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Exploiting LTE Signals for Navigation:

Theory to Implementation

Kimia Shamaei , Student Member, IEEE, Joe Khalife , Student Member, IEEE,

and Zaher M. Kassas , Senior Member, IEEE

Abstract— Exploiting cellular long-term evolution (LTE) down-
link signals for navigation purposes is considered. First, the trans-
mitted LTE signal model is presented and relevant positioning
and timing information that can be extracted from these signals
are identified. Second, a software-defined receiver (SDR) that
is capable of acquiring, tracking, and producing pseudoranges
from LTE signals is designed. Third, a threshold-based approach
for detecting the first peak of the channel impulse response is
proposed in which the threshold adapts to the environmental
noise level. This method is demonstrated to be robust against
noise and interference in the environment. Fourth, an approach
for estimating pseudoranges of multiple base stations by tracking
only one base station is proposed. Fifth, a navigation framework
based on an extended Kalman filter is proposed to produce
the navigation solution using the pseudorange measurements
obtained by the proposed SDR. Finally, the proposed SDR is
evaluated experimentally on an unmanned aerial vehicle (UAV)
and a ground vehicle. The root mean squared-error (RMSE)
between the GPS navigation solution and LTE signals from three
base stations produced by the proposed SDR for the UAV is shown
to be 8.15 m with a standard deviation of 2.83 m. The RMSE
between the GPS navigation solution and LTE signals from six
base stations in a severe multipath environment for the ground
vehicle is shown to be 5.80 m with a standard deviation of 3.02 m.

Index Terms— Navigation, positioning, signals of opportunity,
LTE, software-defined receiver.

I. INTRODUCTION

T
HE Global Positioning System (GPS) has been at the

core of virtually all navigation systems over the past

few decades, providing accurate positioning and timing infor-

mation for both military and civilian applications. However,

GPS signals are severely attenuated indoors and in deep urban

canyons and are susceptible to unintentional interference,

intentional jamming, or malicious spoofing [1]–[4]. Recent

approaches to overcome GPS drawbacks aimed at exploit-

ing ambient signals of opportunity (SOPs). SOPs are radio

frequency (RF) signals that are not designed for navigation
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purposes and are freely available when GPS signals are

unusable [5]–[11].

The literature on SOPs answers theoretical questions on the

observability and estimability of the SOPs landscape for vari-

ous a priori knowledge scenarios [12] and prescribes receiver

motion strategies for accurate receiver and SOP localization

and timing estimation [13]–[15]. Moreover, a number of recent

experimental results have demonstrated receiver localization

and timing via different SOPs [16]–[20]. Cellular SOPs are

particularly attractive for navigation purposes due to their

abundance, geometric diversity, high transmitted power, and

large bandwidth [21].

In recent years, interest in long-term evolution (LTE) sig-

nals as SOPs has emerged. LTE has become the promi-

nent standard for fourth-generation (4G) communication

systems. Its multiple-input multiple-output (MIMO) capabil-

ities allowed higher data rates to be achieved compared to

previous generations of wireless standards. The high band-

widths and data rates employed in LTE systems have made

LTE signals attractive for navigation as well.

Two types of positioning techniques can be defined for LTE,

namely network-based and user equipment (UE)-based posi-

tioning. The network-based positioning capabilities were

enabled in LTE Release 9 by introducing a broadcast posi-

tioning reference signal (PRS). In positioning with the PRS,

the dedicated resources to the PRS are free from the inter-

ference and the expected positioning accuracy is on the order

of 50 m [22]. However, PRS-based positioning suffers from a

number of drawbacks: (1) the user’s privacy is compromised

since the user’s location is revealed to the network [23],

(2) localization services are limited only to paying subscribers

and from a particular cellular provider, (3) ambient LTE sig-

nals transmitted by other cellular providers are not exploited,

and (4) additional bandwidth is required to accommodate

the PRS, which caused the majority of cellular providers to

choose not to transmit the PRS in favor of dedicating more

bandwidth for traffic channels. To circumvent these drawbacks,

UE-based positioning approaches that exploit the cell-specific

reference signal (CRS) have been explored, where several

advanced signal processing techniques exploited to achieve a

performance similar to the PRS [24]–[28].

Software-defined receivers (SDRs) have been recently pro-

posed in the literature for navigation using LTE signals [24],

[28]. However, there are several challenges associated with

navigating with these SDRs, which rely on acquiring the
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primary synchronization signal (PSS) transmitted by the LTE

base station (also known as eNodeB). The first challenge

results from the near-far effect created by the strongest PSS,

which makes it impossible for the receiver to individually

acquire the remaining ambient PSSs. A simple solution would

be to track only the strongest PSSs (up to three). This raises

a second challenge: the number of intra-frequency eNodeBs

that the receiver can simultaneously use for positioning is

limited [29]. To circumvent this problem, other cell-specific

signals can be tracked, in which case the receiver must obtain

high-level information of the surrounding eNodeBs, such as

their cell IDs, signal bandwidths, and the number of transmit-

ting antennas. The literature on LTE-based navigation assumes

this information to be known a priori, which raises the third

challenge associated with the published SDRs. In practice, it is

desirable to have a receiver that is capable of obtaining this

information on-the-fly in unknown environments.

An initial study addressing these challenges was conducted

in [30] in which an SDR was proposed for navigating with

LTE signals. The proposed SDR acquires the transmitted

signal from the eNodeBs with the highest power. Then, system

information and the cell IDs of the neighboring eNodeBs are

obtained on-the-fly, which enables the receiver to acquire all

the eNodeBs in the environment. The secondary synchroniza-

tion signal (SSS) is used to track the time-of-arrival (TOA)

of each eNodeB. To improve TOA estimation in a multipath

environment, the channel impulse response (CIR) is estimated

using the CRS, then peaks are detected by assigning a thresh-

old, and finally the TOA is obtained from the first detected

peak. While the SDR design in [30] produced promising

results, a number of issues were not addressed: (1) design

and implementation of a robust and computationally efficient

method to detect the first peak of the CIR, (2) tracking the

highest number of eNodeBs in the environment to increase

geometric diversity, and (3) estimating the clock biases of the

receiver and eNodeBs. This paper addresses these issues.

Several studies have been conducted to tackle the first issue

of estimating the first peak of the CIR [26], [28], [31]–[34].

In [31] and [32], a method to jointly estimate the CIR and

the time delay was proposed. The CIR was modeled statisti-

cally by a skew-t distribution in [34], which improves TOA

estimation for low bandwidth signals. A super resolution algo-

rithm (SRA) was exploited in [28] to obtain the TOA, which

resulted in a root mean squared-error (RMSE) of 31.09 m.

Although these methods yielded a relatively good positioning

accuracy, they are computationally expensive. A first arriving

path detection using maximum likelihood in a correlation-

based approach was discussed in [33]. A threshold-based

approach was used in [26] and [35] to detect the first path.

This method is computationally low-cost, but does not adapt

to the environment, which causes significant errors when the

noise level changes.

To the authors’ knowledge, the second issue has not been

addressed in the literature. To overcome the third issue, some

approaches assume that the receiver has access to estimates of

its own clock bias (from GPS signals), enabling the receiver

to estimate the difference between its clock bias and the clock

bias of the eNodeB in a post-processing fashion [26], [28].

In practice, the UE may not have access to estimates of

its clock bias due to unavailability of GPS signals. Other

approaches synchronize the receiver and transmitter through

cables in the lab [35].

This paper extends [30] to address these issues and makes

the following contributions:

• An SDR architecture for navigating with LTE signals is

presented and the signal processing associated with its

different stages are discussed.

• A TOA estimation method is presented. This method

is highly robust against interference and noise and can

be adapted to the particular environment in which the

receiver is navigating.

• A method to estimate the TOA from multiple eNodeBs by

tracking only one eNodeB is discussed. This enables the

receiver to obtain CRS-based TOA measurements from

eNodeBs that cannot be acquired and tracked due to their

low carrier-to-noise ratio (C/N0).

• A framework based on an extended Kalman filter (EKF)

is discussed to estimate on-the-fly the position of the

receiver along with the difference of the clock biases

between the receiver and each eNodeB.

In addition, to evaluate the proposed approaches, results

from two experimental demonstrations are presented. In the

first demonstration, an unmanned aerial vehicle (UAV) is

navigating exclusively with LTE signals from 3 eNodeBs.

The trajectories corresponding to a GPS solution, which has

a horizontal positioning accuracy of 5 m [36], are compared

with the proposed LTE SDR solution. The RMSE between the

trajectories is shown to be 8.15 m with a standard deviation

of 2.83 m and a maximum difference of 12.38 m.

