higher bit rate) than the one given by Equation 6 for d = di.

• d ≥ di. In this case we have reception since d−n
i Tb ≥ A′. It can be seen from Equation

8 that by setting d > di for any item i, we have t(d) > t(di). Thus overall mean access
time is minimized when d = di for every item i, which is what the proposed bit rate
variation system proposes via Equation 6.

As far as acknowledgment pulses are concerned, a client responds to the server via such
a pulse if it demands item i and successfully receives i’s header. We explain that this provides
support for clients that may have broken away from the main group and are located further
away from the antenna than the main group. Assume that such a client C, at a distance d1
receives only the header of i due to the fact that the main item payload has been transmitted
with a bit rate determined by the location of the main group, which is closer to the antenna.
In that case the server will receive more than one feedback pulses. The one which arrives last
corresponds to C. In order to prevent C from starvation, the server will schedule the broadcast
of the next instance of item i according to the feedback pulse of C (thus the client further
away). This enables the client further away from the group to successfully receive item i
when it is next broadcast. At the next broadcast of item i, C will successfully receive the
item. However, this time C will not transmit a feedback pulse so as not to acknowledge twice
reception of one instance of item i, a fact that would provide inaccurate information regarding
demand for item i to the probability updating scheme.
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To better understand the behavior of the system we present the following example. We
assume a server with a database of two items of unit lengths, two groups of clients, A and B,
with group A always accessing the first item while group B always accesses the second item.
The radius of the service area is R. The distances of groups A and B from the antenna are
dA = R/2 and dB = R/3 respectively. Two members of group A are away from the main
group at distances R/4 and 3R/4. Furthermore, the client at distance 3R/4 (client C) makes
new item requests with non unit probability. Finally, Tb(R) = 1, the path loss exponent n is 4
and initially all item payloads will be transmitted via Tb = 1. We illustrate the following five
example steps of the algorithm:
Step 1: We assume that according to the selection procedure, the server decides to transmit
item 2.

• Clients in group B receive item 2 and transmit their feedback pulses.

• From the time elapsed between the broadcast of item 2 and the reception of the response
from group B, the server calculates the distance of group B from the antenna and sched-
ules the next instance of item 2 to be broadcast via Tb(R/3) which equals Tb(R)

34 = 1/81.

Step 2: Next, the server broadcasts item 1.

• All clients of group A, except client C, demand and receive item 1 and transmit their
feedback pulses.

• The server receives more than one groups of pulses and will schedule the next broadcast
of item 1 to take place according to the pulse corresponding to the location further away
from the antenna, thus via Tb(R/2) which equals 1/16.

Step 3: Next, we assume that the server broadcasts again item 1 via Tb(R/2).

• All clients of group A, including client C, demand this item. Obviously due to the
increased bit rate the item is received by all members of A except client C who only
receives the header of item 1. All members of group A (including client C) acknowledge
item 1.

• The server receives three groups of pulses and will schedule the next broadcast of item 1
to take place according to the location of the acknowledging client further away (client
C), thus via Tb(3R/4) which equals 0.31.

Step 4: Next, the server decides to transmit item 2 via Tb(R/3) as calculated in step 1. For
this broadcast, everything else will be the same with step 1.
Step 5: Next, we assume that the server broadcasts again item 1, this time via Tb(3R/4) as
stated in Step 3.

• All members of group A, including client C, demand and receive item 1.

• All members of group A, except for client C, transmit their feedback pulses. C does not
transmit a feedback pulse due to the reason explained earlier. Thus, the next broadcast
of item 1 will be made via Tb(R/2).
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IV. Performance Evaluation

In order to assess the performance increase of the proposed variable rate system, we used
simulation to compare it to the fixed bit rate system of [6]. The comparison is made in an
environment characterized by client demands that are:

• A-priori unknown to the server.

• Location dependent.