The second demonstration considers a ground vehicle in an

urban environment in which the received LTE signal suffered

from severe multipath. To alleviate the effect of multipath,

the proposed method for detecting the first peak of the CIR

is employed. The navigation solution from 6 LTE eNodeBs

is compared to the GPS solution. The RMSE between the

trajectories is shown to be 5.80 m with a standard deviation

of 3.02 m and a maximum difference of 14.96 m. The proposed

method is also compared to other methods from the literature.

Throughout the paper, italic small bold letters

(e.g., x) represent vectors in the time-domain, italic capital

bold letters (e.g., X) represent vectors in the frequency-

domain, and capital bold letters represent matrices (e.g., X).

The remainder of this paper is organized as follows.

Section II provides an overview of LTE signals. Section III

presents the LTE SDR architecture. Section IV discusses

the proposed method for detecting the first peak of the

CIR. Section V proposes a method for tracking multiple

eNodeBs by tracking only one eNodeB. Section VI presents

the framework to obtain the navigation solution. Section VII

shows the experimental results. Concluding remarks are given

in Section VIII.

II. LTE FRAME AND REFERENCE SIGNALS STRUCTURE

In this section, the architecture of an LTE frame is first

discussed. Then, the structure of three main LTE signals which
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can be used for navigation, namely the PSS, SSS, and CRS is

explained.

A. LTE Frame Structure

In LTE downlink transmission, data is encoded using

orthogonal frequency division multiplexing (OFDM). OFDM

is a transmission method in which the symbols are mapped

onto multiple carrier frequencies called subcarriers. The serial

data symbols {S1, . . . , SNr } are first parallelized in groups of

length Nr , where Nr represents the number of subcarriers that

carry data. Then, each group is zero-padded to length Nc,

which is the total number of subcarriers, and an inverse fast

Fourier transform (IFFT) is taken. The value of Nc is set to

be greater than Nr to provide a guard band in the frequency-

domain. Finally, to protect the data from multipath effects,

the last LC P elements of the obtained symbols are repeated

at the beginning of the data, called the cyclic prefix (CP).

The transmitted symbols can be obtained at the receiver by

executing these steps in reverse order. Since the frequency

reuse factor in LTE systems is one, all the eNodeBs of the

same operator use the same frequency band. To reduce the

interference caused by sharing the same frequency band, each

signal is coded to be orthogonal to the transmitted signals

from other eNodeBs. Using different frequency bands makes

it possible to allocate the same cell IDs to the eNodeBs from

different operators.

The obtained OFDM signals are arranged in multiple blocks,

which are called frames. In an LTE system, the structure of

the frame depends on the transmission type, which can be

either frequency division duplexing (FDD) or time division

duplexing (TDD). Due to the superior performance of FDD

in terms of latency and transmission range, most network

providers use FDD for LTE transmission. Hence, this paper

considers FDD for LTE transmission and for simplicity an

FDD frame is simply called a frame.

A frame is composed of 10 ms data, which is divided

into either 20 slots or 10 subframes with a duration

of 0.5 ms or 1 ms, respectively. A slot can be decomposed

into multiple resource grids (RGs) and each RG has numer-

ous resource blocks (RBs). Then, an RB is broken down

into the smallest elements of the frame, namely resource

elements (REs). The frequency and time indices of an RE are

called subcarrier and symbol, respectively. The structure of the

LTE frame is illustrated in Fig. 1 [37].

Note that Nc , Nr , and the total bandwidth W , are assigned

by the network provider and can only accept a discrete set of

values. The subcarrier spacing is typically � f = 15 KHz.

When a UE receives an LTE signal, it must first convert

the signal into the frame structure to be able to extract the

transmitted information. This is achieved by first identify-

ing the frame start time. Then, knowing the frame timing,

the receiver can remove the CPs and take a fast Fourier

transform (FFT) of each Nc symbols. The duration of a normal

CP is 5.21 µs for the first symbol of each slot and 4.69 µs

for the rest of the symbols [37].

B. Timing Signals

To provide symbol timing, the PSS is transmitted on the

last symbol of slot 0 and repeated on slot 10. The PSS is a

Fig. 1. LTE frame structure.

length-62 Zadoff-Chu sequence, which is located in the

62 middle subcarriers of the bandwidth, excluding the DC

subcarrier [38]. The PSS is transmitted in only three possible

sequences which map to an integer value N
(2)
I D ∈ {0, 1, 2},

representing the sector number of the eNodeB.

The SSS is an orthogonal length-62 sequence, which is

transmitted in either slot 0 or 10 in the symbol preceding

the PSS and on the same subcarriers as the PSS. The SSS

is obtained by concatenating two maximal-length sequences

scrambled by a third orthogonal sequence generated based

on N
(2)
I D . There are 168 possible sequences for the SSS that

are mapped to an integer number N
(1)
I D ∈ {0, . . . , 167} called

the cell group identifier. After determining N
(1)
I D and N

(2)
I D ,

the eNodeB’s cell ID can be calculated as NCell
I D = 3N

(1)
I D +

N
(2)
I D . The cell ID is used for data association purposes.

The CRS is an orthogonal sequence, which is mainly

transmitted to estimate the channel frequency response (CFR).

The transmitted OFDM signal from the u-th eNodeB at the

k-th subcarrier and on the i -th symbol can be expressed as

Y
(u)
i (k) =

{

S
(u)
i (k), if k ∈ N

(u)
C RS,

D
(u)
i (k), otherwise,

(1)

where S
(u)
i (k) represents the CRS sequence; N

(u)
C RS denotes

the set of subcarriers containing the CRS, which is a function

of the symbol number, port number, and the cell ID; and

D
(u)
i (k) represents some other data signals. Assuming that the

transmitted signal propagated in an additive white Gaussian

noise (AWGN) channel, the received signal in the i -th symbol

will be

Ri (k) =

U−1
∑

u=0

H
(u)
i (k)Y

(u)
i (k) + W i (k), (2)

where H
(u)
i (k) is the CFR, U is the total number of eNodeBs

in the environment, and W i (k) is a white Gaussian random

variable representing the overall noise in the received signal.

III. RECEIVER ARCHITECTURE

This section discusses the various stages of the proposed

LTE SDR, depicted in Fig. 2.

A. Signal Acquisition

The first step in acquiring an LTE signal is to extract the

transmitted frame timing and the eNodeB’s cell ID [38]–[40].

These two parameters are obtained by the PSS and

the SSS.
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Fig. 2. High-level block diagram of the receiver architecture.

To detect the PSS, the UE exploits the orthogonality of the

Zadoff-Chu sequences and correlates the received signal with

all the possible choices of the PSS according to

Corr(r, sPSS)m =

N−1
∑

n=0

r(n)s
∗
PSS(n + m)N

= r(m) ⊛N s
∗
PSS(−m)N, (3)

where r(n) is the received signal, sPSS(n) is the receiver-

generated PSS in time-domain, N is the frame length,

(·)∗ denotes the complex conjugate, (·)N denotes the circular

shift operator, and ⊛N represents the circular convolution

operation. Taking the FFT and IFFT of (3) yields

Corr(r, sPSS)m = IFFT{R(k)S
∗
PSS(k)}, (4)

where R(k) � FFT{r(n)} and SPSS(k) � FFT{sPSS(n)}.

The FFT-based correlation in (4) is also used to detect the

SSS signal. Once the PSS and SSS are detected, the UE can

estimate the frame start time.

The apparent Doppler frequency, including the carrier fre-

quency offset due to clock drift and the Doppler shift, can be

estimated by the CP as

f̂D =
1

2π NcTs

arg

⎧

⎨

⎩

∑

n∈NC P

r(n)r
∗(n + Nc)

⎫

⎬

⎭

,

where NC P is the set of CP indices and Ts is the sam-

pling interval [41]. Upon estimating the Doppler frequency,

the acquisition of the LTE signal is complete. Fig. 3 summa-

rizes the LTE signal acquisition process.

B. System Information Extraction

Parameters relevant for navigation purposes include the sys-

tem bandwidth, number of transmitting antennas, and neigh-

boring cell IDs. These parameters are provided to the UE

in two blocks, namely the master information block (MIB)

and the system information block (SIB). In this section,

the decoding of each block is discussed.

1) MIB Decoding: In order to exploit the high-bandwidth

CRS signal, which improves the navigation performance in

multipath environments or in the presence of interference,

the UE must first reconstruct the LTE frame from the received

signal. To do so, the actual transmission bandwidth and

number of transmitting antennas, which are provided in the

MIB, must be decoded. The MIB is transmitted on the physical

broadcast channel (PBCH) and consists of 24 bits of data:

3 bits for downlink bandwidth, 3 bits for frame number, and

18 bits for other information and spare bits. The MIB is coded

Fig. 3. Signal acquisition block diagram.

and transmitted on 4 consecutive symbols of a frame’s second

slot. However, it is not transmitted in REs reserved for the

reference signals. Fig. 4 shows the steps the MIB message

goes through before transmission [37], [42].