A. Server model

We consider a broadcast server having a database of size Dbs in items. The server is initially
unaware of the demand for each item, so initially every item has a probability estimate p ′

i of
1/Dbs. In the fixed bit rate system, the server broadcasts all items with the same bit rate. In the
variable rate system however, the server determines the bit rate to use for each item according
to the proposed scheme. As far as the item lengths are considered, we compute them similar
to [4]: item lengths vary from L0 = 1 to L1 = 10, however, two cases are considered: In
the first one, the lengths of items from 1 to Dbs are random integers uniformly distributed in
[L0..L1]. In the second one, the length li of a item i is calculated using the formula:

li = round
((

L1 − L0

M − 1

)
(i − 1) + L0

)
, 1 ≤ i ≤ Dbs (9)

where round(x) returns a rounded version of x. These distributions of item lengths are called
”random” and ”increasing” length distributions respectively, according to the terminology in
[4]. Figure 2 shows the lengths of items from 1 to 300 produced by the increasing distribution.

B. Client model

We consider a client population of ClNum clients that have no cache memory, an assumption
also made in other similar research (e.g. [4] and [6]). Clients are grouped into G groups each
one of which is located at a different distance from the antenna and outside the antenna’s near
field. Any client belonging to group g, 1 ≤ g ≤ G is interested in the same subset Secg of the
server’s database. All items outside this subset have a zero demand probability at the clients
of the group. Finally, Seci �= Secj , ∀i, j ∈ [1..G], i �= j, which means that there do not exist
common demands between any two clients belonging to different groups.

Assume that such a subset comprises Num items. The demand probability p i for each
item in place i in that subset, is computed according to the Zipf distribution, which is used in
other papers dealing with data broadcasting as well ([3], [4], [5], [6]):

pi = c
(

1

i

)θ

, where c = 1/
∑
k

(
1

k

)θ

, k ∈ [1..Num] (10)

where θ is a parameter named access skew coefficient. For θ = 0 the Zipf distribution reduces
to a uniform distribution of demand for the items in a subset. For large values of θ, the Zipf
distribution produces increasingly skewed demand patterns. The Zipf distribution can thus
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efficiently model applications that are characterized by a certain amount of commonality in
client demands. Figure 3 shows the demand probabilities per item for different values of θ for
a database comprising 300 items.

Placement of client groups takes place among LP different distance points outside the
antenna’s near field, with the maximum distance corresponding to the coverage radius of the
system. Members of a group g are not located in the same place. Rather, they are uniformly
placed inside a circular area with its center located at a distance Locg. The maximum distance
between any two clients in this area is Gr Size distance points. Moreover, to model clients
that are completely outside the circular area of the main group we introduce the parameter
Dev, which determines for each group the percentage of clients that are located outside the
respective circular area. For every client, a coin toss, weighted by Dev, is made. If the
outcome of the toss states that the client is to deviate from the location of its group then its
position is changed to a new one selected in a uniform manner from the interval [1..LP ].

C. The Simulation Environment

We performed our experiments with an event-driven simulator coded in C. The simulator
models the ClNum clients, the broadcast server and the server-client links as separate enti-
ties. The server has no a-priori knowledge of item demands, so initially all items have the
same demand probability. We assume that the broadcast server’s antenna is at the center
of the circular cell and a path loss model of 1/dn. In order to model different group sizes,
we calculated the size of each group g via the above mentioned Zipf distribution. Thus the
ratio of the number of clients in group g to the number of clients in the entire system is:

c
(

1
g

)θ1
, where c = 1/

∑
k

(
1
k

)θ1
, k ∈ [1..G].

Upon completion of a item’s broadcast, the following events take place:

1. Clients that demanded the item and received its header correctly respond with a power-
controlled feedback pulse. Those that demanded and received the entire item correctly
also proceed to calculate the next item to access.

2. The sum of the acknowledging feedback pulses is used by the automaton at the server
to update its estimation of the item probabilities.

3. In the variable rate system, the bit rate for the next broadcast of this item is calculated
using the received feedback.