In the first step, a cyclic redundancy check (CRC) of length

L = 16 is obtained using the cyclic generator polynomial

gC RC(D) = D16 + D12 + D5 + 1. The number of transmitting

antennas is not transmitted in the 24-bit MIB message. Instead,

this information is provided in the CRC mask, which is a

sequence used to scramble the CRC bits appended to the MIB.

The CRC mask is either all zeros, all ones, or [0, 1, 0, . . . , 0, 1]

for 1, 2, or 4 transmitting antennas, respectively. In order to

obtain the number of transmitting antennas from the received

signal, the UE needs to perform a blind search over the number

of all possible transmitting antennas. Then, by comparing the

locally-generated CRC scrambled by the CRC mask to the

received CRC, the right number of transmitting antennas may

be identified.

In the second step, channel coding is performed using a

convolutional encoder with constraint length 7 and coding

rate 1/3. The configuration of the encoder is shown in Fig. 5.

The initial value of the encoder is set to the value of the

last 6 information bits in the input stream. The method

illustrated in Fig. 6 is used to decode the received signal [43].

In this method, the received signal is repeated one time.

Then, a Viterbi decoder is executed on the resulting sequence.

Finally, the middle part of the sequence is selected and

circularly shifted.

In the next step, the convolutional coded bits are rate-

matched. In the rate matching step, the obtained data from

channel coding is first interleaved. Then, the outcomes of

interleaving each stream are repeated to obtain a 1920-bit

long array [42]. Next, the output of the rate matching step is

scrambled with a pseudo-random sequence, which is initialized

with the cell ID, yielding unique signal detection for all

eNodeBs. Subsequently, quadrature phase shift keying (QPSK)

is performed on the obtained data, resulting in 960 symbols

which are mapped onto different layers to provide transmission

diversity. To overcome channel fading and thermal noise,

space-time coding is utilized. This process is performed in

the precoding step. Finally, the resulting symbols are mapped

onto the predetermined subcarriers for MIB transmission [42].

2) SIB Decoding: When a UE performs acquisition,

it obtains the cell ID of the ambient eNodeB with the highest

power, referred to as the main eNodeB in this paper. For nav-

igation purposes, the UE needs access to multiple eNodeBs’

signals to estimate its state. One solution is to perform the

acquisition for all the possible values of N
(2)
I D . However, this

method limits the number of intra-frequency eNodeBs that

a UE can simultaneously use for positioning. The second
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Fig. 4. MIB coding process.

Fig. 5. Tail biting convolutional encoder with constraint length 7 and coding
rate 1/3.

solution is to provide a database of the network to the UE.

In this method, the UE needs to search over all possible values

of the cell IDs to acquire the right ones unless the UE knows

its current position, which is not a practical assumption. The

other solution, which is more reliable and overcomes the afore-

mentioned problem, is to extract the neighboring cell IDs using

the information provided in the SIB transmitted by the main

eNodeB. Since other operators transmit on different carrier

frequencies, the same approach can be exploited to extract the

cell IDs of the neighboring eNodeBs from other operators.

Knowing the eNodeBs’ cell IDs, the receiver only needs to

know the position of the eNodeBs using a database or pre-

mapping approaches.

The SIB contains information on (1) the eNodeB to which

it is connected, (2) inter- and intra-frequency neighboring

cells from the same operator, (3) neighboring cells from other

networks (UMTS, GSM, and CDMA2000), and (4) other

information. The SIB has 17 different forms called SIB1 to

SIB17, which are transmitted in different schedules. SIB1,

which is transmitted in subframe 5 of every even frame, carries

scheduling information of the other SIBs. This information can

be used to extract the schedule of SIB4, which has the intra-

frequency neighboring cell IDs. To decode SIB1, the UE has

to go through several steps. In each step, the UE needs to

decode a physical channel to extract a parameter required to

perform other steps.

In general, all the downlink physical channels are coded

in a similar fashion before transmission, as shown in Fig. 7.

Although all the physical channels have the same general

structure, each step in Fig. 7 differs from one channel to

another. In Subsection III-B.1, each step was discussed for

the PBCH. Further details are given in [37] and [42].

In the following, the steps to retrieve information from

SIB4 are briefly outlined:

3) PCFICH Decoding: The UE first obtains the control

format information (CFI) from the physical control format

indicator channel (PCFICH). The CFI indicates the number of

REs dedicated to the downlink control channel and can take

the values 1, 2, or 3. To decode the CFI, the UE first locates

the 16 REs dedicated to the PCFICH. Then, it demodulates

the obtained symbols by reverting the steps in Fig. 7, which

results in a sequence of 32 bits. Finally, this sequence, which

can be only one of three possible sequences, is mapped onto

a CFI value.

Fig. 6. MIB channel decoding method.

Fig. 7. General structure of downlink physical channels.

4) PDCCH Decoding: The UE can identify the REs asso-

ciated with the physical downlink control channel (PDCCH)

and demodulate them by knowing the CFI. This results in a

block of bits corresponding to the downlink control informa-

tion (DCI) message. The DCI can be transmitted in several

formats, which is not communicated with the UE. Therefore,

the UE must perform a blind search over different formats to

unpack the DCI. The right format is identified by a CRC.

5) PDSCH Decoding: The parsed DCI provides the config-

uration of the corresponding physical downlink shared channel

(PDSCH) REs. The PDSCH, which carries the SIB, is then

decoded, resulting in the SIB bits. Subsequently, these bits

are decoded using an Abstract Syntax Notation One (ASN.1)

decoder, which extracts the system information sent on SIBs

by the eNodeB.

Fig. 8 summarizes all the aforementioned steps in this

section.

C. Signal Tracking

After acquiring the LTE frame timing, a UE needs to keep

tracking the frame timing for two reasons: (1) to produce a

pseudorange measurement and (2) to continuously reconstruct

the frame. The PSS and SSS are two possible sequences that

a UE can exploit to track the frame timing. The PSS has only

three different sequences, which causes two main problems

in choosing the PSS for tracking: (1) the interference from

neighboring eNodeBs with the same sector IDs is high and

(2) the number of eNodeBs that the UE can simultaneously

track is limited. The SSS is expressible in 168 different

sequences, hence does not suffer from the same problems as

the PSS. Therefore, the SSS will be exploited for tracking the

frame timing. In this section, the components of the tracking

loops are discussed, namely a frequency-locked loop (FLL)-

assisted phase-locked loop (PLL) and a carrier-aided delay-

locked loop (DLL).

1) FLL-Assisted PLL: The frequency reuse factor in LTE

systems is set to be one, which results in high interference

from neighboring cells. Under interference and dynamic stress,

FLLs have better performance than PLLs. However, PLLs

have significantly higher measurement accuracy compared

to FLLs. An FLL-assisted PLL has both the dynamic and

interference robustness of FLLs and the high accuracy of

PLLs [44]. The main components of an FLL-assisted PLL

are: a phase discriminator, a phase loop filter, a frequency
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Fig. 8. System information extraction block diagram.

discriminator, a frequency loop filter, and a numerically-

controlled oscillator (NCO). The SSS is not modulated with

other data. Therefore, an atan2 discriminator, which remains

linear over the full input error range of ±π , could be used

without the risk of introducing phase ambiguities. A third-

order PLL was designed to track the carrier phase, with a

loop filter transfer function given by

FPLL(s) = 2.4 ωn,p +
1.1ω2

n,p

s
+

ω3
n,p

s2
, (5)

where ωn,p is the undamped natural frequency of the phase

loop, which can be related to the PLL noise-equivalent band-

width Bn,PLL by Bn,PLL = 0.7845 ωn,p [45]. The output of

the phase loop filter is the rate of change of the carrier phase

error 2π f̂D(k), expressed in rad/s, where f̂D(k) is the Doppler

frequency estimate. The phase loop filter transfer function

in (5) is discretized and realized in state-space. The PLL is

assisted by a second-order FLL with an atan2 discriminator

for the frequency as well. The frequency error at time-step k

is expressed as

e fk =
atan2

(

Q pk Ipk−1 − Ipk Q pk−1 , Ipk Ipk−1 +Q pk Q pk−1

)

Tsub

,

where Spk = Ipk + j Q pk is the prompt correlation at time-step

k and Tsub = 10 ms is the subaccumulation period, which is

chosen to be one frame length. The transfer function of the

frequency loop filter is given by

FFLL(s) = 1.414 ωn, f +
ω2

n, f

s
, (6)

where ωn, f is the undamped natural frequency of the fre-

quency loop, which can be related to the FLL noise-equivalent

bandwidth Bn,FLL by Bn,FLL = 0.53 ωn, f [45]. The output

of the frequency loop filter is the rate of change of the

angular frequency 2π ˆ̇fD(k), expressed in rad/s2. It is therefore

integrated and added to the output of the phase loop filter. The

frequency loop filter transfer function in (6) is discretized and

realized in state-space.

2) DLL: The carrier-aided DLL employs the non-coherent

dot-product discriminator given by

eck = C
[

(Iek − Ilk )Ipk + (Qek − Qlk )Q pk

]

,

where eck is the code phase error and C is a normalization

constant given by

C =
Tc

2(E{|Spk |
2} − 2σ 2

I Q )
,

where Sek = Iek + j Qek and Slk = Ilk + j Qlk are the

early and late correlations, respectively, Tc = 1
WSSS

is

the chip interval, WSSS = 63 × 15 = 945 KHz is the

SSS bandwidth, E{·} represents the expectation operator, and

σ 2
I Q is the interference-plus-noise variance. Section IV dis-

cusses how the overall noise level including interference and

channel noise is calculated.

The DLL loop filter was chosen to be similar to (6), with

a noise-equivalent bandwidth Bn,DLL Hz. The output of the

DLL loop filter vDLL (in s/s) is the rate of change of the

SSS code phase. Assuming low-side mixing, the code start

time is updated according to

t̂s(k + 1) = t̂s(k) − Tsub (vDLL,k + f̂D(k)/ fc).

The SSS code start time estimate is used to reconstruct

the transmitted frame. Fig. 9 shows the block diagram of

the tracking loops, where ωc = 2π fc and fc is the carrier

frequency (in Hz).

D. Timing Information Extraction

In LTE systems, the PSS and SSS are transmitted with

the lowest possible bandwidth. The ranging precision and

accuracy of the SSS is analyzed in [46], which shows that the

SSS can provide very precise ranging resolution using conven-

tional DLLs in an environment without multipath. However,

because of its relatively low bandwidth, the SSS is extremely

susceptible to multipath. To achieve more precise localization

using LTE signals, the CRS can be exploited. Ranging pre-

cision of the SSS and the CRS in a semi-urban environment

with multipath were compared experimentally in [47], which

showed that the CRS is more robust to multipath.

In the timing information extraction stage of the receiver,

the TOA is estimated by detecting the first peak of the CIR.

The TOA estimate is then fed back to the tracking loops to

improve SSS tracking. Fig. 10 shows the block diagram of the

timing information extraction stage. A method for estimating

the TOA is proposed in Section IV.

IV. PATH DELAY ESTIMATION

In this section, a TOA estimation method is proposed.

This method is a first-peak estimation algorithm in which the

threshold adapts to the environmental noise.

A. Multipath Detection

The received signal model in the i -th symbol was presented

in (2). The subscript i will be dropped in the sequel for

simplicity of notation. The estimated CFR of the u-th eNodeB

is given by

Ĥ
(u)

(k) = S
(u)∗(k)R(k) = H

(u)(k) + V
(u)(k),

k ∈ N
(u)
C RS , (7)

where V
(u)(k) � S

(u)∗(k)W(k). Equation (7) is obtained using

the fact that
∣

∣S
(u)(k)

∣

∣

2
= 1.

The CIR estimate is obtained by taking an IFFT from the

estimated CFR given by

ĥ
(u)

(n) = IFFT
{

Ĥ
(u)

(k)
}

= h
(u)(n) + v

(u)(n), (8)

where v
(u)(n) � IFFT{V

(u)(k)} ∼ CN (0, σ 2
h ).
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Fig. 9. Signal tracking block diagram.

Fig. 10. Timing information extraction block diagram.

In general, a multipath CIR can be modeled as

h
(u)(n) =

L(u)−1
∑

l=0

α
(u)(l)δ[n − d

(u)(l)],

for n = 0, . . . , Nh − 1,

where α
(u)(l) and d

(u)(l) are the attenuation and the delay

of the l-th path to the u-th eNodeB, respectively, Nh =

|N
(u)
C RS |, and L(u) is the number of multipath components [48].

To simplify the derivation, it is assumed that the receiver’s

low-pass filter has infinite bandwidth. The goal is to esti-

mate d
(u)(0), which represents the line-of-sight (LOS) TOA.

In the absence of noise, L(u) will be the number of non-

zero components in the estimated CIR, and the position of

the non-zero components will be d
(u). In the presence of

noise, the receiver must be able to distinguish between noise

and multipath components at each specific n in the estimated

CIR. This problem is similar to detecting the presence of a

target, h
(u)(d

(u)) (not necessarily a single target), in a noisy

environment. Therefore, the problem can be modeled as a

binary hypothesis test, with H1 indicating the presence of a

target (LOS or multipath signal) and noise, and H0 indicating

the presence of only noise. The hypotheses can be expressed as

H0 : ĥ
(u)

(n) = v
(u)(n), for n �= d

(u)(l),

H1 : ĥ
(u)

(n) = α
(u)(l) + v

(u)(n), for n = d
(u)(l),

where l = 0, . . . , L(u) − 1. It is worth mentioning that the

receiver does not have any knowledge of α
(u)(l), d

(u)(l), and

L(u). Under H0, ĥ
(u)

(n) = v
(u)(n); therefore, |ĥ

(u)
(n)| has

a Rayleigh distribution with a probability density function

(pdf) given by

p
(

|ĥ
(u)

(n)| = r

∣

∣

∣H0

)

=
2r

σ 2
h

e

(

− r2

σ2
h

)

.

Under H1, ĥ
(u)

(n) = α
(u)(l) + v(n), where α

(u)(l) is

assumed to be a complex deterministic constant over a frame

duration. Therefore, |ĥ
(u)

(n)| has a Rician distribution with

the pdf

p
(

|ĥ
(u)

(n)| = r

∣

∣

∣H1

)

= 2r

σ 2
h

e

(

− r2+s2

σ2
h

)

I0

(

2rs

σ 2
h

)

,

where r ≥ 0, I0(·) is the modified Bessel function of zeroth-

order, and s = |α(u)(l)|.

A Neyman-Pearson test is formulated to obtain the decision

threshold, denoted η, where the probability of false alarm pF A

is set to a desired constant and is given by

pF A =

∫ ∞

η

p
(

|ĥ
(u)

(n)| = r

∣

∣

∣H0

)

dr = e
−

η2

σ2
h . (9)

The threshold is then calculated as

η =

√

−σ 2
h ln(pF A). (10)

After determining the threshold, the detection probability is

obtained using

pD =

∫ +∞

η

2r

σ 2
h

e

(

−
r2+|α(u)(l)|2

σ2
h

)

I0

(

2r |α(u)(l)|

σ 2
h

)

dr.

Although it is not possible to obtain a closed-form expression

for the probability of detection, numerical solutions for pD

have been tabulated and can also be computed with software

packages [49]. Fig. 11 demonstrates the receiver operating

characteristics (ROC) for different C/N0 � |α(u)(l)|2/N0,

where N0 � 2σ 2
h /� f .

B. CFAR for Adaptive Threshold Calculation

The derived threshold equation in (10) showed that the

threshold is dependent on the noise variance, σ 2
h . How-

ever, the noise variance continuously changes in a dynamic

environment, and the threshold must be updated accord-

ingly. Changing the threshold to keep a constant pF A is

defined as constant false alarm rate (CFAR). Cell-averaging

CFAR (CA-CFAR), shown in Fig. 12, is one of the CFAR

techniques [50].

In CA-CFAR, each cell is tested for the presence of a signal.

For a given cell under test (CUT), a functional of Nt training

cells separated from the CUT by Ng guard cells is computed.

In a square-law detector, this functional will be the sum of

|ĥ
(u)

(n)|2, which is proportional to the background noise level

given by

Pn =

Nt
∑

m=1

xm,

where xm is the functional evaluated at the m-th training

cell. A threshold can be obtained by multiplying Pn by

a constant K , hence η = K Pn , which can be shown to

have a non-central chi-square distribution with 2Nt degrees

of freedom. The probability of false alarm for a specified

threshold was calculated in (9). The pF A in CA-CFAR can be

obtained by taking the average of (9) over all possible values

of the decision threshold. This yields

η =
(

p
−1/Nt

F A − 1
)

Pn,

which is used to compare the desired cell’s value to the noise

floor.
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Fig. 11. ROC for different C/N0 .