Assume that any client located at distance d receives items with Eb = Th. In the fixed
bit rate system every item being broadcast is assumed to be correctly decoded at the mobile
clients. As was mentioned earlier, item headers are broadcast with the default bit rate and are
thus always correctly decoded by clients in the variable rate system as well. Item payloads
however are correctly decoded by clients in the variable rate system if and only if they arrive
at the demanding clients with an Eb figure being at least equal to Th. Thus, the error model
is dynamic in terms of the transmission power per bit figure (thus with client-server antenna
distance as well), as when this figure is lower from a certain threshold (Th) the item payload
is assumed not correctly received at the client.
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The simulation is carried out until at least N requests are satisfied at each client, meaning
that overall, at least N ∗ ClNum requests have been served. Finally, the overhead due to the
duration of the feedback pulse and the signal propagation delay is defined via the parameter
Ovh.

D. Simulation results

The simulation results presented in this section were obtained with the following parameters
values: n = 4, Dbs=300, ClNum=10000, G = 5, Sec1 = [0..119], Sec2 = [120..209],
Sec3 = [210..239], Sec4 = [240..269], Sec5 = [270..299], LP = 100, N=1000, Ovh = 0.1,
Gr Size = 10, L=0.15, a=10−4. Client groups are uniformly distributed inside the service
area.

In Figures 4-9 we keep the positions of groups fixed so as to examine the behaviour of the
system for varying group sizes. Figures 4-6 display results when the item lengths follow the
random distribution, while for the same network parameters, Figures 7-9 display results when
the item lengths follow the increasing distribution. These Figures contain results that compare
the performance of the fixed bit rate system to that of the adaptive one for different values of
Dev in three different network environments, N1, N2, N3. The simulation parameters of these
three environments are:

1. Network N1: Loc1 = 10, Loc2 = 30, Loc3 = 50, Loc4 = 70, Loc5 = 90, θ1 = 1.0

2. Network N2: Loc1 = 10, Loc2 = 30, Loc3 = 50, Loc4 = 70, Loc5 = 90, θ1 = 0.0

3. Network N3: Loc1 = 90, Loc2 = 70, Loc3 = 50, Loc4 = 30, Loc5 = 10, θ1 = 1.0

In Figures 10, 11 we present the results of multiple simulations that compare the perfor-
mance of the proposed approach for various values of Dev to that of the fixed rate system for
item lengths following the random (Figure 10) and increasing distributions (Figure 11). What
varies here (x-axis) is the positions of the groups. Every experiment is made for a different set
of uniformly random selection of group placements. In these experiments we set θ = 1 and
θ1 = 0. Moreover, in order to assess the impact of parameter L and thus estimation accuracy
on system performance we present in Figures 12, 13 results of system performance for various
values of L. Finally, in Figure 14 we compare the performance of the proposed system to that
of the fixed rate one for Networks N1, N2, N3, for item lengths following the random distrib-
ution, when there is no locality of demand. Thus, this experiment assumes that demands are
randomly distributed among all clients.

The main conclusions that can be drawn from the Figures are:

• The performance of all schemes improves for increasing values of the data skew pa-
rameter θ. This is expected behavior [3, 4, 6, 34], as increasing values of θ lead to
increased commonality in client demands.

• The performance of the adaptive bit rate system is superior to that of the fixed bit rate
one in all cases. This is due to the fact that in the adaptive system bit rate is not fixed
but dynamically determined by client distance from the antenna; thus many items are
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transmitted much faster than in the fixed bit rate system resulting to the overall perfor-
mance increase. This fact is supported by the data in Table 1, which shows the mean
bit duration for data payload for the two schemes and the various values of Dev for
Networks N1, N2, N3 for θ = 1.0 when using the random item length distribution. The
mean bit duration is normalized to the bit duration of the fixed-rate system. From Table
1 and Figures 4-6, it can be seen that for a certain Network, a small mean bit duration
results in performance improvement over cases where the mean bit duration is higher.