Fig. 12. Block diagram of the CA-CFAR.

To improve the probability of detection while maintaining

a constant pF A, a non-coherent integration can be used. For

this purpose, it is proposed to integrate squared envelopes

of ĥ(u)(n) at different slots and for different transmitting

antennas (assuming that they have the same LOS path) in one

frame duration. Defining ni as the number of non-coherent

integrations, averaging is performed over ni Nt training cells.

Therefore, after integration, the threshold will have a non-

central chi-square distribution with 2 ni Nt degrees of freedom.

By taking the average of the probability of false alarm given

the threshold presented in (9) over the new pdf of this

threshold, it can be shown that [50]

pF A =
1

(1 + K )ni Nt

ni−1
∑

k=0

1

k!

Ŵ(ni Nt + k)

Ŵ(ni Nt )

(

K

K + 1

)k

, (11)

where Ŵ(n) = (n − 1)! is the gamma function. By knowing

pF A and its relation to K according to (11), the value of

K can be solved numerically (e.g. using Newton algorithm)

and the threshold will be determined from η = K Pn .

Using the proposed method for tracking the TOA, the prob-

ability of false alarm in detecting the first peak means that

noise is erroneously detected as a valid signal, which can cause

significant errors and potentially loss of track. To resolve this

problem, a low-pass filter is applied after the CFAR detector,

which removes sudden changes in the estimated TOA. The

localization error with the proposed method is acceptable for

medium to high bandwidth LTE signals (e.g. above 10 MHz).

For lower bandwidths, other methods could be exploited [34].

After detecting d
(u)(0), the residual TOA, τ = Ts d

(u)(0),

is fed-back to the tracking loops to improve the estimated

frame start time t̂s .

V. TRACKING MULTIPLE ENODEBS

To estimate the position of the receiver in a two-dimensional

(2-D) plane using a static estimator, the pseudoranges to at

least three eNodeBs are required and can be obtained by

tracking the signal of each eNodeB. However, tracking all sig-

nals is computationally involved and could prohibit real-time

implementation. Besides, the received signal from an eNodeB

may be highly attenuated; therefore, it may not be possible

to track all ambient SSSs. In this section, a new method is

proposed that exploits the frequency reuse factor of six in

the LTE CRS signals to extract the pseudorange of multiple

eNodeBs while tracking only one eNodeB. In this approach,

the receiver may obtain a list of the neighboring eNodeBs by

decoding the SIB of the main eNodeB. Once the neighboring

eNodeBs cell IDs are known, the receiver may generate the

CRS sequence transmitted by each neighboring eNodeB. With

some assumption on the relative delay (including distance and

clock bias) between eNodeBs, which will be discussed in this

section, the receiver may be able to estimate the CIR of the

neighboring eNodeBs in reference to the main eNodeB. Then,

relative delay is calculated from the CIR for each new frame,

which alleviates the need to track the SSS of the neighboring

cell IDs.

The received symbol at the UE can be written as

r(n) = r
(1)(n) +

U
∑

u=2

r
(u)(n) + w(n), (12)

where r
(1)(n) is the received symbol from the main eNodeB,

r
(u)(n) is the received signal from the u-th eNodeB at time n,

and w(n) is modeled as an additive white Gaussian noise with

variance σ 2
I Q . Defining the received time delay of the u-th

eNodeB as d
(u)(0), which in effect measures the TOA and

the clock biases (see Section IV), the signal will be received

in one of three possible scenarios shown in Fig. 13. Fig. 13(a)

shows the first scenario, which happens when the difference

of the distances to the main eNodeB and to the neighboring

eNodeB is less than the duration of the CP. For a CP of length

4.69 µs, this difference must be less than 1406 m. Fig. 13(b)

shows the second scenario, where the difference is more than

the length of a CP. Fig. 13(c) represents the third scenario,

where the neighboring eNodeB is closer to the receiver than

the main eNodeB. In the second scenario, the neighboring

eNodeBs are significantly far, and it is assumed that the

received signals from these eNodeBs are highly attenuated.

It is also assumed that the third scenario does not happen since

the main eNodeB is defined as the eNodeB with the highest

power, which is usually the closest eNodeB to the receiver.

Defining n
(u)
d � n(u)(0) − n(1)(0) as the time delay differ-

ence between the u-th eNodeB and the main eNodeB, it can

be concluded that for 0 ≤ n
(u)
d ≤ LC P ,

r
(u)(n) = r

(u)(n − n
(u)
d )Nc . (13)

By taking the FFT of (12) and using (2) and (13), the received

signal in the frequency-domain becomes

R(k)= H
(1)(k)Y (1)(k)+

U
∑

u=2

H
(u)(k)Y (u)(k)e

−j
2πn

(u)
d

k

Nc +W(k).

For the symbols carrying the CRS, Y follows the definition

in (1). Therefore, the CFR of the main eNodeB can be obtained

from

Ĥ
(1)

(k) = R(k)S
(1)∗(k) = H

(1)(k) + V
(1)(k),

for k ∈ N
(1)
C RS ,
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Fig. 13. The received symbols of the main and neighboring eNodeBs for:

(a) 0 ≤ n
(u)
d ≤ LC P , (b) n

(u)
d > LC P , and (c) n

(u)
d < 0.

and the estimated CFRs for other eNodeBs are obtained

according to

Ĥ
(u)

(k) = R(k)S
(u)∗(k) = H

(u)(k)e
−

j2πkn
(u)
d

Nc + V
(u)(k),

for k ∈ N
(u)
C RS .

Subsequently, the CIRs are calculated using

ĥ
(1)

(n) = h
(1)(n) + v

(1)(n),

ĥ
(u)

(n) = h
(u)(n − n

(u)
d ) + v

(u)(n). (14)

After obtaining ĥ
(u)

(n), the method proposed in Section IV

can be exploited to determine the first peak of ĥ
(u)

(n), which

represents n
(u)
d . The u-th eNodeB TOA can be calculated as

d
(u)(0) = d

(1)(0) + n
(u)
d .

It is worth mentioning that in this method, the phase

and frequency offsets of the neighboring eNodeBs are not

tracked. The proposed approach is applicable when the carrier

frequency offset between the eNodeBs is less than a subcarrier

spacing. This is a practical assumption since the eNodeBs in

LTE systems are tightly synchronized in frequency. The other

challenge of using this method is that it depends on the relative

location of the main eNodeB and the neighboring eNodeB, and

it is applicable only when the condition 0 ≤ n
(u)
d ≤ LC P is

satisfied.

It is worth mentioning that in a conventional timing acqui-

sition, all eNodeBs must be acquired and tracked separately.

In the proposed approach, only the main eNodeB needs to be

acquired and tracked, and TOA estimates from neighboring

eNodeBs may be obtained by using timing and neighboring

cell ID information obtained from the main eNodeB. The

parameter nd depends on the eNodeB clock as well as on the

distance between the eNodeB and the receiver, and it must be

calculated for every frame, regardless of the eNodeB clock.

VI. NAVIGATION SOLUTION

Sections III–V discussed how TOA estimates can be

extracted from LTE signals. By multiplying the obtained

TOA for the u-th eNodeB, t̂
(u)
s , by the speed-of-light, c,

pseudorange measurements are formed as

ρu(k) = ||rr (k) − rsu ||2 + c ·
[

δtr (k) − δtsu (k)
]

+ vu(k),

where k is the time-step; rr = [xr , yr ]T is the receiver’s

position vector; rsu =
[

xsu , ysu

]T
is the u-th eNodeB’s position

vector; δtr and δtsu are the receiver’s and u-th eNodeB’s clock

biases, respectively, and vu is the measurement noise and

is modeled as a zero-mean Gaussian random variable with

variance σ 2
u . This section discusses receiver state estimation

from these measurements.

One of the main challenges in navigation with LTE signals

is the lack of knowledge of the eNodeBs’ positions and clock

biases. It has been previously shown that an SOP’s position

can be mapped with a high degree of accuracy, whether collab-

oratively or non-collaboratively [51], [52]. Therefore, in this

paper, it is assumed that the positions of the eNodeBs are

known to the receiver. In some LTE deployments, the eNodeBs

are required to be synchronized to within 3 µs [53]. Although

this synchronization is sufficient for communications systems,

it introduces significantly high error in navigation applications.

Therefore, the eNodeBs’ clock biases, which are stochastic and

dynamic, must be continuously estimated using a dynamic

estimator (e.g., an EKF). In this paper, an EKF is used to

estimate the position of the receiver and the difference of the

clock biases of the receiver and each eNodeB, simultaneously.

Observability analysis of an environment comprising multi-

ple receivers and transmitters has been thoroughly addressed

in [12]. The receiver is assumed to have enough a priori

knowledge to make this environment observable, namely its

initial position and velocity, initial clock bias and drift, and

the eNodeBs’ locations. Knowing the receiver’s initial position

and velocity and its initial clock bias and drift could be

obtained from GPS, for example, while the eNodeBs’ locations

could be mapped a priori or obtained from a database. Using

the pseudoranges obtained from the proposed LTE navigation

receiver, an estimator could estimate the state vector composed

of the receiver’s position and velocity as well as the difference

between the clock bias of the receiver and each eNodeB and

the difference between the clock drift of the receiver and each

eNodeB, specifically

x =
[

x
T

pv , x
T

clk1
, . . . , x

T

clkU

]T

,

where x pv � [rT
r , ṙ

T
r ]T; ṙr is the receiver’s velocity vec-

tor; xclku � [(δtr − δtsu ), (δṫr − δṫsu )]
T; δṫr and δṫsu are

the receiver’s and u-th eNodeB’s clock drifts, respectively.

The pseudorange measurements are obtained each Tsub sec-

ond, which was defined to be the subaccumulation period.

Assuming the receiver to be moving according to a velocity

random walk, the system’s dynamics after discretization at a

uniform sampling period Tsub can be modeled as

x(k + 1) = Fx(k) + w(k),

F =

[

Fpv 04×2U

02U×4 Fclk

]

, Fclk =diag
[

Fclk1 , . . . , FclkU

]

,

Fclku =

[

1 Tsub

0 1

]

, Fpv =

[

I2×2 TsubI2×2

02×2 I2×2

]

, (15)
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and wk is a discrete-time zero-mean white noise sequence with

covariance Q = diag[Qpv , Qclk ]. Defining q̃x and q̃y to be

the power spectral densities of the acceleration in x and y

directions, Qpv and Qclk are obtained as

Qpv =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q̃x

T 3
sub

3
0 q̃x

T 2
sub

2
0

0 q̃y

T 3
sub

3
0 q̃y

T 2
sub

2

q̃x

T 2
sub

2
0 q̃x Tsub 0

0 q̃y

T 2
sub

2
0 q̃yTsub

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Qclk =

⎡

⎢

⎢

⎢

⎣

Qclk1 Qclkr . . . Qclkr

Qclkr Qclk2 . . . Qclkr

...
...

. . .
...

Qclkr Qclkr . . . QclkU

⎤

⎥

⎥

⎥

⎦

,

where Qclkr and Qclku are defined as

Qclku � Qclkr + Qclksu
,

Qclkr =

⎡

⎢

⎣

Sw̃δtr
Tsub + Sw̃δ̇tr

T 3
sub

3
Sw̃δ̇tr

T 2
sub

2

Sw̃δ̇tr

T 2
sub

2
Sw̃δ̇tr

Tsub

⎤

⎥

⎦
,

where Sw̃δtr
and Sw̃δ̇tr

are the clock bias and drift process noise

power spectra, respectively, and Qclksu
has a structure similar

to Qclkr , except that Sw̃δtr
and Sw̃δ̇tr

are replaced with Sw̃δtsu

and Sw̃δ̇tsu
, respectively.

Note that our estimator assumes the receiver to be mobile.

For the stationary receiver case, a more advanced estimator

(e.g., multiple model (MM)-type estimator [54]) could be

employed. In this case, one mode of the estimator is matched

to a velocity random walk dynamics, while the other mode is

matched to a stationary dynamics. In practice, the receiver is

typically coupled with an inertial measurement unit (IMU),

which is used to propagate the estimator’s state between

measurement updates from eNodeBs [20].

VII. EXPERIMENTAL RESULTS

In this section, the performance of the proposed SDR is

evaluated. First, the output of each block of the receiver

processing real LTE signals is provided. Then, experimental

results for a UAV and a ground vehicle navigating exclusively

with real LTE signals are presented. In each case, the details

of the exploited hardware and software are provided. Finally,

key concluding remarks are discussed.

A. Proposed SDR Outputs

This subsection presents the internal signals of the pro-

posed receiver, which was implemented in LabVIEW and

MATLAB. An experiment was performed with the proposed

receiver, which was stationary and located close to an eNodeB.

In the first stage of the receiver, acquisition was performed

on the received signal, as discussed in Subsection III-A. The

normalized correlation of the received LTE signal with locally

generated PSS and SSS signals are presented in Fig. 14. It can

Fig. 14. PSS and SSS normalized correlation results with real LTE signals.

be seen that since the PSS is transmitted twice per frame,

the correlation result has two peaks in the duration of one

frame, which is 10 ms. However, the SSS correlation result

has only one peak, since the SSS is transmitted only once per

frame. The result also showed that the highest PSS correlation

peak was at N
(2)
I D = 0 and the highest SSS correlation peak

was at N
(1)
I D = 77. Therefore, the cell ID was calculated to be

NCell
I D = 3 × 77 + 0 = 231.

In the second stage, system information is extracted from

the received signal according to Subsection III-B. The results

showed that the LTE signal was transmitted at a bandwidth

of 10 MHz with 2 transmitting antennas. The neighboring

cell IDs were also obtained for this eNodeB. The rate at

which information extraction must be performed depends on

the receiver dynamics. A receiver that moves very fast may

need to extract the information every few seconds since the

environment is changing quickly; however, a static receiver

may not need to extract the information frequently. One

approach to obtain the rate at which system information is

extracted can be based on the estimated C/N0 of the eNodeBs.

In the results provided in the next two subsections, the C/N0

of the eNodeBs remains high during the test; therefore, infor-

mation extraction is performed only once at the start position.

Information extraction is not a time consuming process, and

it can be performed in parallel with the tracking stage.

In the third stage, the received signal is tracked using the

architecture discussed in Subsection III-C. The PLL, FLL,

and DLL noise-equivalent bandwidths were set to 4, 0.2, and

0.001 Hz, respectively. To calculate the interference-plus-noise

variance, the received signal was correlated with an orthogonal

sequence that is not transmitted by any of the eNodeBs in the

environment. Then, the average of the squared-magnitude of

the correlation was assumed to be the interference-plus-noise

variance. Fig. 15 shows the tracking results. Since the receiver

was stationary and its clock was driven by a GPS-disciplined

oscillator (GPSDO), the Doppler frequency was stable around

zero.

B. UAV Experiment

In this subsection, the proposed LTE SDR and navigation

framework are employed to navigate a UAV exclusively with
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Fig. 15. Tracking results for a stationary receiver.

LTE signals. To the author’s knowledge, these results represent

the first demonstration of a UAV navigating exclusively with

LTE signals.

1) UAV Experimental Setup: When a UAV flies high

enough, it can be assumed that the received signal to the

UAV does not experience multipath from the surrounding

environment, except from the UAV’s body. In this paper,

a UAV with body size less than 1 m was used; therefore,

the effect of multipath from the UAV’s body is neglected.

In this case, tracking the SSS only yields good results; hence,

the CRS was not used to improve the navigation solution.

This will significantly decrease the computational cost of the

receiver. It also reduces the need for high sampling rate, which

results in lower hardware cost as well. Low sampling rates also

allow for lightweight hardware, which is critical for UAVs with

limited payload.

Fig. 16 shows the experimental setup used in performing

the experiment with a UAV. In this experiment, a DJI Matrice

600 was equipped with:

• one consumer-grade 800/1900 MHz cellular omnidirec-

tional Laird antenna to receive LTE signals at a frequency

of 1955 MHz, which is used by AT&T (LTE network

provider),

• an Ettus E312 universal software radio peripheral (USRP)

driven by a GPSDO to down-mix and sample LTE signals,

• one small consumer-grade antenna for receiving GPS

signals to discipline the URSP oscillator and to record

the true trajectory.

For this particular experiment, the Ettus E312 offers three

advantages over other USRPs: (1) it is lightweight, (2) it

is battery operated, and (3) it has an SD Card slot which

can be used to store LTE signals. Since the signals from all

eNodeBs of the same operator are transmitted at the same

frequency, it is possible to use one radio channel on the Ettus

E312 USRP to receive signals from all eNodeBs. To store data

for off-line post-processing, it was noticed that a sampling

rate of 3 Msps or less is best suitable for the E312. This

rate is acceptable for UAV navigation since it is assumed that

multipath is negligible and only the SSS signal needs to be

tracked.

The stored LTE signals were processed by the proposed LTE

SDR, which was implemented in MATLAB. The stored GPS

signals were processed by the Generalized Radionavigation

Interfusion Device (GRID) SDR whose accuracy is consistent

with the Standard Positioning Service GPS signal [55], [56].