• For increasing values of Dev the performance of the adaptive system declines, remain-
ing however significantly superior to that of the fixed bit rate system. This is due to the
fact that as Dev �= 0, not all members of a group are located at the same distance from
the antenna; thus in some cases information item broadcasts for a certain client group
are also acknowledged by clients further away than the location of the main group. Thus
in many cases, it is the feedback pulse of the client that is furthest away that determines
the bit rate to be used for the next broadcast of the same information item. This rea-
soning also explains the fact that for a certain Network, larger mean bit durations are
observed in Table 1 for larger values of Dev.

• The performance of the adaptive bit rate system is sometimes better when the sizes of
groups that are located closer to the antenna are larger (e.g. Figure 4 compared to 5 and
6 and Figure 7 compared to 8 and 9). This is due to the fact that when the groups close
to the antenna are larger, most of the demands of the client population will be made
from these groups. Therefore, most of the client population demands will be fulfilled
via very small bit durations, leading to the performance improvement over cases where
the larger groups are further away. However even in the case where the largest group is
the one that is furthest away of the antenna (e.g. Figures 6 and 9), the performance of
the adaptive bit rate system is significantly better than that of the fixed bit rate one.

• Another interesting observation is the fact that although in some cases the mean bit
duration is essentially the same, there exists a small performance difference for some
values of θ. For example, in the cases of random length distribution, the performances
for Dev = 0.15 and Dev = 0.30 in Network N2 is slightly worse than the corresponding
ones in N1. Such situations are attributed to the different sizes of the various groups that
affect demand skewness. Returning to our example, in Network N2 the fact that θ1 = 0
means that all groups are of the same size. Thus, the number of clients that make
requests for each subset Secg of the database is the same. However, in Network N1

the fact that θ1 = 1 makes some groups larger than others; thus some items in certain
database subsets are now demanded by many more clients than items in other subsets, a
fact that obviously increases demand skewness in N1 and explains its small performance
gain over N2 in cases where the mean bit rates in N1 and N2 are nearly the same.

• It can be seen in Figures 10, 11 that the exact amount of performance gain of the pro-
posed system over the fixed rate one is dependent on the actual placements of the groups.
In these Figures, several maxima and minima occur for the overall mean access time in
the proposed system. This is due to the actual random topologies: maxima occur when
the random group placements result to most groups located close to the border of the ser-
vice area (e.g. in experiment no. 10, groups are in positions 93, 77, 46, 94, 92), whereas
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minima occur in the opposite case. However, it can be clearly seen from Figures 10,
11 that irrespective of group placements the performance of the proposed approach is
always significantly superior to that of the fixed rate system.

• Another interesting observation from Figures 10, 11 is that the performance of the pro-
posed system over the various random topologies starts to smooth for increasing values
of Dev. This is due to the reason explained earlier: for increasing Dev the performance
of the adaptive system declines. An increasing Dev does not significantly affect perfor-
mance in topologies where most client groups are close to the border of the service area
(e.g. experiment no.10 ). However it significantly affects topologies where most client
groups are closer to the antenna, as in this case an increasing number of clients will be
located further away than the main groups and consequently these clients’ acknowledg-
ments will increase the bit durations. Thus, the overall mean access time increases and
performance over the various random topologies is smoothed for an increasing Dev.

• From Figure 12, we can see that there do not exist significant differences in performance
when using different values of parameter L. This is because the improvement of fast
convergence in the case of a large L is negated by smaller estimation accuracy and vice
versa. There exist only small performance differences in favour of using a smaller L
both for the fixed rate system as well as for the adaptive rate one for Dev > 0. These
differences are due to the effect of smaller estimation accuracy when using a large value
of L. To show schematically these differences, the performances for the extreme cases
of a small L (0.05) and a large L (0.4) of Figure 12 are plotted together in Figure 13.