The GPS navigation solution was used to initialize the states

Fig. 16. UAV experimental hardware and software setup. The LTE and
GPS antennas were connected to an Ettus E312 USRP driven by a GPSDO.
The stored LTE and GPS signals were processed with the proposed SDR and
GRID SDR, respectively. The LTE navigation solution was obtained from an
EKF and compared to the GPS navigation solution.

of the EKF, which was also implemented in MATLAB. The

LTE navigation solution was obtained by the EKF using the

pseudoranges produced by the LTE SDR, and the LTE and

GPS navigation solutions were compared to calculate the

estimation error.

Over the course of the experiment, the UAV was flying at

the height of 40 m. The receiver was listening to 3 eNodeBs,

each of which had 2 transmitting antennas with 20 MHz

transmission bandwidth. The cell IDs of the eNodeBs were

300, 398 and 364, respectively. The positions of the eNodeBs

were mapped prior to the experiment with approximately 2 m

accuracy.

All measurements and trajectories were projected onto a

2-D plane. Subsequently, only the horizontal position of the

receiver was estimated. It is assumed that the receiver had

access to GPS, and GPS was cut off at the start time of the

experiment. Therefore, the EKF’s states were initialized with

the values obtained from the GPS navigation solution. The

standard deviation of the initial uncertainty of position and

velocity were set to be 5 m and 0.01 m/s, respectively [36].

The standard deviation of the initial uncertainty of the clock

bias and drift were set to be 0.1 m and 0.01 m/s, which

were obtained empirically. The clock oscillators were modeled

as oven-controlled crystal oscillators (OCXOs) with Sw̃δtsi
≈

h0/2 and Sw̃δ̇tsi

≈ 2π2 h−2, where h0 = 2.6 × 10−22 and

h−2 = 4 × 10−26. The power spectral densities q̃x and q̃y

were set to 0.2 (m2/s3) and measurement noise covariance

was set to be 10 m2, which were obtained empirically.

2) UAV Experimental Results: Fig. 17 shows the obtained

pseudoranges and the actual ranges with dashed and solid

lines, respectively. To be able to plot all the pseudoranges in

one figure, the initial value of each pseudorange is subtracted

from the entire pseudorange time history. Therefore, all the

pseudoranges in the figure start at zero. The same is performed

to the actual ranges, which were obtained from GPS. The

environment layout as well as the true and estimated receiver

trajectories are shown in Fig. 18(a). It can be seen from

Fig. 18(b) that the navigation solution obtained from LTE

signals follows closely the GPS navigation solution. Over

the course of the experiment, the UAV traversed a 426 m

trajectory over 40 s with average speed of 38.34 Km/hr.

The navigation performance including the RMSE, standard
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Fig. 17. Measured pseudoranges obtained by the LTE SDR and the actual
ranges obtained by GPS for the UAV experiment. For the sake of comparison,
the initial values were subtracted out. Dashed and solid lines represent the
pseudoranges and actual ranges, respectively.

Fig. 18. (a) Environment layout, eNodeBs’ locations, and the traversed
trajectory. (b) The receiver’s GPS trajectory estimate and the trajectory
estimated using LTE signals. The RMSE between the GPS and LTE navigation
solutions was calculated to be 8.15 m with an estimation error standard
deviation of 2.83 m and a maximum error of 12.38 m. Image: Google Earth

deviation, and maximum error between GPS and LTE is

summarized in Table I. The expected standard deviation of

the horizontal error of a typical GPS navigation solution

is 5 m [36].

Fig. 19(a) shows the distance estimation error. The initial

value of the error is zero since the filter is initialized with

true value of the receiver’s position obtained from GPS. The

experimental cumulative distribution function (CDF) of the

error is plotted in Fig. 19(b) showing the 95-th error percentile

to be 11.57 m.

C. Ground Vehicle Experiment

To evaluate the performance of the proposed methods for

tracking multiple eNodeBs and exploiting CFAR to detect

multipath components, a field test was conducted with a

ground vehicle in an urban environment (downtown River-

side, CA, USA). The received signal to a ground vehicle

suffers from severe multipath. The effect of multipath on an

LTE signal may be worse than that of a GPS signal since

LTE signals arrive at lower elevation angles than GPS signals.

Therefore, higher bandwidth and the use of CRS to mitigate

multipath are necessary. In this subsection, the experimen-

tal setup and results with a ground vehicle are provided.

Finally, the performance of the receiver is compared with other

methods.

1) Ground Vehicle Experimental Setup: Fig. 20 shows the

experimental hardware and software setup. The equipment

used in this experiment includes:

Fig. 19. (a) The navigation solution distance error. (b) Experimental CDF
of the navigation solution distance error.

TABLE I

UAV NAVIGATION RESULTS

• two consumer-grade 800/1900 MHz cellular omnidirec-

tional Laird antennas to receive LTE signals in frequen-

cies 739 MHz and 1955 MHz, which are used by AT&T,

• a dual-channel national instruments (NI) USRP-2954R

driven by a GPSDO to simultaneously down-mix and

synchronously sample LTE signals with 20 Msps,

• a surveyor-grade Leica antenna to receive GPS signals to

discipline the USRP oscillators and to obtain the ground

truth,

• a single-channel NI USRP-2930 to down-mix and sample

GPS signals,

• a laptop to store LTE and GPS signals for off-line post-

processing.

The PLL, FLL, and DLL noise equivalent-bandwidths were

set to 4, 0.2, and 0.001 Hz, respectively. The CFAR parameters

were set to Nt = 40, Ng = 100, pF A = 0.01, and non-

coherent integration was performed over all the symbols and

transmitting antennas in one frame, which results in ni = 80.

The EKF parameters were assigned similar to the UAV

experiment. The vehicle traversed a total trajectory of 583 m

in 39 s while listening to 6 eNodeBs whose position states

were mapped prior to the experiment. The cell IDs of the

eNodeBs were 216, 489, 457, 288, 232, and 152, respectively.

The first 3 eNodeBs had 20 MHz and the rest of the eNodeBs

had 10 MHz transmission bandwidth.

2) Ground Vehicle Experimental Results: The receiver was

able to acquire and track all but the second eNodeB. Therefore,

the proposed method in Section V was used to track the first

eNodeB as the main eNodeB and obtain the pseudorange to

the second eNodeB. Fig. 21(a) shows the measured pseudor-

anges and ranges, with initial values removed, with dashed and

solid lines, respectively. The pseudorange error was obtained

by subtracting the measured pseudorange for each eNodeB

from its actual range. The average of the pseudorange error

was assumed to be due to the clock bias and removed from

the pseudorange error. Fig. 21(b) shows the experimental

CDF of the pseudorange error for each eNodeB. Fig. 21(c)

shows the measured C/N0 obtained by the LTE SDR for
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Fig. 20. Experimental hardware and software setup. The LTE antennas were
connected to a dual-channel NI USRP-2954R driven by a GPSDO. The GPS
antenna was connected to an NI-2930 USRP driven by a GPSDO. The stored
LTE and GPS signals were processed with the proposed SDR and GRID SDR,
respectively. LTE navigation solution was obtained by an EKF and compared
with the GPS navigation solution.

Fig. 21. (a) Measured pseudoranges obtained by the LTE SDR and actual
ranges obtained by GPS for the ground vehicle experiment. For the sake of
comparison, the initial values were subtracted out. Dashed and solid lines
represent the pseudoranges and actual ranges, respectively. (b) Experimental
CDF of the pseudorange error for each eNodeB. (c) Measured C/N0 obtained
by the LTE SDR for each eNodeB for the ground vehicle experiment.

each eNodeB over the course of the experiment. It can be

seen that the pseudorange error for the eNodeBs with high

C/N0 is lower compared to the ones with low C/N0 . It is

worth mentioning that low C/N0 is one source of error in the

estimated pseudorange. Short delay multipath can also increase

the error on the estimated pseudorange.

Fig. 22 shows the amplitude of the estimated CIR, |ĥ
(u)

(n)|,

from real LTE signals in a multipath environment at a given

Fig. 22. The amplitude of the estimated CIR and the obtained threshold using
the proposed CFAR method. The estimated threshold is used to differentiate
the LOS peaks and strong multipath peaks from the noise level. The position
of these peaks are shown in black dashed lines.

TABLE II

GROUND VEHICLE NAVIGATION RESULTS

time instant (blue). The proposed method in Section IV was

used to obtain the threshold, η (red). Then, d
(u)(l) was set

to be nl , where |ĥ
(u)

(nl)| > η and l = 0, . . . , L(u) − 1. The

position of the LOS peak (first peak) and the strong multipath

peaks were set to be the peaks of |ĥ
(u)

(d
(u)(l))|, which are

shown in black dashed lines. It can be seen that the proposed

method was able to isolate these peaks from the noise floor.

Fig. 23(a) shows the environment layout as well as the true

and estimated receiver trajectory. It can be seen in Fig. 23(b)

that the navigation solution obtained exclusively by LTE

signals using the proposed LTE receiver and navigation frame-

work follows closely the GPS solution. The navigation per-

formance of the ground vehicle is summarized in Table II.

Fig. 24 shows the distance estimation error and the experi-

mental CDF of the error indicating a 95-th error percentile

of 10.41 m.

In an urban environment, the pseudoranges received by

a ground vehicle will suffer from more multipath-induced

error compared to pseudoranges received by a UAV with

LOS conditions. However, this comparison can be made as

long as the ground vehicle and UAV are navigating in the

same environment, using the same eNodeBs, and following the

same trajectories, except for one being on the ground while

the other being airborne. In this paper, the ground vehicle

was equipped with a better USRP than the one on the UAV,

due to payload limitations. The USRP on-board the ground

vehicle was capable of sampling two different LTE channels

at a sampling rate of 20 Msps, whereas the USRP on-board

the UAV could only sample one LTE channel at 3 Msps.

Consequently, the LTE receiver on-board the ground vehicle

was able to listen to more eNodeBs than the receiver on-

board the UAV, providing the former with more measurements

at a better geometric diversity than the latter. Moreover,

the ground vehicle-mounted receiver was able to produce more

accurate TOA measurements, since it was sampling at more
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Fig. 23. (a) Environment layout in downtown Riverside, California: eNodeBs’
locations and the traversed trajectory. (b) The receiver’s GPS trajectory
estimate and the trajectory estimated using LTE signals. The RMSE between
the LTE and GPS navigation solutions was found to be 5.80 m, with
an estimation error standard deviation of 3.02 m, and a maximum error
of 14.96 m. Image: Google Earth.

Fig. 24. (a) Distance estimation error. (b) Experimental CDF of the distance
estimation error.

than six times the rate of the UAV-mounted receiver. These

aforementioned factors resulted in the position RMSE of the

ground vehicle being less than the position RMSE of the UAV.

3) Comparison With Other Methods: Prior solutions on

navigating with LTE signals include: (1) detecting the first

peak of the CIR using a constant threshold [26], [35] or an

adaptive threshold [33], (2) estimating the CIR using estima-

tion of signal parameters via rotational invariance techniques

(ESPRIT) and Kalman filter, i.e., EKAT algorithm [28], and

(3) tracking the CRS [24].

A constant threshold provides a computationally low-cost

estimation of TOA; however, it has low accuracy when the

C/N0 is relatively low. In the adaptive threshold proposed

in [33], the threshold is obtained based on the maximum of the

CIR and the noise floor. The approach provide similar results

to the proposed approach in this paper when the LOS signal

has higher power than the multipath and the C/N0 is relatively

high. When the multipath signal has significantly higher power

than the LOS (see the example in [47]), the approach in [33]

cannot detect the LOS as the first peak of the CIR. In all

threshold-based approaches including the proposed receiver in

this paper, the accuracy of the TOA estimation depends on

the transmission bandwidth. The EKAT algorithm proposed

in [28] estimates the CIR using the ESPRIT algorithm, which

is known to provide a relatively accurate estimate of the TOA

when the length of the channel is known. To estimate the

channel length, a minimum description length (MDL) criterion

is used [28]. Since MDL tends to overestimate the CIR length,

the TOA estimate has outliers. The outliers can be improved

using a Kalman filter as discussed in [28]. The proposed SDR

in [24] provides an accurate estimate of the TOA. However,

in a multipath environment and for low C/N0 , the receiver

may lose lock. The receiver proposed in this paper is an

improvement over existing state-of-the-art approaches due to

two main reasons: (1) it can estimate the first peak of the CIR

even for low C/N0 and (2) it can detect the first peak even

for high multipath power.

Fig. 25 compares the error in estimating the eNodeB

3 pseudorange using (1) the proposed receiver in this paper,

(2) the EKAT algorithm, (3) the SDR in [24], (4) a constant

threshold-based algorithm (with threshold to be 4 dB lower

than the maximum of the CIR), and (5) an adaptive threshold-

based algorithm proposed in [33]. To be able to compare the

results, the actual range obtained from GPS was subtracted

from the pseudoranges obtained by each algorithm. Then,

the average of each error over time, which is assumed to

be the effect of clock bias, was removed. It is worth men-

tioning that the results are presented only for eNodeB 3 to

show the effect of low C/N0 and high multipath on the

estimated pseudoranges by each method. Table III summarizes

the standard deviation and maximum error for each method.

It can be seen that the proposed method provides the most

accurate results. Note that despite the high errors by the

EKAT algorithm, the navigation performance in [28] shows

a position RMSE of 31.09 m in an urban environment. It is

worth mentioning that there are some considerations in the

implementation of the EKAT algorithm (e.g., filter tuning).

Perhaps with tuning, the performance of the EKAT algorithm

could improve. However, no guidance on such tuning was

provided in [28], so the same parameters provided in [28]

were used to compare against the proposed method. This

comparison also serves to highlight the importance of tuning

in existing state-of-the-art, whereas the proposed method in

this paper is mostly tune-free, except for the PLL and DLL

bandwidth, which is stated how to choose in this manuscript.

It can be shown that the computational cost of the SRA

method is proportional to O(N3
r ), which is mainly due to the

singular value decomposition (SVD). However, the proposed

algorithm, the SDR in [24], and the constant threshold method

cost is O(Nc logNc), which is due to the FFT operator.

D. Remarks

This subsection summarizes key remarks concluded from

the presented results.
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Fig. 25. Comparing the pseudorange errors obtained by EKAT, constant
threshold, SDR in [24], adaptive threshold in [33], and the proposed method.

TABLE III

PSEUDORANGE ERROR COMPARISON OF DIFFERENT METHODS

• A GPSDO allows modeling the receiver’s clock by a

known clock model as discussed in the navigation frame-

work in Section VI. In an environment where GPS is

not available and the receiver’s clock is unknown, other

navigation frameworks could be used, e.g., collaboration

via mapping and navigating receivers [19].

• The GPS navigation solution is only used (1) as ground

truth to obtain the estimation error for navigating with

LTE signals and (2) to initialize the EKF.

• The choice of hardware and software is not unique. Any

hardware that can sample in cellular bands can be used

to record LTE signals and any software that has the

processing capabilities (e.g. LabVIEW, MATLAB, and

C++) can be used to implement the receiver.

• There is a slight mismatch between the vehicle’s true

dynamical model and the assumed model in (15). In the

assumed model, the EKF might allow the vehicle’s posi-

tion and velocity estimates to move freely, as opposed

to constraining them to a road segment. This model mis-

match will cause the estimation error to become larger.

In order to minimize the mismatch between the true and

assumed model, multiple models for the vehicle’s dynam-

ics may be used to accommodate the different behaviors

of the vehicle in different segments of the trajectory.

Alternatively, an inertial measurement unit (IMU), which

is available in many practical systems (e.g., UAV, cars,

and smart phones), can be used to propagate the state

of the vehicle [20]. This will also aid in alleviating

multipath-induced errors.

• The estimation performance depends on the geometric

diversity of the eNodeBs, the number of eNodeBs in the

environment, the dynamical model, and the measurement

accuracy.

VIII. CONCLUSION AND FUTURE WORK

This paper studied the exploitation of LTE signals for

navigation purposes. A discussion of relevant signal models

was presented and an SDR design for navigating with LTE

signals was discussed. A method for timing information

extraction was proposed. In addition, a method for tracking

multiple eNodeBs by only tracking one reference eNodeB was

proposed. Experimental results were presented demonstrating

a UAV and a ground vehicle navigating exclusively with LTE

signals via the proposed SDR. The RMSE between GPS and

LTE navigation solutions was calculated to be 8.15 m (with

3 eNodeBs) and 5.80 m (with 6 eNodeBs) for the UAV and

the ground vehicle, respectively.

Implementing the proposed receiver in hardware (e.g. digital

signal processors (DSPs) and field-programmable gate arrays

(FPGAs)) is one of the remaining challenges that needs to be

addressed in the future. In this realm, the delay introduced by

each part of the system, i.e., hardware and software, must be

evaluated to analyze real-time feasibility.

Evaluating the proposed receiver in different environments

over longer trajectories will be addressed in the future, upon

having access to a database of the eNodeBs’ positions.
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