• In Figure 14 we compare the performance of the proposed system to that of the fixed rate
one for Networks N1, N2, N3when demands are randomly distributed among all clients.
Item lengths are computed according to the random distribution. We can see that even in
that case where there is no locality of demand, the performance of the proposed system
(dashed plots) is not worse than that of the fixed rate one (solid plots). We have obtained
similar results for the case of the increasing length distribution as well.

V. Conclusions and future work

With the increasing popularity of wireless networks and mobile computing, data broadcasting
has emerged as an efficient way of delivering data to mobile clients having a high degree of
commonality in their demand patterns. In many cases clients are grouped into several groups,
each one in a different location, with the members of each group having similar demands.
This paper proposed a mechanism that exploits locality of demand in order to increase the
performance of wireless data dissemination systems. Specifically, it trades the Eb redundancy
at a distance smaller than the coverage radius, for an increased bit rate for transmission of
items demanded by client groups at this distance. Knowledge of client positions is conveyed
to the server via a simple feedback from the clients. Simulation results have been presented
that reveal significant performance improvement over fixed bit rate systems in environments
characterized by locality of client demands.

In the context of the proposed adaptive rate system, the focus of our ongoing research
is to use multiple directional antennas instead from a single omnidirectional one. Equipped
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with one Learning Automaton per antenna, this approach builds on the idea that if a group of
interest is known to be in one location, then the corresponding antenna will transmit a beam
only in that direction, thus resulting to significant overall performance increase.
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N1 N2 N3

Fixed-rate 1 1 1
Adaptive, Dev=0 0.12 0.25 0.43

Adaptive, Dev=0.15 0.58 0.63 0.68
Adaptive, Dev=0.3 0.75 0.78 0.79

Table 1: Mean bit duration in Networks N1, N2, N3 for the fixed and adaptive rate systems
when using the random item length distribution. θ = 1.0.
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Figure 1: Convergence of automaton estimation of the demand of a data item.
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Figure 2: Lengths of server’s data items calculated using the increasing length distribution.
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Figure 3: Item demand probabilities produced by the Zipf distribution for different values of
θ.
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Figure 4: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 10, 30, 50, 70, 90. Item lengths are calculated with the random
distribution. θ1 = 1.
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Figure 5: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 10, 30, 50, 70, 90. Item lengths are calculated with the random
distribution. θ1 = 0.
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Figure 6: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 90, 70, 50, 30, 10. Item lengths are calculated with the random
distribution. θ1 = 1.
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Figure 7: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 10, 30, 50, 70, 90. Item lengths are calculated with the increasing
distribution. θ1 = 1.
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Figure 8: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 10, 30, 50, 70, 90. Item lengths are calculated with the increasing
distribution. θ1 = 0.
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Figure 9: Overall Mean Access Time in unit items versus access skew coefficient θ. Client
Groups are in positions 90, 70, 50, 30, 10. Item lengths are calculated with the increasing
distribution. θ1 = 1.
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Figure 10: Overall mean access time for various uniformly random placements of groups.
θ = 1, θ1 = 0. Item lengths are calculated with the random distribution.
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Figure 11: Overall mean access time for various uniformly random placements of groups.
θ = 1, θ1 = 0. Item lengths are calculated with the increasing distribution.
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Figure 12: Overall Mean Access Time in unit items versus access skew coefficient θ for vari-
ous values of L. Client Groups are in positions 10, 30, 50, 70, 90. Item lengths are calculated
with the random distribution. θ1 = 1.
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Figure 13: Overall Mean Access Time in unit items versus access skew coefficient θ for L =
0.05 (solid plots) and L = 0.4 (dashed plots). Client Groups are in positions 10, 30, 50, 70,
90. Item lengths are calculated with the random distribution. θ1 = 1.
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Figure 14: Overall Mean Access Time in unit items versus access skew coefficient θ when
demands are randomly distributed among all clients, for Networks N1, N2, N3. Item lengths
are calculated with the random distribution.
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